Direction dependent corrections
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The Measurement Equation

» Generic Measurement Equation:
VO (v)=d, (v, 1) [ T3(S, v, ) I°(S)e

b N \

Data Corruptions Sky

LS.BiJ.

dS

Jij are the direction independent corruptions.
JS”_ are the image plane errors (direction dependent).

.V?’”:JU.[EU*V;] where E, = FT[JSU_]. Unknowns: J, ,JS”_, and I,

 SelfCal: Given I"and knowing E,  min:|V{"~J,. Vi/|

il WItJ,

«Deconvolution: Given J and E,,  min:|J,' V"=V wrel"
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Visibility correction
* In the absence of direction dependent errors ;’”—JU V.
e Observed data is corrected as V. =J, VO’”

* Imaging is done using the corrected visibilities
Imaging and calibration are decoupled
* Antenna independent direction dependent corruptions (e.qg.
Primary beam effects) can be written as multlpllcatlve terms

in the image domain. Vi=FT[J'1"],

e This can be used In an iterative deconvolution scheme to

make I which is corrected for J° (VLA Poln. squint correction,

mosaicking, etc.)
V”=E+V"  and AIDocSRZU[J;*AVUelS'B”]
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Visibility correction

* For effects which are separable as antenna based effects
Ji=T %]

\)

e When Jf;éJJ :
convolution of the visibility plane by a single function.

Obs __ 0
Vi =E*V,

effects of Jijs cannot be reduced to the

e Each baseline is convolved by a different function.
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Visibility inversion

Obs __ J0 y70bs J0
VI"=E x[AI], V*=E[AT’]
V,l . The visibility and image vectors
A: The Measurement Matrix

E: The direction dependent effect in the Fourier plane

* To use FFT for Fourier transforming, re-sampling is done by
convlutional gridding
M __ M

vi=ClAT|(u;,v,)

ij
e Major cycle: AT’=A"[C" V"]

e Minor cycle: I :i?{l—l—(xAiD

* Direction dependent effects can be incorporated in imaging by
using EA as the transform operator
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General approach for imaging

* Design filters to be used as Gridding Convolution Functions
(GCF) for accurate forward transform (major cycle)

VY (u,)=E,(u)x[AT"|(nAu)|(u,)

Yy

e Use an approximation for the inverse transform to compute
the update direction (minor cycle)

e Major cycle: I*=B[V®™ —A'T"] where B~A'

e Minor cycle: vM=A'T"
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Known direction dependent effects

* Non-coplanar baselines

Viu,v W)Zﬂl(l m)ezﬂl(”lﬂmw(m—l)) dl dm

\/1—12—m2

* Traditional approach: Faceting

* W-projection: Visiblility filtering (5-10 times faster)
V" (u, v, w)= E]*ny(u,v,WZO) where E,=FT|e Zrowiyl=t-m)]

j
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W-projection

o0, =(E (u,v,w=0)E, (0,0,0))
E =E' (u,v,w) propagated
using Fresnel diffraction.

The above convolution
equation is reproduced with

r ol Amnw

e A w#0 Interferometer is
not a device to measure
a single Fourier
component.
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W-projection: Example
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Measured direction dependent effects

. Eij as a function of direction is measured a priori
Vi=|E*[AT"|,] where E (.1, u.p.p)

l] l’ ],

e Beam squint: Eij separate for each poln. product pq
EM=E" where E" =FT|Ideal PB,]

e Pointing jitter: E IS not known a-priori
qu qu f(<l> (.b) t(p,+ob))

Needs a solver: Pointing SelfCal

 Asymmetric Primary Beams:
E,=E}*E° where E;=FT|Measured PB,]
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PB-projection

Full beam polarimetry: Squint corrected Stokes-V imaging

Typical NVSS field: Peak 190mJy
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Visibility filters computed for 15° PA increments.
Azimuthally symmetric Primary Beams.
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Pointing Solver: Motivation

* Single pointing L-Band observations limited due to

pointing ~10microJy/beam.
- EVLA L-band sensitivity: 1microJdy/beam

* Mosaicking dynamic range limited by pointing errors.
- Significant fraction of ALMA observation will be
mosaicking observations.

e Significantly increased computing:
- Each iteration involves expensive visibility prediction
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Pointing Solver

E (L1, 1)=E°(I) f (g~ Je """

* Visibility prediction:
e Gridded model VM¢" = FFT[IM
o Re-sample on measured (u,Vv) using Eij as the GCF for

: . . M M , Grid
baselinei-j; V,=E V"""

e GCF is different for each baseline!
* Use lookup tables or approximation:

70 2 2
E=E1-(l-1) o’ 12=muu(l+])+..]
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Pointing correction
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Pointing correction

J2006 Geclination
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Pointing SelfCal

* Model image: deconvolved using entire data
* Pixelated model image
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Pointing SelfCal

» Stokes-I imaging: Before and after pointing correction
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Pointing SelfCal

e Stokes-V imaging: Need to use component imaging?
e Use illumination patterns (work in progress)
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Where to from here...

e SelfCal <-> imaging iterations to test the limits of this
approach

 Component based imaging and prediction

* |s current deep L-band imaging pointing-error
limited?

* Mosaicking dynamic range limited by pointing
errors?
* \Wide-band imaging
* Use pb-projection to correct for PB scaling

* MSF extensions: Fred. sensitive image plane modeling
(Component based imaging?)

* Non-isoplanatic ionospheric calibration?
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Scale sensitive imaging: Asp-Clean

* Pixel-to-pixel noise in the image Is correlated
I°=Bx*I°+BxI" where B=PSF

* The scale of emission fundamentally separates
signal (1°) from the noise (I").

e Multi-Scale Clean (cornwell & Holdaway, 2004, in prep.)
* Decompose the sky in a set of components at few scales

* Asp-Clean (Bhatnagar & Cornwell, A&A,2004)

e Search for local scale, amplitude and position
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Wide-band continuum imaging

e EVLA bandwidth ratio of 2:1
V(uij,vl.j)szkV(uij,vij,‘vk)zzvk P, (v)FT[I"(v,)]

Sky emission, the Primary Beams, etc. are a function of frequency.
Ideas: Apply PB effects during predict using pb-projection.
Parameterized sky model for prediction.

 Combining Scale sensitive + frequency sensitive
deconvolution with image plane corrections.
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Wide-band imaging: The problem
°|F1 - IF2: 50MHz apart

» Spectral index? Frequency dependence of the PBs?
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e EVLA bandwidth ratio of 2:1
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lonospheric/atmospheric calibration

VP (v,0)=[ [ K (S;v,0)1"(S)e™*  dl dm

where Kij IS the ionospheric, direction dependent phase

* General form for residuals: v =vo”—X xFT[I"]
where X”_:Wij*Eij*Kij

* EXpress ionospheric phase in the antenna beam
using ionospheric physics/geometrical
effects/primary beam effects (de-focusing, time
varying illumination, etc.)
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Computing and I/O costs

* Significant increase in run-time due to more

sophisticated parameterization

* Deconvolution: Fast evaluation of B*Zk A, P(Scale,, Pos,)
 Calibration: Fast evaluation of ExV,

e Cost of computing residual visibilities is dominated
by I/O costs for large datasets (~200GB for EVLA)

* Deconvolution: Approx. 20 access of the entire dataset

e Calibration: Each trial step in the search accesses the entire
dataset

e Solutions: Analytical approximations, caching,
Parallel computing and I/0,...
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