Direction Dependent Calibration

Wed. Lunch, Socorro, Aug. 22nd 2010

S. Bhatnagar NRAO

High sensitivity imaging

- Sensitivity $\propto \frac{N_{ant}(\eta A_{ant})\sqrt{(N_t\tau)(N_{chan}\Delta\nu)}}{T_{sys}}$ Data volume $\propto N^2_{ant} N_{chan}^{T_{sys}} N_{.}$
- Implications for high dynamic range imaging
 - Wider field imaging required → finer sampling in time and frequency
 - Smaller scale variations over larger parameters space to be accounted for
 - $N_{channels} = 1-10GHz/KHz-MHz$ and $N_{t} = 10hr/(1-10sec)$
 - 10-100x increase in the number of samples to achieve the required sensitivities
 - Algorithm efficiency remains a critical parameter
 - Wider range of angles on the sky (→ Direction Dependence)

Synthesis Imaging

Measurement Equation

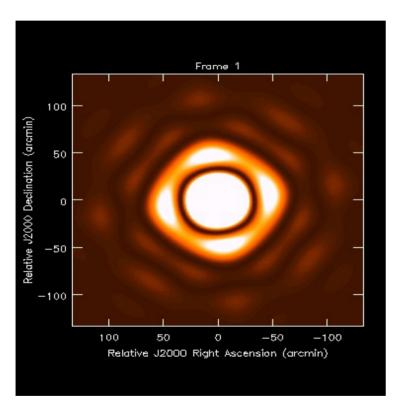
$$V_{ij}^{Obs}(v) = M_{ij}(v,t)W_{ij}\int M_{ij}^{S}(s,v,t)I(s,v)e^{2\pi\iota(b_{ij},s)}ds$$

$$M_{ij}(v,t) = J_{i}(v,t)\otimes J_{j}^{*}(v,t) \text{:Direction independent gains}$$

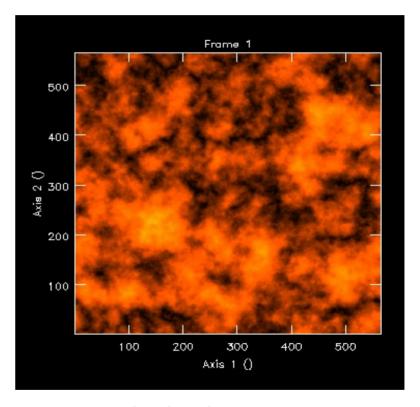
$$M_{ij}^{S}(s,v,t) = J_{i}(s,v,t)\otimes J_{j}^{*}(s,v,t) \text{:Direction dependent (DD) gains}$$

- Requirements: Full beam, full band, full Stokes imaging
 - Wide-band, narrow field: Ignore $M_{ij}^{s}(s, v, t)$
 - Narrow-band, wide-field: Ignore frequency dependence of I
 - Wide-band, wide-field: A-Projection + MS-MFS
 - High dynamic range: All the above + DD solvers
 - Time dependent pointing errors, PB shape change, etc.

Examples of DD effects

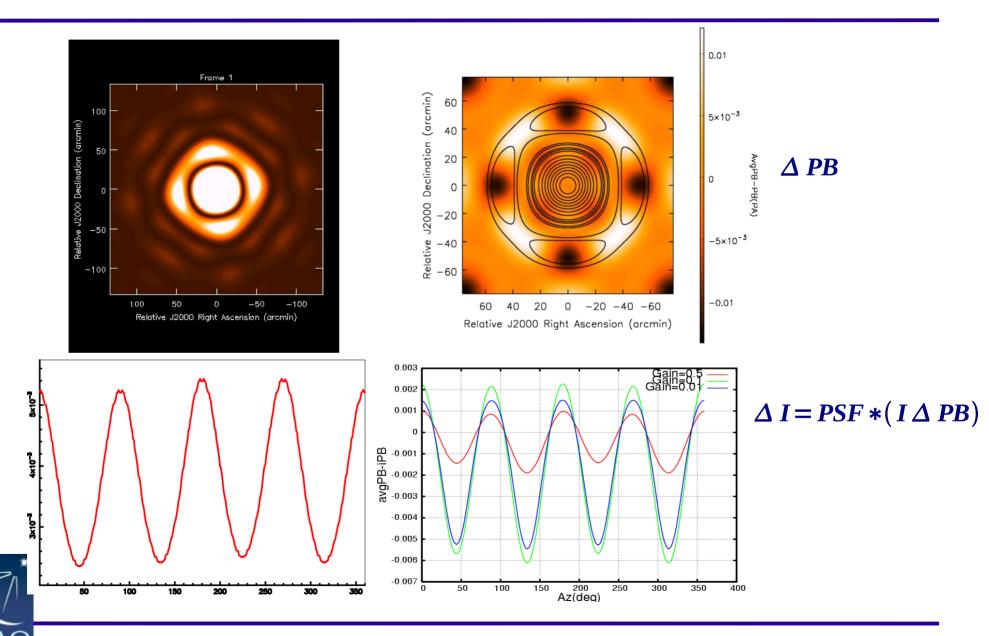


Time and DD Primary Beam: EVLA

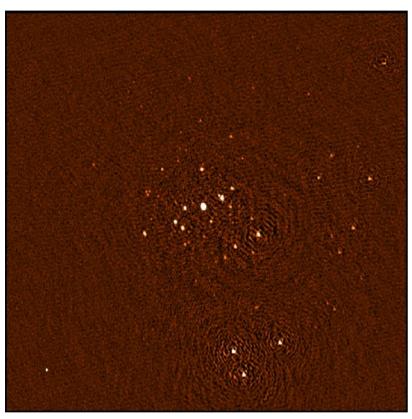


Ionospheric Phase Screen

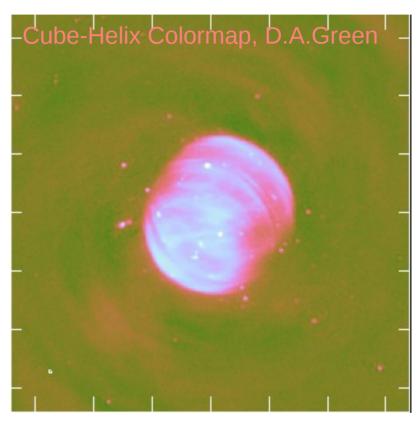
Time varying DD gains due to PB



Range of imaging challenges



Field with compact sources filling the FoV



Compact + extended emission filling the FoV

Used mostly auto-flagging + some manual flagging

Parametrized Measurement Equation

- Need more sophisticated parametrization of the ME
- Two approaches
 - Faceting: Partition the data & apply DI techniques per facet
 - » Issues: + More familiar, trivial parametrization
 - DoF vs. SNR, run-time efficiency, high algorithm complexity
 - Global/Projection methods: Include DD terms in the Measurement Equation
 - » Issues: + Mathematically better formulated, optimal use of the available SNR, run-time efficiency, lower algorithm complexity
 - Less familiar, non-trivial parametrization (?)

Noise per antenna based DoF:

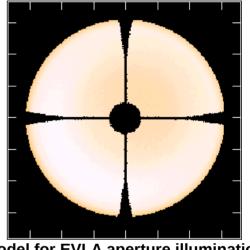
$$\sigma(p) = \left[\frac{2k_b T_{sys}}{\eta_a A \sqrt{N_{ant} \nu_{corr} \tau_{corr}} \sqrt{N_{SolSamp}}} \right] \frac{1}{S}$$

where
$$S = \int \frac{\partial E_i(s, p)}{\partial s} E_j^*(s, p) I^M(s) e^{2\pi \iota s.b_{ij}} ds$$

The A-Projection algorithm

$$V^{o}(u, v, w) = V^{M}(u, v) * J_{i}(u, v; s) * J_{i}^{*}(u, v; s)$$

- Modified forward and reverse transforms:
 - No assumption about sky properties
 - Spatial, time, frequency and polarization dependence naturally accounted for
 - Done at approximately FFT speed



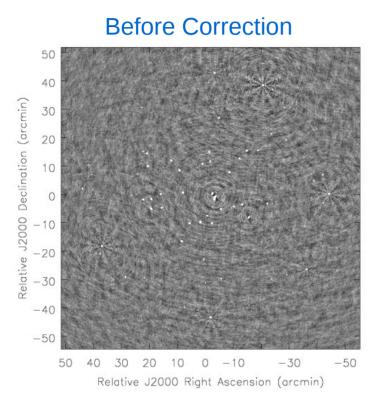
Model for EVLA aperture illumination (real part)

One element of the Sky-Jones (Jones Matrix per pixel)

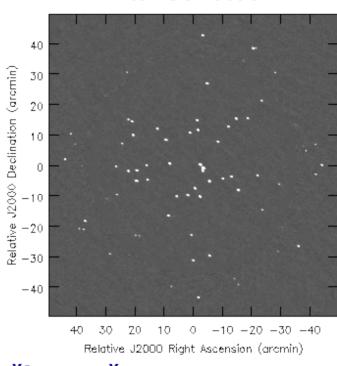
- A-Projection is the first term of the series expansion of the Aperture Illumination pattern. $A(u) = A_a(u) [1 + a_a Z_a(u) + ...]$
- Projection formulation delivers efficient solvers to solve for parametrized models (Pointing SelfCal and its extensions)

A-Projection algorithm, A&A 2008

A-Projection algorithm: Simulations



After Correction

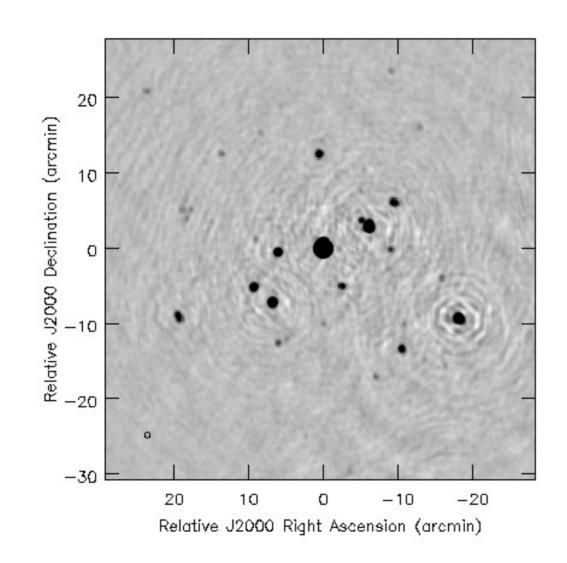


Minimize: $V_{ij}^{O} - E_{ij} * [FI^{M}]$ w.r.t. I^{M}

Goal: Full-field, full-polarization imaging at full-sensitivity

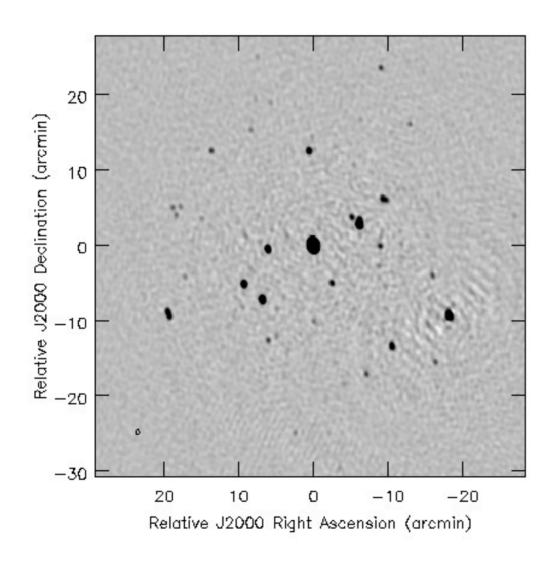
A-Projection: Bhatnagar et al., A&A,487, 2008

EVLA L-Band Stokes-I: Before correction



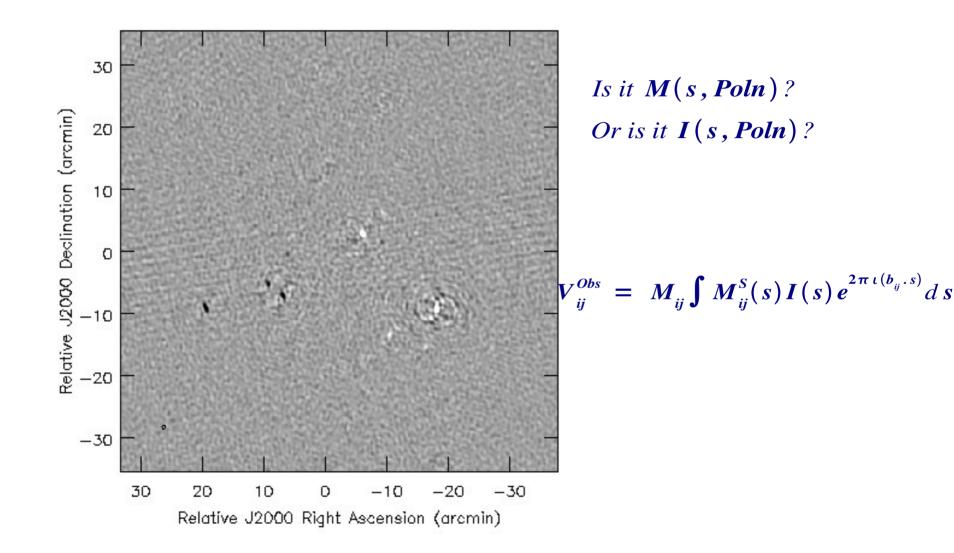
- 3C147 field at L-Band
- Pre-OSRO Mode WIDAR0!
- Only 12 antennas used
- Bandwidth: 128 MHz
- ~7 hr. integration
- Dynamic range: ~700,000:1
- A single baseline based correction was applied

EVLA L-Band Stokes-I: After correction

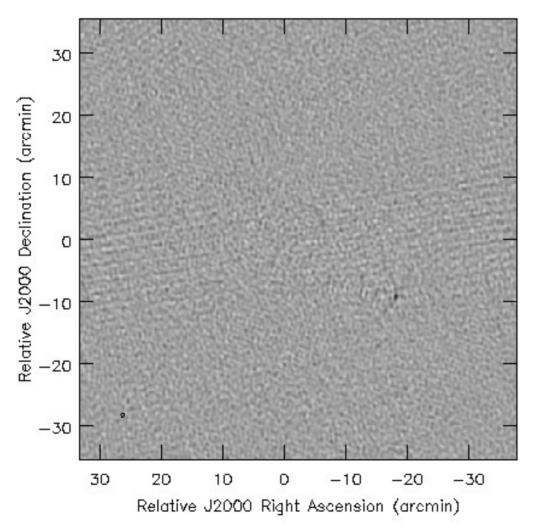


- 3C147 field at L-Band with the EVLA
- Only 12 antennas used
- Bandwidth: 128 MHz
- ~7 hr. integration
- Dynamic range: ~700,000:1

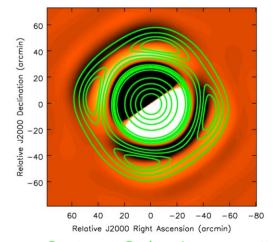
EVLA L-Band Stokes-V: Before correction



EVLA L-Band Stokes-I: After correction

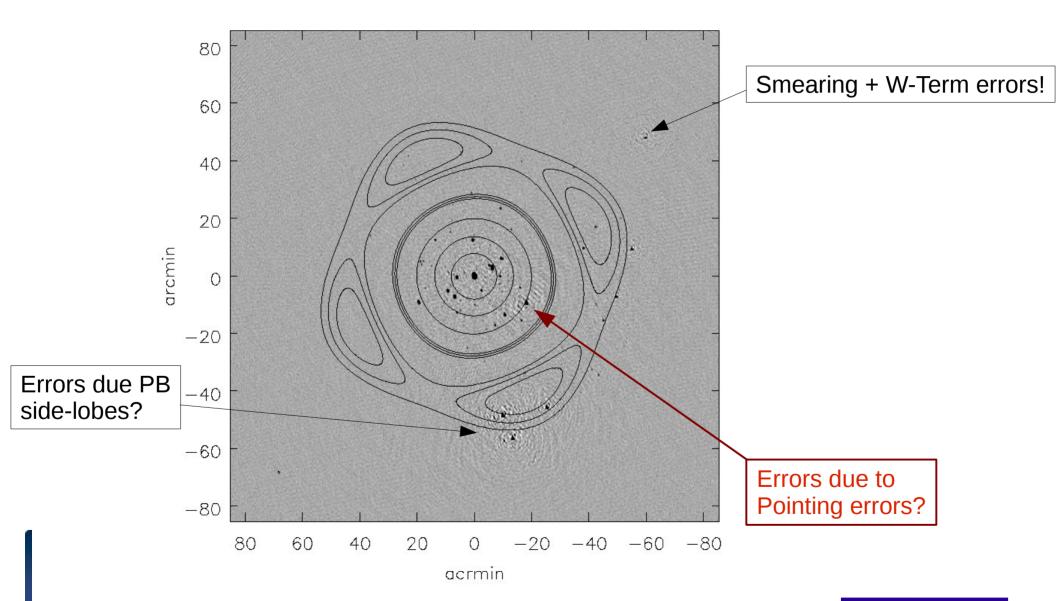


Use physical model for the Stokes-V pattern:

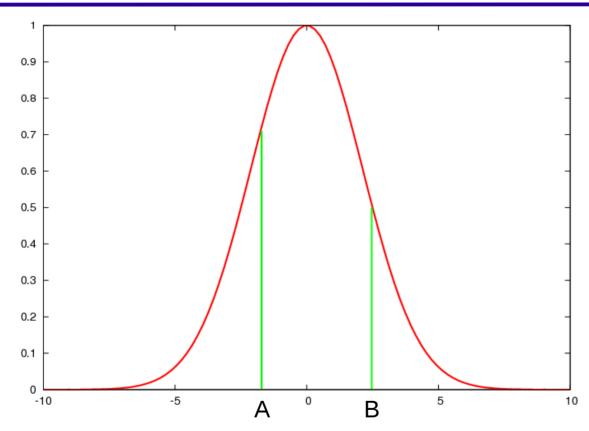


Contours: Stokes-I power pattern Colour: Stokes-V power pattern

3C147: Residual errors in full field



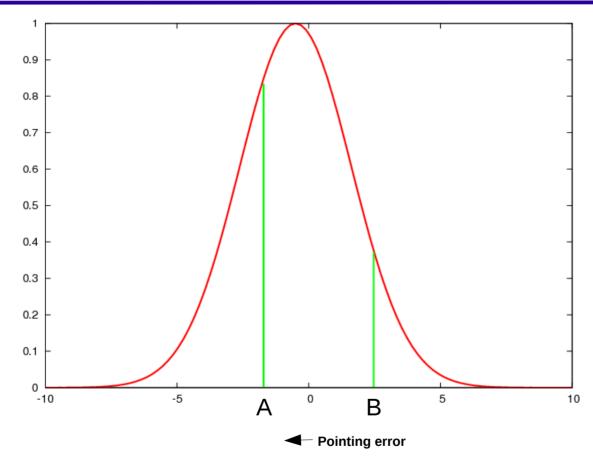
Effect of antenna pointing errors



- Effect of antenna pointing error is a direction dependent effect
- A purely Hermitian effect in the data domain, in the absence of DI gains
 - To the first order, amplitude-only error in image domain

•However, there is significant in-beam phase structure -particularly for wide-field, full-Stokes imaging

Effect of antenna pointing errors



- Effect of antenna pointing error is a direction dependent effect
- A purely Hermitian effect in the data domain, in the absence of DI gains
 - To the first order, amplitude-only error in image domain

- Faceting approach:
 - Solve for gains for A and B separately
 - Interpolate in between
- Pointing SelfCal
 - Solve for the shape of the function which best-fits the gain variations at A and B

Error pattern: Derivatives

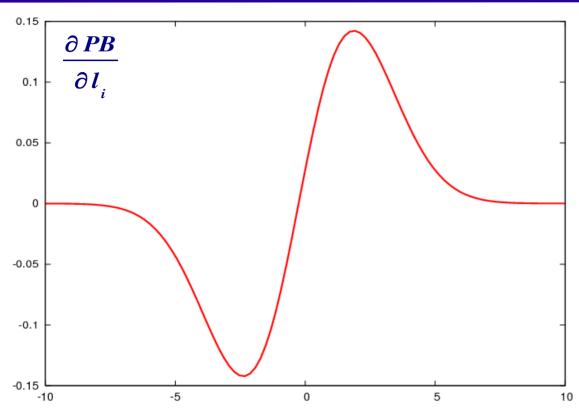
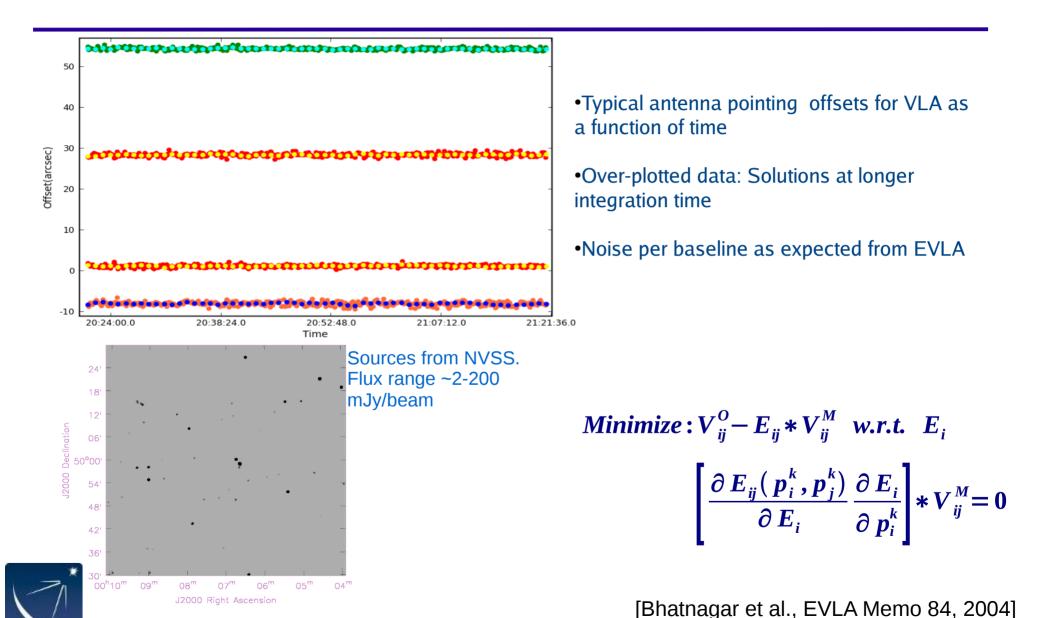


Image plane error ~
$$PSF*$$
 $I(s) \frac{\partial PB(s)}{\partial l_i}$

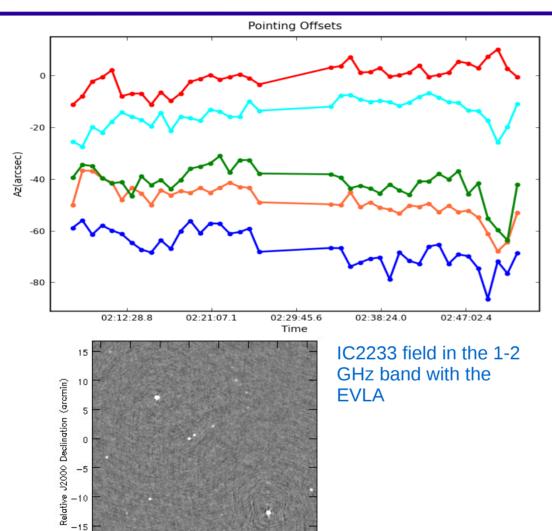
- Peak error signal around the half-power point
 - Points of largest derivative
- Significant for fields with emission distributed throughout the Primary Beam
 - Single pointing or mosaicking at low frequencies
 - Mosaicking at high frequencies

- Realistic Primary Beam patterns are widespread in image plane
 - Band-limited in the data domain
 - Fortuitously, it is also a data domain effect!

DD SelfCal algorithm: Simulations



DD SelfCal algorithm: EVLA Data



Relative J2000 Right Ascension (arcmin)

- •Typical solved pointing errors for a few antennas
- Solution interval: 2min
- •Using ~300 MHz of bandwidth.
- Data from TALG0002

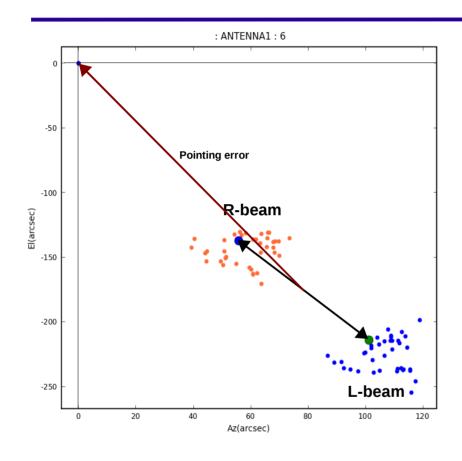
Noise Budget:

$$\sigma(p) = \left[\frac{2k_b T_{sys}}{\eta_a A \sqrt{N_{ant} \nu_{corr} \tau_{corr}} \sqrt{N_{SolSamp}}}\right] \frac{1}{S}$$

where
$$S = \int \frac{\partial E_i(s, p)}{\partial s} E_j^*(s, p) I^M(s) e^{2\pi \iota s.b_{ij}} ds$$

[paper in preparation]

DD SelfCal algorithm: EVLA Data

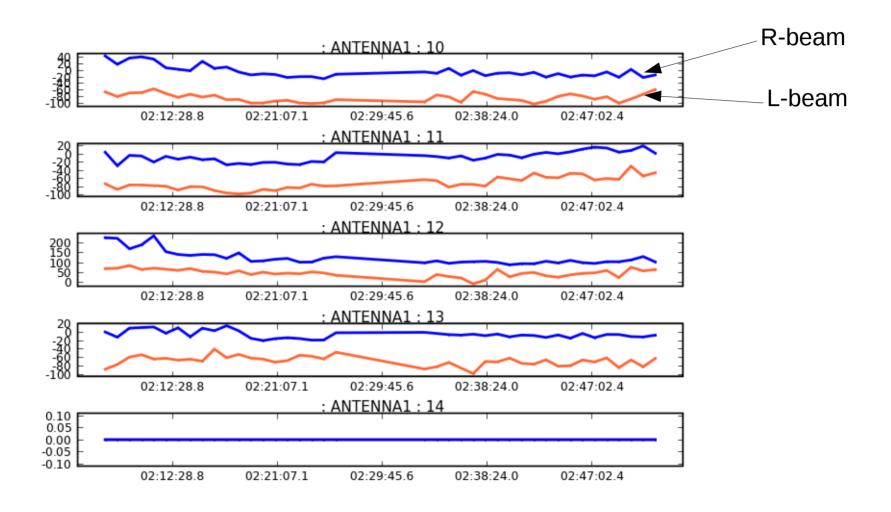


- El-Az mount antennas
- Polarization squint due to off-axis feeds
 - The R- and L-beam patterns have a pointing error of +/- \sim 0.06 $\frac{\lambda}{D}$
- DoF used: 2 per antenna
- SNR available for more DoF to model the PB shape

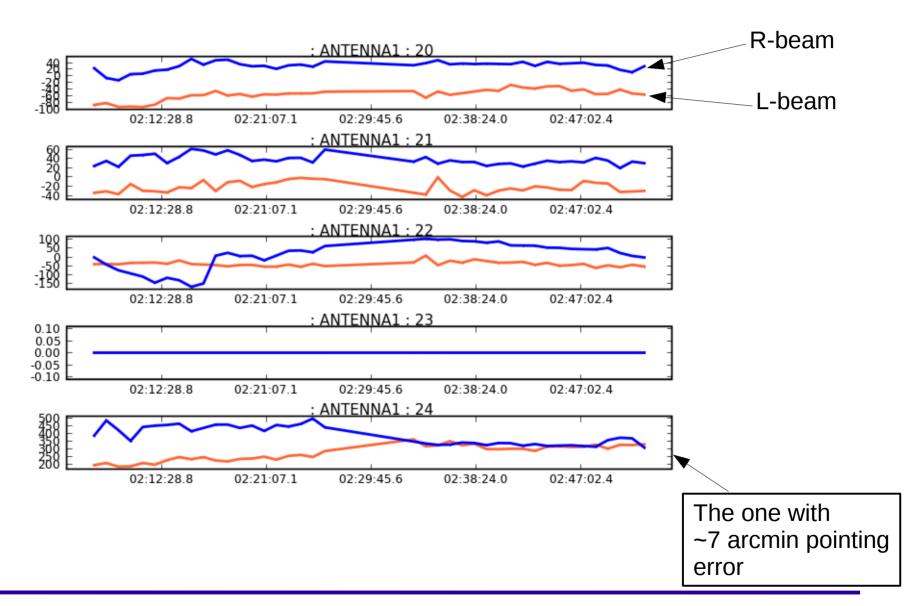
- EVLA polarization squint solved as pointing error (optical pointing error).
- Squint would be symmetric about the origin in El-Az plane in the absence of antenna servo pointing errors.
- Pointing errors for various antennas detected in the range 1-7 arcmin.
- Pointing errors confirmed independently via the EVLA online system.

[paper in preparation]

Time dependent solutions



Time dependent solutions



DD SelfCal: General comments

Pointing SelfCal formulation is generalization of DI SelfCal

Standard SelfCal (DI):
$$V_{ij} = (G_i \otimes G_i^*) V_{ij}^M$$

Pointing SelfCal:
$$V_{ij} = (J_i^S \otimes J_j^{S^*}) * V_{ij}^M$$

- Effects of PB/antenna pointing is purely Hermitian in the data domain – in the absence of DI gains or in-beam phase etc.
 - I.e., amp-only effect in the image plane
- Fundamentally an antenna based effect
 - Difficult to decouple/interpret in the image plane
- Fundamentally a data-domain effect
 - Not an "image plane effect"
 - Unlike, e.g., effects of sky spectral index variations (a DD error)
- Clean works, but scale-sensitive methods work better
 Similarly, Partitioning/SelfCal works, but DD SelfCal should work better!

Next steps

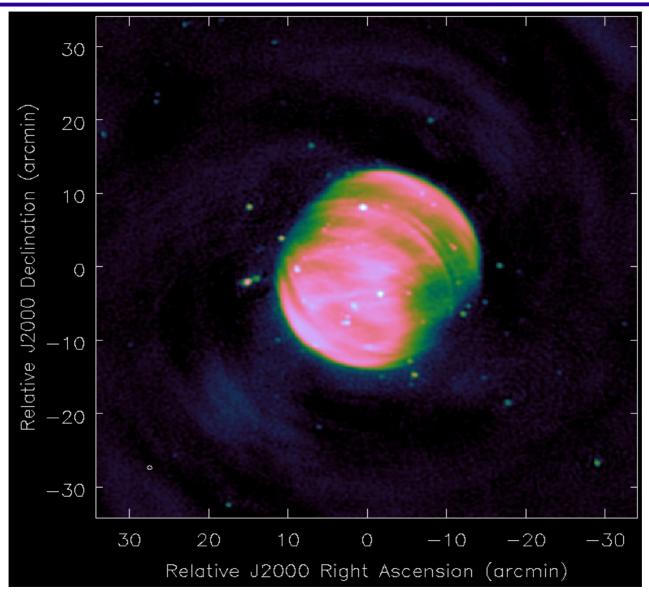
- Fold these solutions into A-Projection
 - Test with simple fields (e.g. IC2233)
 - Test for Stokes-V : A strong instrumental effect
- Is polynomial expansion a better parametrization

$$A(u,v) = A_o(u,v) e^{\iota(a_o u + a_1 v)}$$

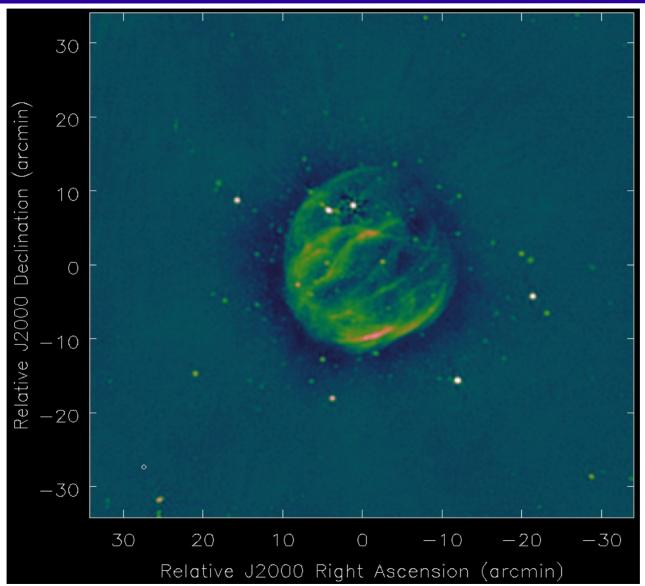
VS.

$$A(u,v) = A_o(u,v)[a_o Z_o(u,v) + a_1 Z_1(u,v)]$$

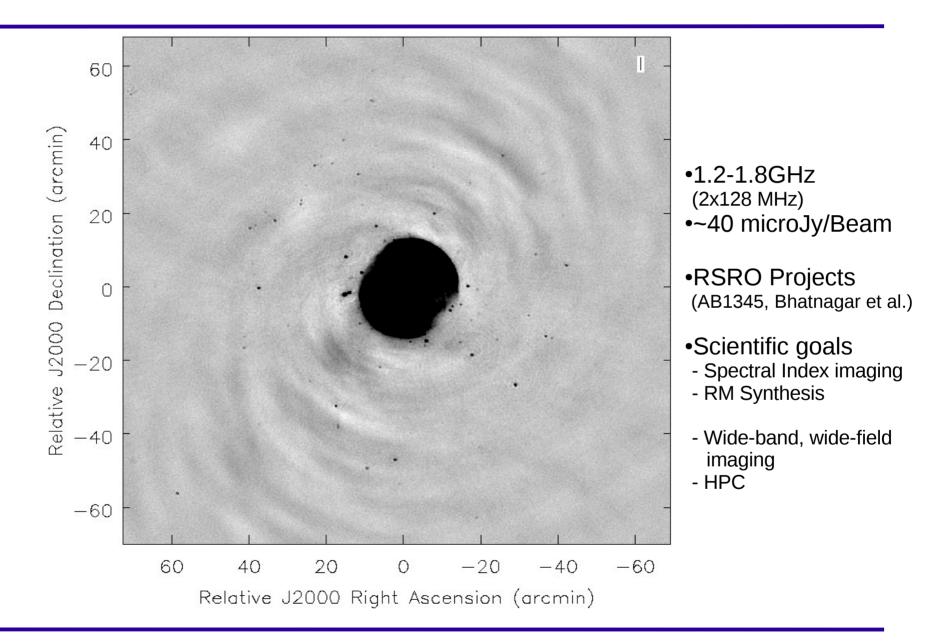
- A good target algorithm for GPU computing
- Include it in mosaicking
 - Generalize A-Projection for mosaicking
 - Naturally includes corrections for PB effects
- Solve for shape!
 - Strongest "term" here is the elevation dependence.
 - Slow and smooth changes with time (a good thing!)

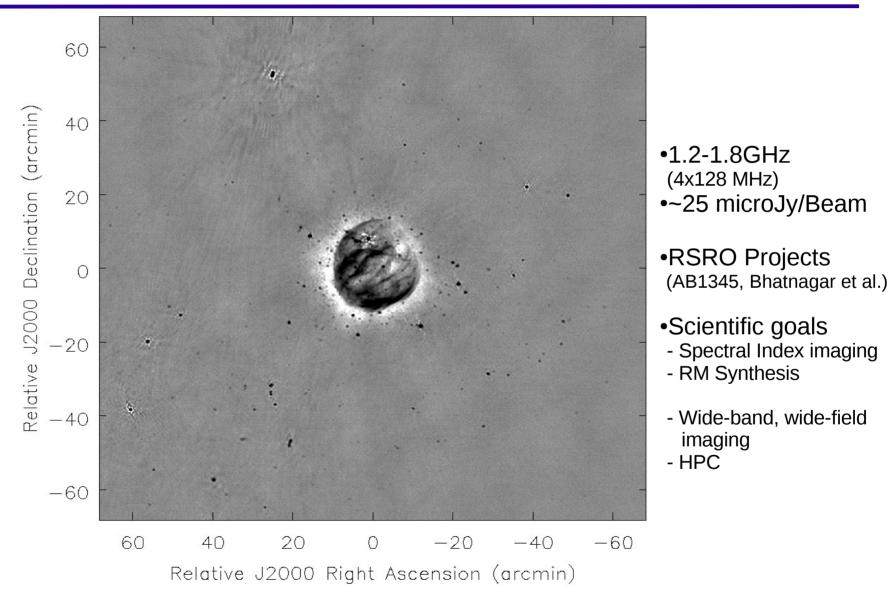


- Emissions fills the PB
- Extended emission with superimposed compact sources
- Partitioning approach designs-out such fields!
- 2X128 MHz



- Emissions fills the PB
- Extended emission with superimposed compact sources
- Partitioning approach design-out such fields!
- 4X128 MHz





I/O load

- Near future data volume (0-1 years)
 - Recent data with the EVLA: 100-500 GB
- Next 5 years
 - 100X increase (in volume and effective I/O)
- Non-streaming data processing
 - Expect 20-50 passes through the data (flagging + calibration + imaging)
 - Effective data i/o: few TB
 - Exploit data parallelism
 - Distribute normal equations (SPMD paradigm looks promising)
 - Deploy computationally efficient algorithms ('P' of SPMD) on a cluster

Computing challenges

- Calibration of direction dependent terms
 - As expensive as imaging
- Significant increase in computing for wide-field wide-band imaging
 - E.g. convolution kernels are larger (up to 50x50 for single facet EVLA A-array, L-band imaging)
 - E.g. Multiple terms for modeling sky and aperture for wide-band widths
- Terabyte Initiative: 4K x 4K x 512 x 1Pol tests using 200 GB data set
 - Timing

• Simple flagging : 1h

• Calibration (G-Jones) : 2h15m

Calibration (B-Jones) : 2h35m

Correction : 2h

• Imaging : 20h

Compute: I/O ratio : 2:3

Parallelization: Initial results

- Continuum imaging: (No PB-correction or MFS)
 - Requires inter-node I/O (Distribution of normal equations)
 - Dominated by data I/O
 - 1024 x 1024 imaging: (Traditional CS-Clean; 5 major cycles)

• 1-node run-time : 9hr

• 16-node run-time : 70min (can be reduced up to 50%)

: 60min (MS-Clean)

(residual CPU-power available for projection algorithms)

- Imaging deconvolution is most expensive step
- DD Calibration as expensive as a deconvolution major-cycle
 - CPU bound (a good thing!)

[Golap, Robnett, Bhatnagar]

General comments

- Algorithms with higher Compute-to-I/O ratio
 - Moor's law helps
- Pointing SelfCal and MS-MFS solutions demonstrate the need for minimizing the DoF per SNR (?)
- Exact solutions in most cases is a mathematical impossibility
 - Iterative solvers are here to stay: Image deconvolution, calibration
 - Baseline based quantities are either due to sky or indistinguishable from noise.
 - Modeling of calibration terms is fundamentally antenna-based
- Data rate increasing at a faster rate than i/o technology
 - Moor's law does not help!
 - More time spent in i/o-waits than in computing
- Need for robust algorithms for automated processing that also benefit from and can be easily parallelized
 - Need for robust pipeline heuristic