

Image plane corrections

S. Bhatnagar NRAO, Socorro

The Measurement Equation

Hierarchy of algorithms

- Unknowns of the problem: J_{ii}, J^{s}_{ii} , and I^{M} .
- $J_{i}^{s} = J_{i}^{s}$ and *independent* of time

Imaging and calibration as orthogonal operations

• $J_{j}^{s}(t) = J_{j}^{s}(t)$ (Poln. squint, PB correction, etc.) (Cornwell, EVLA Memo 62) - J_{ij}^{s} is multiplicative in the image plane for appropriate ∇T $\Delta I^{D} \propto \Re \left[\sum_{n} J^{s^{T}}(n \nabla T) \sum_{ij} [\Delta V_{ij}(\nabla T) e^{iSB_{ij}}] \right]$

Hierarchy of algorithms

- $J_i^s(t) \neq J_i^s(t)$ (Pointing offsets, PB variations, etc.)
 - Image plane effects not known a-priori
 - Pointing selfcal (EVLA Memo 84)
 - Correct for J^{s}_{μ} during image deconvolution
 - W-Projection, PB-Projection(EVLA Memo 67) (EVLA Memo 100)

• Simultaneous solver for J_{ij}, J^s_{ij} , and $I^M !!$

General structure of imaging algorithms

- $\vec{V}^{Obs} = A \vec{I}^o A$: The Measurement Matrix
- Solve the normal equation $A^{T}[\vec{V} A\vec{I}] = 0$
 - Compute the approx. update direction: $\Delta I^{D} = A^{T} [\Delta V^{R}]$
 - Update the model: $I_i^M = I_{i-1}^M + \alpha \max(\Delta I^D)$ (Steepest Descent minimization: Clean algorithm)
 - Compute residuals: $\vec{V} A \vec{I}^{M}$
- Transform implemented using FFT: $V^{M} = C[A\vec{I}^{M}]$
- Incorporate the image plane effects in the transform operator: Forward/inverse transforms: EA and $A^T E^T$
- Iteratively solve the modified normal equation:

$$B[\vec{V} - A\vec{I}] = 0$$
 where $B \sim A^T$

Motivation

- Single pointing L-Band observations limited due to pointing/PB asymmetries ~10-20microJy/beam.
 - Next generation telescopes hope to do >10x better
- Mosaicking dynamic range limited by pointing errors and azimuthally asymmetric PB/sidelobes.
- Use of pixel basis for image representation: deconvolution errors: > 10mircoJy/beam
- Frequency dependence of the sky & the instrument: 10-15microJy/beam (much greater than this when PB effects are included!)

Measured direction dependent effects

E_{ij} as a function of direction is measured a-priori (nominal full beam polarimetric imaging)

 $V_{ij}^{M} = \boldsymbol{E}_{ij} [\boldsymbol{A} \boldsymbol{I}^{M}]_{ij} \quad where \quad \boldsymbol{E}_{ij} (l_{i}, l_{j}, u_{ij}; p_{i}, p_{j})$

<u>Aperture Function</u>: *E_i different* for each poln. product *pq* (pointing offsets correction)

Needs a solver: Pointing SelfCal

Asymmetric Primary Beams:

Power patterns

Model for VLA antenna power patters at L-band (modeling code courtesy W.Brisken)

Variable side-lobe gain

Maximum gain variations at the location of the sidelobes

Numerical errors: Variations in the peak of the sidelobe.

Image re-gridding vs. direct evaluation

Error patterns

AvgPB - $PB(t_o)$

Azimuthal cuts at 50%, 10% and 1% of the Stokes-I error pattern $AvgPB - PB(t_o)$

Simulations: Stokes-I

Stokes-I imaging with and without PB effects (Polarization squint, Pointing offsets, PB rotation)

RMS ~15µJy/beam

RMS ~1µJy/beam

S. Bhatnagar: Wed. Lunch Talk, Socorro, March 29, 2006

Simulations: Stokes-V

Stokes-V imaging with and without PB effects (Polarization squint, Pointing offsets, PB rotation)

VLA L-Band C-array: Stokes-I

VLA L-Band C-array: Stokes-V

Pointing correction

Model image using 59 sources from NVSS. Flux range ~2-200 mJy Details in EVLA Memo 84 (2004)

http://www.aoc.nrao.edu/evla/geninfo/memoseries/evlamemo84.pdf

Continuous lines: Typical antenna pointing offsets for VLA as a function of time (Mean between +/-25" and RMS of 5").

Dashed lines: Residual pointing errors. RMS ~1".

Pointing SelfCal: "Unit" test

Test for the solver using simulated data

Time lines: Research

- Note on algorithm research, Aug. 2004 http://www.aoc.nrao.edu/~sbhatnag/Talks/AlgoDevelopment.ps
- Major areas of work:
 - Scale sensitive deconvolution (<u>Asp paper, 2004[2003]</u>)
 - Correction of PB effects (Poln., pointing, sidelobes,etc.) Basic algo: <u>Pointing Selfcal (2004), Imaging (early 2005)</u>
 - Wideband imaging (will require the above)
- Difficult to translate research into Project Management lingo ("deliverables", etc.!) still made an attempt!
 - "Demonstrable" progress: ~1 year
 - Tricky details: ~3 years (probably more)

Time lines: Development

- Code development time much longer
 - <u>Complexity code base</u>
 - Partly unavoidable
 - Improvements: Possible & Necessary
 - Use of simpler UI (UNIX command-line, inp/set/save/go)
 - Currently usable on real data (minus data selection)
 - <u>Complexity algorithm</u>
 - Very difficult to predict (more difficult in evolving code-base)
 - Can run into dead-ends
- Optimization and stability/robustness
 - From "working algorithm" to "usable implementation"
 - Stability/robustness/numerical testing: Time consuming & related to the code-base complexity/stability/evolution.

Progress so far

- Use aperture function / eliminate re-gridding [Done]
- Write the imaging and solver code [Done]
- SelfCal <-> imaging iterations [Testing]
- Component image model (Asp-Clean + PB-Projection + W-Projection) [Next!]
- Is current deep L-band imaging pointing-error limited?
- Mosaicking dynamic range limited by pointing errors?
- Wide-band imaging
 - Use PB-projection to correct for PB scaling
 - MSF extensions: Freq. sensitive image plane modeling (Component based imaging)

Interesting extensions

- Fast mosaicking
 - Use the pointing vector as the "offset" (Golap): Azimuthally symmetric PB
 - Use model for aperture illumination as a function of PA and pointing errors
 - Variable PB-sidelobes and pointing errors constitute the dominant error for mosaicking: Not included in existing simulations/imaging performance estimates
- Wide band imaging
 - PB scaling contributes the dominant error: Not included in existing simulations
 - Use it with Component based sky model

Computing and I/O costs

- Significant increase in run-time due to more sophisticated parameterization
 - Deconvolution: Fast transform (both ways)
 - E.g. limits the use of MCMC approach
 - Calibration: Fast prediction
- Cost of computing residual visibilities is dominated by I/O costs for large datasets (~200GB for EVLA)
 - Deconvolution: Approx. 20 access of the entire dataset
 - Calibration: Each trial step in the search accesses the entire dataset

References

- 1. Hamaker, Bregman & Sault, 1996, A&AS, 117, 137
- 2. Cornwell, 1995, The Generic Interferometer: II Image Solvers, AIPS++ Note 184
- 3.Bhatnagar & Cornwell, 2004, Scale sensitive deconvolution of interferometric images, A&A, 426, 747-754, 2004 (astro-ph/0407225)
- 4.Cornwell, Golap & Bhatnagar, 2003, W-Projection: A new algorithm for non-coplanar baselines, Tech. rep., EVLA Memo 67
- 5.Brisken, 2003, Using Grasp8 To Study The VLA Beam, Tech. rep., EVLA Memo 58
- 6.Bhatnagar, Cornwell & Golap, 2004, Solving for the antenna based pointing errors, Tech. rep., EVLA Memo 84
- 7.Bhatnagar, Cornwell & Golap, 2006., Image plane corrections, EVLA Memo 100

http://www.aoc.nrao.edu/~sbhatnag/talks.html

Pointing SelfCal

- Model image: deconvolved using entire data
- Pixelated model image

Pointing SelfCal

• Stokes-I imaging: Before and after pointing correction

Pieces of the puzzle

- Efficient algorithms to correct for image plane effects
 - Approximate inverse transform (Vis -> Image)
 - Forward transform (accurate)
- Decomposition of the sky in a more appropriate basis
 - Frequency sensitive
- Solvers for the "unknown" image plane effects
 - <u>As expensive as imaging!</u>
- Larger computers! (More memory, CPU power, fast I/O)

Known direction dependent effects

Non-coplanar baselines

$$V(u, v, w) = \iint I(l, m) G(l, m, w) e^{2\pi \iota (ul + vm)} \frac{dl dm}{\sqrt{1 - l^2 - m^2}}$$

Traditional approach: Faceting

• W-projection: Visibility filtering (>10x faster)

W-projection: Example

S. Bhatnagar: Wed. Lunch Talk, Socorro, March 29, 2006

Pointing SelfCal

• Stokes-V imaging: Need to use component imaging?

Scale sensitive imaging: Asp-Clean

Pixel-to-pixel noise in the image is correlated

 $I^{D} = PI^{o} + PI^{N}$ where P = Beam Matrix

- The scale of emission *fundamentally* separates signal (*I*°) from the noise (*I*^N).
- Asp-Clean (Bhatnagar & Cornwell, A&A,2004)
 - Search for local scale, amplitude and position

S. Bhatnagar: Wed. Lunch Talk, Socorro, March 29, 2006