

Direction dependent corrections

S. Bhatnagar NRAO, Socorro

S. Bhatnagar: SKA Wide Field Imaging Workshop, Dwingeloo, 21-24June, 2005

1

The Measurement Equation

• Deconvolution: Given J_{ij} and E_{ij} , $min: |J_{ij}^{-1}V_{ij}^{Obs} - V^M|^2$ w.r.t. I^M

S. Bhatnagar: SKA Wide Field Imaging Workshop, Dwingeloo, 21-24June, 2005

Visibility correction

- In the absence of direction dependent errors
- Observed data is corrected as
- Imaging is done using the corrected visibilities

Imaging and calibration are decoupled

- Antenna independent direction dependent corruptions (e.g. Primary beam effects) can be written as multiplicative terms in the image domain. $V_{ij}^{M} = FT[J^{S}I^{M}]_{ij}$
- This can be used in an iterative deconvolution scheme to make I^M which is corrected for J^S (VLA Poln. squint correction, mosaicking, etc.)

$$\vec{V}^{Obs} = E * \vec{V}^M$$
 and $\Delta I^D \propto \Re \sum_{ij} \left[J_{ij}^{S^{*'}} \Delta V_{ij} e^{\iota S.B_{ij}} \right]$

Visibility correction

• For effects which are separable as antenna based effects $J_{ii}^{S} = J_{i}^{S} \otimes J_{i}^{S*}$

• When $J_i^s \neq J_j^s$, effects of J_{ij}^s cannot be reduced to the convolution of the visibility plane by a single function.

$$V_{ij}^{Obs} = E_{ij} * V_{ij}^{o}$$

• Each baseline is convolved by a different function.

Visibility inversion

$$= E_{ij} * [A \vec{I}^{o}]_{ij} \qquad \vec{V}^{Obs} = E[A \vec{I}^{o}]_{ij}$$

V,I : The visibility and image vectors

A: The Measurement Matrix

 V^{Obs}

E: The direction dependent effect in the Fourier plane

• To use FFT for Fourier transforming, re-sampling is done by convlutional gridding

$$V_{ij}^{M} = \left[\boldsymbol{C} \left[\boldsymbol{A} \, \boldsymbol{\vec{I}}^{M} \right] \right] \left(u_{ij}, v_{ij} \right)$$

- Major cycle: $\Delta \vec{I}^D = A^T [C^T \vec{V}^R]$
- Minor cycle: $\vec{I}_i^M = \vec{I}_{i-1}^M + \alpha \Delta \vec{I}^D$
- Direction dependent effects can be incorporated in imaging by using *EA* as the transform operator

S. Bhatnagar: SKA Wide Field Imaging Workshop, Dwingeloo, 21-24June, 2005

General approach for imaging

 Design filters to be used as Gridding Convolution Functions (GCF) for accurate forward transform (major cycle)

$$\boldsymbol{V}^{\boldsymbol{M}}(\boldsymbol{u}_{ij}) = \left[\boldsymbol{E}_{ij}(\boldsymbol{u}) * [\boldsymbol{A} \boldsymbol{I}^{\boldsymbol{M}}](\boldsymbol{n} \Delta \boldsymbol{u})\right](\boldsymbol{u}_{ij})$$

- Use an approximation for the inverse transform to compute the update direction (minor cycle)
- Major cycle: $\vec{I}^R = B[\vec{V}^{Obs} A'\vec{I}^M]$ where $B \approx A'^T$
- Minor cycle: $\vec{V}^M = A' \vec{I}^M$

Known direction dependent effects

Non-coplanar baselines

$$V(u, v, w) = \iint I(l, m) e^{2\pi \iota \left(ul + vm + w\left(\sqrt{1 - l^2 - m^2} - 1\right)\right)} \frac{dl \, dm}{\sqrt{1 - l^2 - m^2}}$$

Traditional approach: Faceting

• W-projection: Visibility filtering (5-10 times faster) $V_{ij}^{Obs}(u, v, w) = E_{ij} * V_{ij}^{M}(u, v, w=0)$ where $E_{ij} = FT[e^{2\pi \iota w(\sqrt{1-l^2-m^2})}]$

W-projection

• $\rho_{12} = \langle E_1(u, v, w=0) E_2^{*}(0,0,0) \rangle$ $E_1 = E'_1(u, v, w)$ propagated using Fresnel diffraction. The above convolution equation is reproduced with $r_F / \lambda \approx \sqrt{w}$

 A w≠0 interferometer is not a device to measure a single Fourier component.

W-projection: Example

S. Bhatnagar: SKA Wide Field Imaging Workshop, Dwingeloo, 21-24June, 2005

- E_{ij} as a function of direction is measured a priori $V_{ij}^{M} = [E_{ij} * [AI^{M}]_{ij}]$ where $E_{ij}(l_{i}, l_{j}, u_{ij}; p_{i}, p_{j})$
 - <u>Beam squint:</u> E_{ij} separate for each poln. product pq $E_{ij}^{pq} = E^{pq^{\circ}}$ where $E_i^{pq^{\circ}} = FT[Ideal PB_i]$
 - Pointing jitter: E_{ij} is not known a-priori

$$E_{ij}^{pq} = E^{pq^{\circ}} f(\phi_i - \phi_j) e^{\iota(\phi_i + \phi_j)}$$

Needs a solver: Pointing SelfCal

<u>Asymmetric Primary Beams:</u>

$$E_{ij} = E_i^o * E_j^o$$
 where $E_i^o = FT[Measured PB_i]$

PB-projection

Full beam polarimetry: Squint corrected Stokes-V imaging

Typical NVSS field: Peak 190mJy

Visibility filters computed for 15° PA increments. Azimuthally symmetric Primary Beams.

Pointing Solver: Motivation

- Single pointing L-Band observations limited due to pointing ~10microJy/beam.
 - EVLA L-band sensitivity: 1microJy/beam
- Mosaicking dynamic range limited by pointing errors.
 - Significant fraction of ALMA observation will be mosaicking observations.
- Significantly increased computing:
 - Each iteration involves expensive visibility prediction

Pointing Solver

$$E_{ij}(l;l_{i},l_{j}) = E^{o}(l)f(\phi_{i}-\phi_{j})e^{-\pi \iota u_{ij}(\phi_{i}+\phi_{j})}$$

- Visibility prediction:
 - Gridded model $V^{M,Grid} = FFT[I^M]$
 - Re-sample on measured (u, v) using E_{ij} as the GCF for baseline *i-j*: $V_{ij}^{M} = E_{ij} * V^{M, Grid}$
- GCF is different for each baseline!
- Use lookup tables or approximation:

$$E_{ij} = E^{o} \left[1 - (l_{i} - l_{j})^{2} \sigma^{2} / 2 - \pi \iota u_{ij} (l_{i} + l_{j}) + \dots \right]$$

Pointing correction

Model image using 59 sources from NVSS. Flux range ~2-200 mJy

Continuous lines: Typical antenna pointing offsets for VLA as a function of time (Mean between +/-25" and RMS of 5").

Dashed lines: Residual pointing errors. RMS ~1".

Pointing correction

RMS: 15microJy/beam vs. 1microJy/beam Peak: 250microJy vs. 5 microJy

Model image as components

S. Bhatnagar: SKA Wide Field Imaging Workshop, Dwingeloo, 21-24June, 2005

Pointing SelfCal

- Model image: deconvolved using entire data
- Pixelated model image

Pointing SelfCal

• Stokes-I imaging: Before and after pointing correction

S. Bhatnagar: SKA Wide Field Imaging Workshop, Dwingeloo, 21-24June, 2005

Pointing SelfCal

Stokes-V imaging: Need to use component imaging?Use illumination patterns (work in progress)

Where to from here...

- SelfCal <-> imaging iterations to test the limits of this approach
- Component based imaging and prediction
- Is current deep L-band imaging pointing-error limited?
- Mosaicking dynamic range limited by pointing errors?
- Wide-band imaging
 - Use pb-projection to correct for PB scaling
 - MSF extensions: Freq. sensitive image plane modeling (Component based imaging?)
- Non-isoplanatic ionospheric calibration?

Scale sensitive imaging: Asp-Clean

- Pixel-to-pixel noise in the image is correlated $I^{D} = B * I^{o} + B * I^{N}$ where B = PSF
- The scale of emission *fundamentally* separates signal (I°) from the noise ($I^{\mathbb{N}}$).
- Multi-Scale Clean (Cornwell & Holdaway, 2004, in prep.)
 - Decompose the sky in a set of components at few scales
- Asp-Clean (Bhatnagar & Cornwell, A&A,2004)
 - Search for local scale, amplitude and position

S. Bhatnagar: SKA Wide Field Imaging Workshop, Dwingeloo, 21-24June, 2005

Wide-band continuum imaging

• EVLA bandwidth ratio of 2:1

$$V(u_{ij}, v_{ij}) = \sum_{v_k} V(u_{ij}, v_{ij}; v_k) = \sum_{v_k} P_{ij}(v_k) FT[I^D(v_k)]$$

Sky emission, the Primary Beams, etc. are a function of frequency. Ideas: Apply PB effects during predict using pb-projection. Parameterized sky model for prediction.

• Combining Scale sensitive + frequency sensitive deconvolution with image plane corrections.

Wide-band imaging: The problem

•IF1 – IF2: 50MHz apart

• Spectral index? Frequency dependence of the PBs?

• EVLA bandwidth ratio of 2:1

Ionospheric/atmospheric calibration

$$V_{ij}^{Obs}(v,t) = \int \int K_{ij}(S;v,t) I^{M}(S) e^{2\pi \iota S.B_{ij}} dl dm$$

where K_{ij} is the ionospheric, direction dependent phase

• General form for residuals: where $X_{ij} = W_{ij} * E_{ij} * K_{ij}$

$$V_{ij}^{R} = V_{ij}^{Obs} - X_{ij} * FT[I^{M}]$$

 Express ionospheric phase in the antenna beam using ionospheric physics/geometrical effects/primary beam effects (de-focusing, time varying illumination, etc.)

Computing and I/O costs

- Significant increase in run-time due to more sophisticated parameterization
 - Deconvolution: Fast evaluation of $B*\sum_{k} A_{k}P(Scale_{k}, Pos_{k})$
 - Calibration: Fast evaluation of

 $B*\sum_{k} A_{k} P(Scale_{k}, Pos_{k})$ $E_{ij}*V_{ij}$

- Cost of computing residual visibilities is dominated by I/O costs for large datasets (~200GB for EVLA)
 - Deconvolution: Approx. 20 access of the entire dataset
 - Calibration: Each trial step in the search accesses the entire dataset
- Solutions: Analytical approximations, caching, Parallel computing and I/O,...