Pointing Self Calibration

SKA1-Mid Calibration Consultation Workshop, May 29th 2015

S. Bhatnagar NRAO

Motivation

- High Dynamic Range imaging
 - Thermal noise-limited imaging with the EVLA at "low" bands implies >1M:1 DR
 - Requires corrections for PB effects: Rotation, Frequency dependence & off-axis polarization, Pointing jitter
 - Pointing corrections at short time scales: reference pointing done at high frequencies at \sim 30min time scales
- Wide-field full-polarization imaging capability
- Poln. Leakage

Simulations

3C147: Wide-field residual errors

S. Bhatnagar: SKA1-Mid Calibration Workshop, May 29th 2015

EVLA L-Band Stokes-I: Before correction

- 3C147 field at L-Band
- Pre-OSRO Mode WIDAR0!
- Only 12 antennas used
- Bandwidth: 128 MHz
- ~7 hr. integration

EVLA L-Band Stokes-I: After correction

- 3C147 field at L-Band with the EVLA
- Only 12 antennas used
- Bandwidth: 128 MHz
- ~7 hr. integration
- Dynamic range: ~1M:1

EVLA L-Band Stokes-V: Before correction

EVLA L-Band Stokes-V: After correction

Use physical model for the Stokes-V pattern:

Contours: Stokes-I power pattern Colour: Stokes-V power pattern

Parametrized Measurement Equation

• Measurement Equation

General: $V_{ij}^{Obs} = \left(E_i \otimes E_j^T\right) * V_{ij}^o$ For DI gain: $V_{ij}^{Obs} = \left(g_i \cdot g_j^*\right) \cdot V_{ij}^o$

- Parameters remain separable as antenna-based in the data-domain (min. DoFs)
- Functions are more compact
- Generalization of the standard SelfCal

 $Minimize: V_{ij}^{O} - E_{ij} * V_{ij}^{M} w.r.t. E_{i}$

$$\left[\frac{\partial E_{ij}(p_i^k, p_j^k)}{\partial E_i}\frac{\partial E_i}{\partial p_i^k}\right] * V_{ij}^M = \mathbf{0}$$

p^k antenna pointing errors

What is needed?

$$\frac{\partial E_{ij}(p_i^k, p_j^k)}{\partial E_i} \frac{\partial E_i}{\partial p_i^k} * V_{ij}^M = \mathbf{0}$$

• *E_i* : parametrized model for the antenna aperture illumination pattern (AIP)

One element of the DD-Jones ("DI Jones Matrix" per pixel)

- $V_{ij}^{M} = FT(I^{M})$: Nominal model of the wide-field sky emission
 - Existing GSM
 - Derived via the Imaging-Calibration loop

- Efficient algorithm to apply pointing offsets during imaging
 - Full-Mueller A-Projection algorithm

Pointing SelfCal algorithm: Simulations

S. Bhatnagar: SKA1-Mid Calibration Workshop, May 29th 2015

11/22

Pointing SelfCal algorithm: Simulations

Effect of antenna pointing errors

Effect of antenna pointing errors

Error pattern: Derivatives

Time dependent solutions

DD SelfCal: EVLA Data

S. Bhatnagar: SKA1-Mid Calibration Workshop, May 29th 2015

17/22

DD SelfCal: EVLA Data

- El-Az mount antennas
- Polarization squint due to off-axis feeds
 - The R- and L-beam patterns have a pointing error of +/- ~0.06 $\frac{\lambda}{D}$
- DoF used: 2 per antenna
- SNR available for more DoF to model the PB shape

- EVLA polarization squint solved as pointing error (optical pointing error).
- Squint would be symmetric about the origin in El-Az plane in the absence of antenna servo pointing errors.
- Pointing errors for various antennas detected in the range 1-7 arcmin.
- Pointing errors confirmed independently via the EVLA online system.

[paper in preparation]

DD SelfCal: EVLA Data

General comments

- Fundamentally an antenna based effect ٠
 - Difficult to decouple/interpret in the image plane (needs more DoFs)
- Fundamentally a data-domain effect ٠
 - Not an "sky-plane effect"
 - Unlike, e.g., effects of sky spectral index variations (a DD error)
- SNR available to the solver corresponds to the total apparent flux in the FoV
- Solution intervals of min-timescale at L-band where $S = \int \frac{\partial E_i(s, p)}{\partial s} E_j^*(s, p) I^M(s) e^{2\pi i s \cdot b_i} ds$ looks possible
- Solving for multiple parameters describing the AIP may be possible •
 - Simulations necessary
- Series expansion of AIP (work in progress) •

σ

Noise Budget:

$$(p) = \left[\frac{2k_b T_{sys}}{\eta_a A N_{ant} \sqrt{\nu_{corr} \tau_{corr} N_{SolSamp}}}\right] \frac{1}{S}$$

Wide band imaging with the EVLA

- Emissions fills the PB
- Extended emission with superimposed compact sources
- Partitioning approach design-out such fields!

Wide band imaging with the EVLA

