Direction-dependent effects

Relative J2000 Right Ascension (arcmin)

RMS ~15 μ Jy/beam

Relative J2000 Right Ascension (arcmin)

RMS ~1µ Jy/beam

S. Bhatnagar NRAO, Socorro

Direction dependent effects

- Instrumental
 - Primary Beam Effects
 - Time and frequency dependent
 - Polarization response
 - Pointing Errors
 - Non co-planar baselines (w-term)
 - FPA calibration/stability
- Sky
 - Stronger and more complex at low frequencies
 - Deconvolution errors, pixelation errors
 - Spectral index variations across the sky
- Ionospheric/atmospheric

Measurement Equation

- Sky: Frequency dependence: $I(s, v) = I(s, v_o) (\frac{v}{v})^{\alpha(s, v)}$
- Sky: Complex structure
 - Representation in a more appropriate basis
- Geometrical: W-term $e^{\iota s.b_{ij}} = e^{\iota[ul+vm+w(\sqrt{1-l^2-m^2}-1)]}$
- The combined LHS determines "time constant" over which averaging helps

Challenges

Unknowns

- $-J_{ii}, J_{ii}^{s}$: Electronics, Primary Beams, antenna pointing, Ionosphere
 - Heterogeneous arrays (difference PB per baseline)
- $-I^{M}$: Extended emission, spectral index variations
- Need efficient algorithms:
 - To solve parametrized ME (Curse of Dimensionality)
 - For known direction dependent corrections
 - Better parametrization of the sky (I^{M})
 - Including frequency dependence
 - Solver for the unknown DD effects (PB, ionosphere)
- Computing
 - Parallel computing & I/O
 - Software development costs

Algorithmic challenges

5

- Higher sensitivity ==> mode data + correction of more error terms
 - Imaging and calibration gets coupled
 - DD corrections can be as expensive as imaging
- More sophisticated parametrization required for the next generation telescopes
 - DD correction: PB(t, Freq, Pol.), atmosphere/ionosphere
 - Sky: Decompose the structure in scale sensitive basis
 - Sky: Parametrized for frequency and poln. Dependencies
- Physically motivated parametrization – Algorithmic performance-measure: SNR per DoF

Recent advances

6

J^s_i(t)≠J^s_j(t) (Pointing offsets, PB variations, etc.)
 Corrections in the visibility plane

- Scale sensitive deconvolution
 - Asp-Clean (2004), MS-Clean (2003)
- Pointing SelfCal (2004)
- Correction for J^s, during image deconvolution
 - W-Projection (2004)
 - AW-Projection (2005)
 - MS-MFS (2006-07)

- Direct evaluation of the integral

 $V_{ij}^{Obs}(v) = J_{ij}(v, t) \int J_{ij}^{S}(s, v, t) \sum_{k} I(x_{k}, y_{k}) e^{\iota s.b_{ij}} ds$

• Peeling (since ?)/ VLA Squint correction (2008)

Primary beam effects

• EVLA full-beam, full-band, full-pol imaging

PB variation across the band EVLA: Sources move from main-lobe to side-lobes

PB rotation, pointing errors

Cross hand power pattern

PB gain varies as a function time, frequency and direction in the sky

PB correction

8

- AW-Projection algorithm (Bhatnagar et al. A&A,487, 419, 2008)
 - Time and poln. Parametrization of the PB
 - No assumption about the sky emission
 - Scales well with imaging complexity
 - Straightforward to integrate with algorithms to correct for other errors (MFS, W-Projection, MS/Asp-Clean)
 - Requires a model for the Aperture Illumination

An example: EVLA @ 1.4 GHz

Example: Extended emission

Stokes-V imaging of extended emission

- Algorithms designed for point sources will not work
- Need more sophisticated modeling of the extended emission

Example: PB effects in mosaicking

Antenna: AA vs Dishes

Simulation of LWA station beam @50MHz (Masaya Kuniyoshi, UNM/AOC) EVLA antenna PB rotation with Parallactic Angle

- Limits due to rotation of asymmetric PB
 - Error in PB model max. @ ~10% point
 - Max. in-beam error signal @ 50% point
 - DR of few x 10⁴: 1
 - Errors higher in the first sidelobe
- Limits due to antenna pointing errors
 - In-beam max. error signal at 50% point
 - DR of a few x 10^4 :1
 - Limits for mosaicking would be worse
 - Significant flux at half-power and side-lobes for many pointings

Pointing SelfCal: Solver

PB parametrized for pointing errors

Model image: 59 sources from NVSS. Flux range ~2-200 mJy/beam

Typical antenna pointing offsets for VLA as a function of time

Over-plotted data: Solutions at longer integration time

Noise per baseline as expected from EVLA

Pointing SelfCal: Correction

• No pointing correction: • RMS ~ 15µJy/b

• After pointing correction: •RMS ~ 1µJy/b

0

-10

-20

-30

-40

20

10

(Bhatnagar, Cornwell & Kolap, EVLA Memo #84/paper in prep.)

Non-coplanar Baselines

- E₁=E'₁(u,v,w) propagated using
 Fresnel diffraction
- Away from the phase center, sources are distorted

(Cornwell, Kolap & Bhatnagar, EVLA Memo (2004), IEEE Special Issue on RA, (2008))

Example: VLA @ 74 MHz

- Coma cluster at 74 Mhz/VLA
- 30 arcsec resolution, RMS ~30mJy/beam
- Imaged using the W-projection algorithm (Golap)

Ionospheric calibration

Challenges:

- W-term an issue for $B_{max} > 2-3Km \& DR > 10^4$
- Ionospheric calibration: Even field based calibration fails for $B_{max} > 3Km$

Computing

- Imaging scaling laws
 - Non co-planar baseline correction
 - W-Projection: $(N_{wproj}^2 + N_{GOF}^2)N_{vis}$
 - Faceting: $N_{facets}^2 N_{GCF}^2 N_{vis}$
 - רי גו² * גו
 - AW-Projection:
 - Peeling:

Scaling laws for DD solvers

 FFT-based transforms: N²_{GCF} * N_{vis} * N_{iter} * N_{params}
 DFT-based transforms: N_{comp} * N_{vis} * ? * N_{iter} * N_{param}

$$-N_{vis}$$
: 10⁸⁻¹⁰ , N_{GCF}^{2} : 50-100 , N_{comp} : 10⁴⁻⁵

Near future data sizes

- Data I/O : Computing ~ 3:2 (at least)
- Expected average data rates about 10x larger
- Manual processing (data flagging, calibration and imaging) not an option
 - Need robust and efficient algorithms
 - Need robust heuristics
 - Need pipe line processing
 - Need all of this to run in a parallel computing environment
- Interoperability
 - Possible now via FITS
 - Data sizes is the problem!
 - Lower level software exchange is better
 - Sociological rather than technological problem!

Dominant DD Effects for SKA

- Station Power Pattern
 - AA vs. Dishes: Can we model the power patterns as a function of time, frequency and polarization?
 - Dishes: 2-axis vs 3-axis Is the "software 3rd axis" sufficient?
- Sky Spectral Index variations - $S(v) \propto \left(\frac{v}{v_o}\right)^{\alpha(v)}$
 - Must work with PB-correction
- Sky and Beam polarization
- Ionosphere
 - Limits of existing techniques
- Deconvolution of complex emission

