
Imaging algorithms and computing

S. Bhatnagar NRAO

Challenges

- 2:1 Bandwidth ratio
 - Primary beam effects
 - Time and frequency dependent
 - Polarization response
 - Spectral index variations across the sky
 - Deconvolution errors, Pixelation errors
- Direction dependent (DD) effects
 - Pointing errors
 - Long, non co-planar baselines (w-term)
 - Ionospheric phase screen
- Computing and I/O loads

Challenges

Strong RFI

- Some algorithms/schemes exist
- Weak RFI
 - Very difficult to detect and remove
 - Will/does affect high dynamic range imaging
- Near field problems
 - Remains correlated
 - Not the same at all baselines
 - Variable in time & frequency
- Self Interference

The Measurement Equation

Generic Measurement Equation: [HBS papers]

$$V_{ij}^{Obs}(v) = M_{ij}(v,t)W_{ij}\int M_{ij}^{S}(s,v,t) \ I(s,v) \ e^{\iota s.b_{ij}} \ ds$$

$$\uparrow \qquad \qquad \uparrow \qquad \uparrow$$
Data Corruptions Sky W-term

- Corruptions: $M_{ij} = J_i \otimes J_j^*$: direction independent corruptions $M_{ij}^s = J_i^s \otimes J_j^{s*}$: direction dependent corruptions
- Sky: Frequency dependent sky: $I(s, v) = I(s, v_o)(\frac{v}{v_o})$
- W-term: $e^{\iota s.b_{ij}} = e^{\iota[ul + vm + w(\sqrt{1-l^2 m^2 1})]}$: Not a FT kernel (a.k.a. non co-planar array)

Pieces of the puzzle

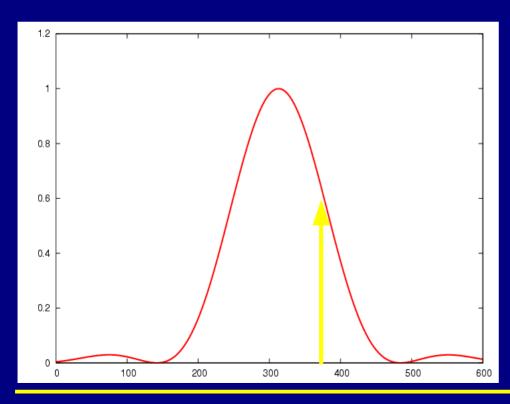
• Unknowns:

- M_{ij},M^s: Electronics, Primary Beams, Antenna pointing, ionosphere,...
- I^M: Extended emission, spectral index variations, polarization,...

Need Efficient Algorithms:

- Correct for image plane effects
- Decompose the sky in a more appropriate basis
 - Frequency sensitive (combine with MFS)
- Solvers for the "unknown" direction dependent effects (pointing, PB shape, ionospheric effects,...)
 - As expensive as imaging!

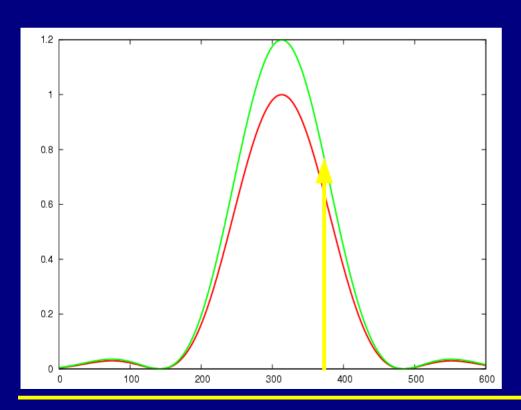
Needs (Computing):


- Parallel computing & I/O
- Scalable algorithms & software

Pieces of the puzzle: DI gains

- Unknowns: I^M
 - Ideal stuff: No gain errors, Known Primary beam
 - Use image deconvolution to get True Sky Image!

$$V_{ij}^o = V_{ij}^M$$



Pieces of the puzzle: DI gains

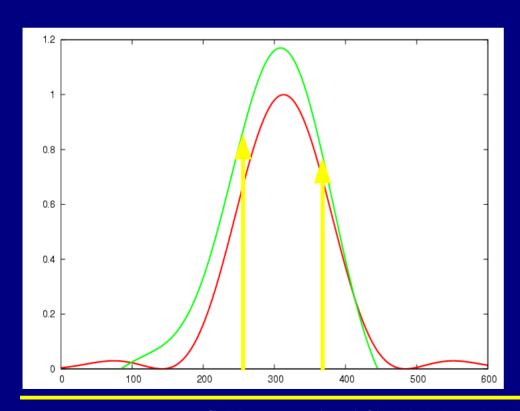
• Unknowns:

- *M*_{ii}: Constant across the Field Of View
- I^M: Extended emission, spectral index variations, polarization,...

$$V_{ij}^{M} = M_{ij} V_{ij}^{o}$$

$$= J_{i} \otimes J_{j} V_{ij}^{o}$$

"calib", "bpass" (AIPS)


"gaincal", "bandpass" (CASA)

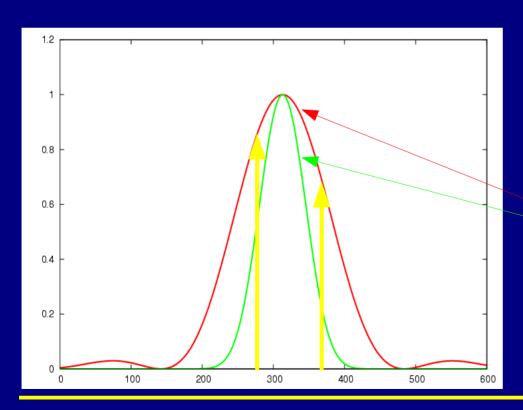
Pieces of the puzzle: DD gains

• Unknowns:

- M_{ij},M^s: Constant Part+ Part Variable across the Field Of View
- I^M: Extended emission, spectral index variations, polarization,...

$$V_{ij}^{M} = M_{ij} FT[M_{ij}^{s}(s)I(s)]$$

$$= M_{ij}[M_{ij}^{s}(s)*V_{ij}^{M}]$$


$$= J_{i} \otimes J_{j}FT[(J_{i}^{s} \otimes J_{j}^{s}) I(s)]$$

Pieces of the puzzle: DD+Freq. D gains

• Unknowns:

- M_{ij},M^s; Electronics, Primary Beams, Antenna pointing, ionosphere,...
- I^M : Extended emission, spectral index variations, polarization,...

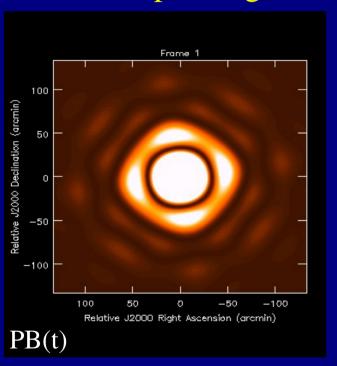
$$V_{ij}^{M} = M_{ij} FT[M_{ij}^{s}(s, v)I(s, v)]$$

$$= M_{ij}[M_{ij}^{s}(s, v) * V_{ij}^{M}]$$

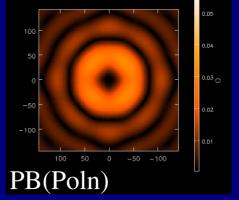
$$= J_{i} \otimes J_{j}FT[(J_{i}^{s} \otimes J_{j}^{s}) I(s)]$$

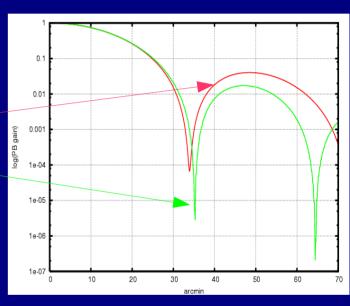
Two ends of the observing band

Primary Beam Effects



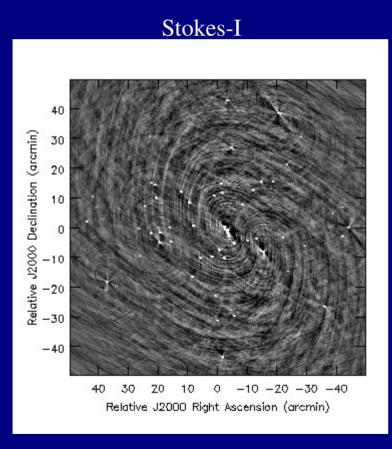

EVLA full beam, full band, single feed


PB variation across the band


EVLA: Sources move from main-lobe to side-lobes

PB rotation, pointing errors

Cross hand power pattern

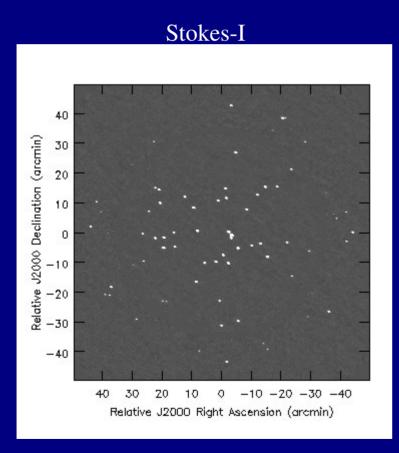

PB gain varies as a function time, frequency and direction in the sky

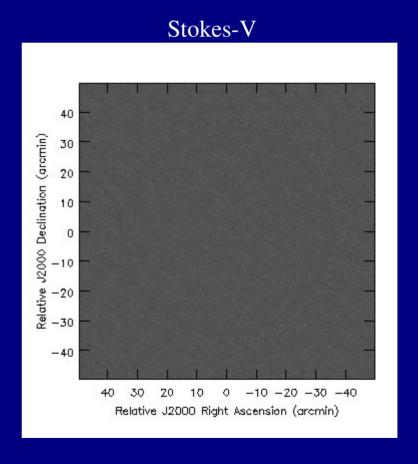
Dominant sources of error: Single Pointing

Requirements: "...full beam, full Stokes, wide-band imaging at full sensitivity".

- EVLA full beam
 - Estimated Stokes-I imaging Dynamic Range limit: ~10⁴

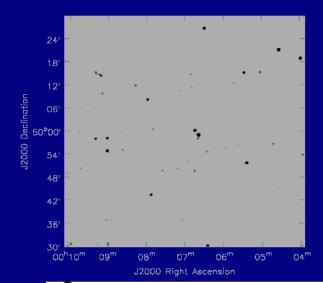
Stokes-V Relative J2000 Declination (arcmin) 30 -20 Relative J2000 Right Ascension (arcmin)

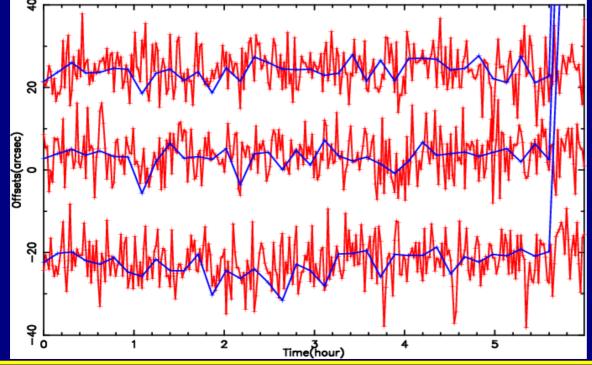

RMS ~15µJy/beam


Dominant sources of error: Single Pointing

Requirements: "...full beam, full Stokes, wide-band imaging at full sensitivity".

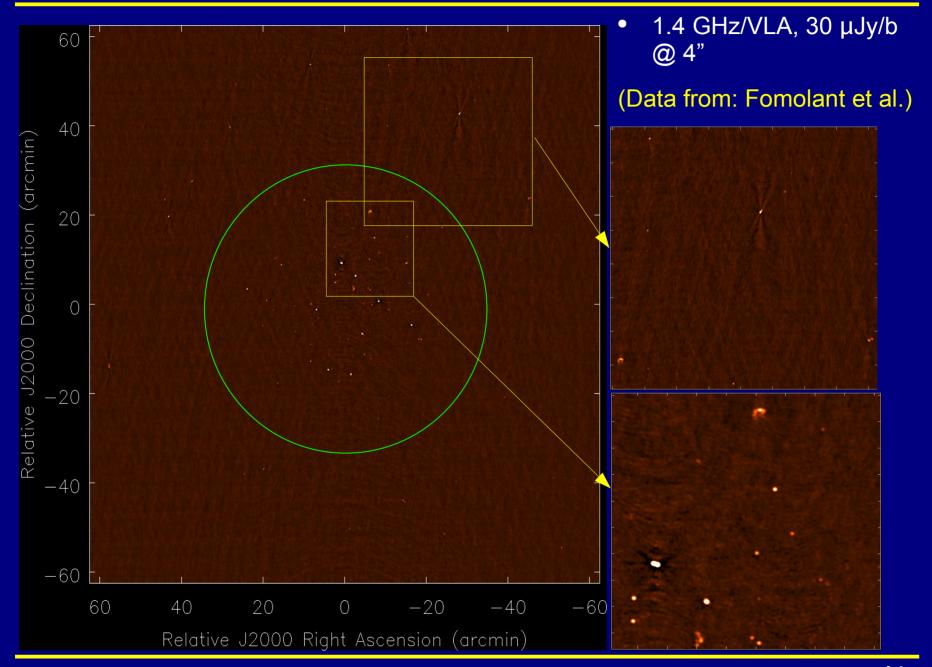
- EVLA full beam
 - Estimated Stokes-I imaging Dynamic Range limit: ~10⁴




RMS ~1µJy/beam

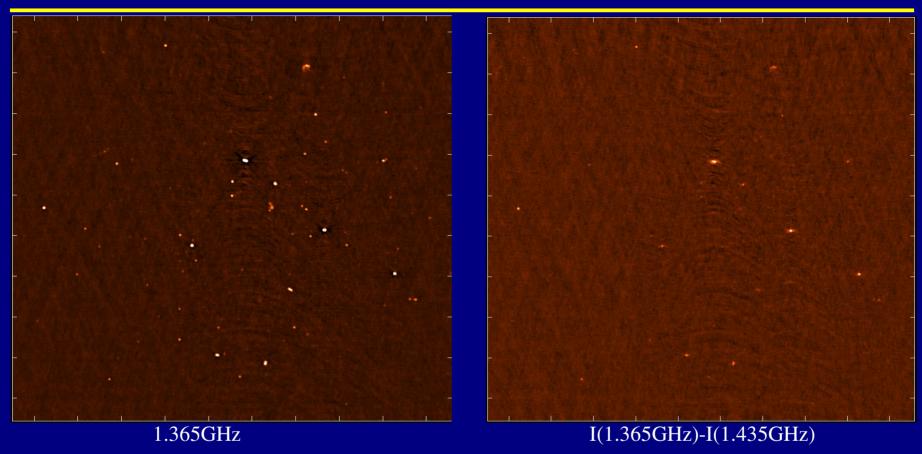
Pointing SelfCal: Example

Model image: 59 sources from NVSS. Flux range ~2-200 mJy/beam

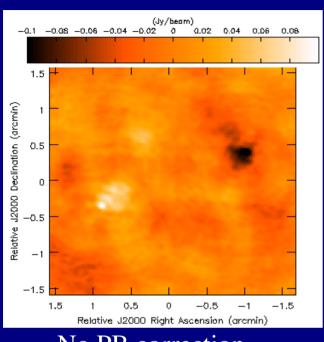


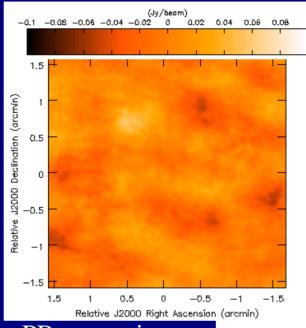
Red: Typical antenna pointing offsets for VLA as a function of time

Blue: Solved antenna pointing errors

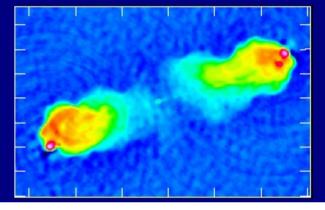

Sky: More complex than point sources

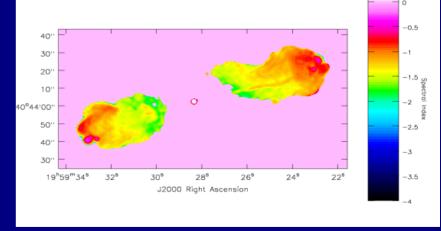
Sky Frequency dependence





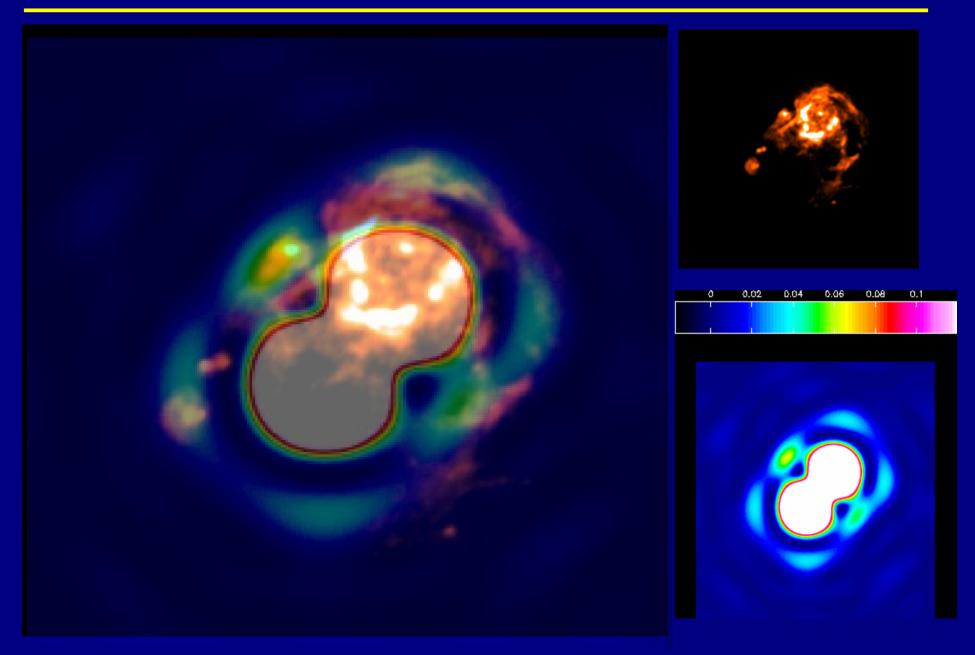
- Direction & Frequency Dependent errors
 - Sky spectral index? PB effects? Pointing? Pixelation errors?
- Errors not coherent across frequency
 - Will affect spectral line signals (EoR)


Extended Emission


(Bhatnagar et al, A&A, June 2008)

No PB correction

PB correction


- Stokes-V imaging of extended emission
 - Algorithms designed for point sources will not work
 - Need more sophisticated modeling of the extended emission

Sp. Index Image (Carilli et al.)

PB errors: Full beam imaging limits

- Limits due to rotation of asymmetric PB
 - In-beam max. error @~10% point
 - DR of few x10⁴:1
 - Errors larger in the first sidelobe
- Limits due to antenna pointing errors
 - In-beam max. error at half-power points
 - DR of few x10³⁻⁴:1
 - Limits for mosaicking would be worse
 - Significant flux at half-power and side-lobes for many pointing

Computing & I/O costs

- Higher sensitivity ==> more data + correction of more error terms
 - Needs more sophisticated parameterization
 - Significant increase in computing and I/O loads
- Imaging:
 - Correction for PB variations, Pointing errors, ionosphere
 - Better modeling of extended emission
- Calibration: solve for direction dependent effects
 - As expensive as imaging
 - PB shape, pointing, ionosphere
- Processing cost dominated by forward and backward transforms (gridding)
 - I/O time comparable to computing time

Algorithmic issues: Things to think about...

- Imaging and calibration are coupled
 - Not possible to produce corrected visibilities independent of imaging
 - Solvers for DD effects requires de-gridding operation
- Multi-frequency synthesis
 - Short cuts for DR > 10⁴ will not work
 - Mosaic imaging problems are similar in principle
 - More complicated in practice
 - Near-future data allows higher DR than is allowed by existing algorithms/software

Algorithm Development needs

Algorithm integration

PB-correction: Freq. Scaling, Rotation, Pointing... [Algo. exist]

Multi-freq. Synthesis [Algo. exist]

Scale-sensitive deconvolution [Algo. exist]

Integration required [Requires help!]

All the above individually limit DR to Few X 10⁴

Algorithms R&D for what has been promised!

- Full-beam full-sensitivity imaging
- Some progress, lots of ideas but require help!

Pipeline processing

- Auto-flagging (Manual flagging of 1 TB worth of data!? No feasible)
- Significant research and development required

General Structure of algorithms

- For all iterations
 - For all Channels and Polarization
 - 1.Compute Residuals [Data Model] a.k.a. "major cycle"
 - 2. Compute Gradients
 - 3. Update Model
- Classical deconvolution
 - 1. [2 x Gridding Operation + 1 Full data read] per Major Cycle
 - 2. Minor Cycle: 2x FFT + ...
- Classical Selfcal
 - 1. 2 Full data read per iteration
- DD Selfcal: 1 Full data read + N_{iter} N_{par} x Gridding operations

Computing & I/O costs

• DataSize =
$$\frac{N_a * (N_a - 1)}{2} \frac{T}{\delta T} \left[N_{ch} N_p \left[2 * SoF + \frac{SoWt}{N_p} \right] + 4 SoF \right]$$

- For EVLA: 0.5-1.0 TB + 0.5GB

• FlOp per gridding =
$$\frac{N_a * (N_a - 1)}{2} \frac{T}{\delta T} \left[N_{ch} N_p N_{IP} \right] \left[N_{op} S^2 \right]$$

- One gridding (Major Cycle) will take 1.5-2hrs.
 - Computing efficiency: 10-20% of the rated GFLOPs
- @100 MB/s, single read of 1 TB data will take ~3hrs.
- Total full data accesses: 10-20

Computing & I/O costs

- Computing scales linearly with N_{ch}, N_p and S²
 - Convolution support size larger for DD correction (e.g. PB)
- DD calibration
 - Required for what has been promised!
 - N_{iter} N_{par} x [Gridding operations + 2 x full data reads]
- PB-correction+Multi-frequency Synthesis:

$$I(v) = I(v_o) \left(\frac{v}{v_o}\right)^{\alpha}$$
 where DR

- Taylor expantion: N_{terms} depends on the required DR
- N_{iter} N_{terms} x 2 Gridding Operations + full data read

Computing & Algorithms

- Hard to get away from FFT based forward and inverse transforms
 - Only "peeling" approach not feasible (Noordam, Uson&Cotton,...)
 - Requires 10K-100K components DFT for a 1 TB data base!
- Better understanding of error propagation can lead to efficient algorithms
 - All algorithms (Calibration & Image Deconvolution) are function minimization algorithms (Steepest Descent in fact!)
 - But need to invest and believe in R&D!
- Compute for the allowed dynamic range
 - Computation more accurate than the allowed DR is a waste of resources

Computing Options

- Multi-core multi-CPU machines (4 x dual- or quad-core)
 - Use OpenMP technology to speed up computing (available in GCC 4.x)
 - Least work but requires experimenting
 - Not very helpful beyond 4-6 threads
 - Helps I/O?
- Cluster with multi-core multi-CPU nodes
 - Use MPI at higher software layers
 - Spectral line imaging is embarrassingly parallel (almost)
 - Continuum imaging requires some communication
- Specialized H/W? (FPGA, GPU,...but similar bottlenecks)
 - Bus bandwidth is the bottleneck (Disk->RAM, RAM->CPU)

Data I/O Options

- Central large storage Disk Raid
 - Can deliver up to 1GB/s (I think)
- Smaller local disks at the cluster nodes
 - Up to 100 MB/s
- Disk-Raid to Node-Disks bandwidth is one of the bottlenecks

- Beyond a certain imaging DR, cluster inter-connect might be a bottleneck (in the non-embarrassingly parallel regime)
 - Astronomical Algorithms R&D required
 - CS'ish R&D might be required

Software Development needs

- Put together a software architecture and stick with it
 - Review it periodically
- Keep it as simple as possible, but not simpler
 - E.g. Start with the spectral line imaging problem
 - But be careful to not design out the solutions for less straightforward problems
- Carefully choose technologies and third party tools
 - Resist the temptation to play with the latest toy on the shelf
 - Resist the "if it was not done here, it is not right" trap!
- Keep "system level" layers thin
 - Most popular UI do this: User String --->[UI-layer]---> App-layer
 - Should not require more UI-layer software than App-layer!