

Synthesis imaging in the presence of image plane effects

S. Bhatnagar (NRAO)

T.J. Cornwell (ATNF, Australia), K. Golap (NRAO) National Radio Astronomy Observatory

Basic Interferometry

<u>Terminology:</u>

Visibility: V_{ij}=<e_ie^{*}_j>,
 e_i is the electric field

Baseline: Length of the projected separation between the antennas (B).
Only relative separation matters for incoherent emission
Co-ordinates: (u_i, v_i, w_i) u_i=u_i-u_j

An N-element array

instantaneously measures N(N-1)/2 baselines (complex values)

Basic Imaging

• In terms of the sky brightness distribution $(I^{o}(I,m))$

$$V(u_{ij}, v_{ij}, w_{ij}) = \int \int I^{o}(l, m) S(u, v, w) e^{-2\pi \iota(u_{ij}l + v_{ij}m + w_{ij}(n-1))} \frac{dl \, dm}{n} + N_{ij}$$

where S : uv-sampling function, (*I,m*): direction in the sky

• $n=\sqrt{(1-l^2-m^2)}$ For $l^2+m^2<<1$ or small w_{ij} , sky is the 2D Fourier transform of the Visibility function (van Cittert-Zernike Theorem) $I^o = FT[V^o]$ and $V^{Obs} = SV^o$ $I^d = PSF * I^o$ and PSF = FT[S]The Dirty Image The Dirty Beam

Basic Imaging

- The Measurement Eq.: $V = AI^{o} + AN$ where **A** is the measurement matrix, **V**, **I** and **N** are the Visibility, Image and noise vectors.
- **A=FS** where **F** is the Fourier Transform operator and **S** is a diagonal matrix of weights.
 - Due to finite Fourier plane sampling, A is singular and in general rectangular
- Image reconstruction: Solve for I°

$$A^T V = BI^o + BN$$
 where $B = A^T A$

- B: The Toeplitz Beam Matrix
- **A^TV=I**^d: The Dirty Image vector

The image plane

Data corruptions

• The full Measurement Equation:

$$V_{ij}^{Obs}(v,t) = G_{ij}(v,t) \left[\int \int X_{ij}(v,t) I^{M}(l,m) e^{2\pi \iota (lu_{ij}+mv_{ij})} dl dm \right]$$

Data Corruptions Sky

- *G_{ij}*: direction independent corruptions (e.g., multiplicative complex gains, etc.)
- X_{ij} : direction dependent corruptions (e.g., Primary beam effects, etc.)
- Often G_{ij}, X_{ij} are separable into antenna based quantities as $G_{ij} = G_i G_j^*$ ==> N unknowns; $O(N^2)$ measurements $V_{ij}^{Obs} = G_{ij} \cdot [E_{ij} * V_{ij}^o]$ where $E_{ij} = E_i * E_j^*$ and $E_i = FT[X_i]$

General Imaging approach

- Inverse transform strictly does not exist.
 - Use accurate transform for Image->Data and approximate for Data->Image

 $V^{M} = AI^{M}$ and $I^{R} = D[V - AI^{M}]$ where $D \approx A^{T}$

- Use D to compute approximate update direction to be used in a non-linear iterative scheme to estimate I^M (deconvolution).
- Use I^{M} to solve for corruptions (calibration): minimize: $[V^{Obs} - G_{ij}V^{M}]w.r.t.G_{i}$
- Use $G_{ij}^{-1}V^{Obs}$ to improve the estimate for I^{M}
- Iterate between deconvolution and calibration.

Example: The CLEAN algorithm

Direction dependent errors

- Antenna based, direction dependent errors needs correction in the data from each baseline by a different function: $V_{ii}^{Obs} = [E_{ii} * V_{ii}^{o}]$ where $E_{ii} = E_{i} * E_{i}^{*}$
- Such errors need to be corrected during deconvolution.
- General structure of deconvolution algorithms:
 - *Major cycle:* Compute the update direction: $\Delta \chi^2 \propto I^R = D[V - AI^M]$
 - *Minor cycle:* Update the model image $I_i^M = I_{i-1}^M + \alpha \max[\Delta \chi^2]$

• Use FFT for **A** to compute **V**°. Needs data re-sampling.

$$\boldsymbol{V}^{\boldsymbol{G}}(k\Delta u) = (\boldsymbol{G}\boldsymbol{C}\boldsymbol{F}(u) \ast \boldsymbol{V}(u))(k\Delta u)$$

• Use E_{ij} for GCF when predicting model visibilities. $V^{M}(u) = (E_{ij}(u) * AI^{M})(u)$

• Compute the update direction (*I*^{*R*}) as: $\frac{A^{T}[V^{Obs} - E^{T}_{ij}(u) * V^{M}]}{\overline{A^{T}E^{2}}}$

Known direction dependent effects

• Non co-planar baselines

$$V(u, v, w) = \iint I(l, m) e^{2\pi \iota \left(ul + vm + w\left(\sqrt{1 - l^2 - m^2} - 1\right)\right)} \frac{dl \, dm}{\sqrt{1 - l^2 - m^2}}$$

• W-projection algorithm

$$V_{ij}^{Obs}(u, v, w) = E_{ij} * V_{ij}^{M}(u, v, w=0)$$
 where $E_{ij} = FT[e^{2\pi i w(\sqrt{1-l^2-m^2})}]$

• Pre-compute GCFs with uniform sampling in \sqrt{w} such that aliasing effects are less than the required dynamic range.

(Cornwell,Golap,Bhatnagar: EVLA Memo#67;A&A,in press)

W-projection

• $\rho_{12} = \langle e_1(u, v, w = 0) e_2^*(0, 0, 0) \rangle$ • $e_1 = e_1'(u, v, w)$ propagated using Fresnel diffraction theory. The above convolution equation is reproduced with $r_F / \lambda \approx \sqrt{w}$

 A w≠0 interferometer is not a device to measure a single Fourier component.

W-projection

W-projection scaling laws

• E_{ij} as function of direction is measured a priori

$$V_{ij}^{Obs} = G_{ij} \cdot [E_{ij} * V^{M}]$$
 where $E_{ij}(l_{i}, l_{j}, u_{ij}; p_{i}, p_{j})$

- Primary beam effects
 - Non-identical Primary Beams: $E_{ij} = E_i^o * E_j^o$ where $E_i^o = FT[Measured PB_i]$
 - Polarized primary beam: Beam squint
 - $-E_i$ separately measured for the two polarizations
 - Applied with the known squint

Polarization Beam Squint: Example

- VLA: The two orthogonal polarization power patterns have a squint w.r.t. to the pointing direction (6% of FWHM).
- If not corrected, polarization properties are correct only at the image center.

• E_{ij} as a function of direction is not known a priori

 $V_{ij}^{Obs} = G_{ij} \cdot [E_{ij} * FFT[I^M]]$ where $E_{ij}(l_i, l_j, u_{ij}; p_i, p_j)$

• E_{ii} is parameterized (p_i). Needs a solver

• Primary beam effects (Pointing offsets):

$$E_{ij} = E^{o} [1 + \Delta E_{ij}(l_i, l_j; t)] \quad l_i \text{ is the pointing offset}$$

• Source structure as a function of polarization and frequency: I^{M} is also parameterized $I(v) = I(v_{o})(v/v_{o})^{-\alpha}$

$$I^{M} = \sum_{k} Components(v, Poln, Position, Scale)$$

Pointing offset calibration

$$E_{ij}(l;l_i,l_j) = E^o(l) \left[e^{-\left(\frac{l_i - l_j}{2}\right)^2} e^{-\pi \iota u_{ij}(l_i + l_j)} \right]$$

(l_i is the pointing offset)

- Separates into constant E° and antenna dependent terms
- E_{ij} (the GCF) is different for each baseline!

• Use lookup tables or approximation: $E_{ij} = E^o [1 - (l_i - l_j)^2 \sigma^2 / 2 - \pi \iota u_{ij} (l_i + l_j) + ...]$

Pointing SelfCal

- Pointing errors for single pointing observation of typical L-Band field limits the RMS noise to ~10microJy.
 - EVLA L-band sensitivity: 1microJy/beam

- Mosacing dynamic range limited by pointing errors.
 - Significant fraction of ALMA observation will be mosacing observations.

- This implies significantly increased computing:
 - Each iteration involves expensive visibility prediction

Pointing SelfCal: Example

Model image: 59 sources from NRAO-VLA All Sky Survey(NVSS). Flux range ~2-200 mJy/beam

> Continuous lines: Typical antenna pointing offsets for VLA as a function of time (Mean between +/-20arcsec and RMS of 5arcsec).

Dashed lines: Residual pointing errors. RMS ~ 1arcsec.

S.Bhatnagar: Signal Recovery and Synthesis (OSA), Charlotte, June 6, 2005

20

Ref: Bhatnagar, Cornwell, Golap, EVLA Memo #84

Peak flux ~250 microJy/beam RMS ~ 15microJy

Residual image after pointing correction: $FT[V^{Obs}-E_{ij}^{*}V^{M}]$ Peak flux ~5microJy/beam RMS ~ 1microJy

Wide-band continuum imaging

- EVLA bandwidth ratio of 2:1
 - $V(u_{ij}, v_{ij}) = \sum_{v_k} V(u_{ij}, v_{ij}; v_k) = \sum_{v_k} P_{ij}(v_k) FT[I^D(v_k)]$

Sky emission, the Primary Beams, etc. become a function of frequency.

Ideas: Apply PB effects during predict. Sky model parameterized in frequency as well.

- Combining Scale sensitive + frequency sensitive deconvolution with image plane corrections.
- Work in progress: Extension of Multi-Frequency Synthesis and Scale-sensitive Clean.

Scale sensitive deconvolution

- Pixel-to-pixel noise in the image is correlated at the scale of the resolution element
 I^D=B*I^o+B*I^N where I^N=FT[Visibility Noise]; B=PSF
- The scale of emission *fundamentally* separates signal (*I*^o) from the noise (*I*^N).
- Asp-Clean (Bhatnagar&Cornwell, 2004, A&A) $I^{M} = \sum_{k=1}^{N} A_{k} P(Scale_{k})$

• Explicitly solve for local scale, position and amplitude

Asp-Clean acceleration

- Asp-Clean (Bhatnagar & Cornwell, A&A, in press)
 - Large scale emission and asymmetric structures are better reconstructed
 - Computationally expensive: cost increases with the no. of components
 - Acceleration: Solve in a sub-space; adaptively determine the sub-space

Ionospheric phase correction

• $V_{ij}^{Obs}(v,t) = \int \int K_{ij}(l,m;v,t) I^{M}(l,m) e^{2\pi \iota(u_{ij}l+v_{ij}m)} dl dm$

where K_{ij} is the ionospheric, direction dependent phase

• The general form for residuals: $V_{ij}^{R} = V_{ij}^{Obs} - X_{ij} * FT[I^{M}]$ where $X_{ij} = W_{ij} \cdot E_{ij} \cdot K_{ij}$ (and other direction dependent

terms)

- Express ionospheric phase in the antenna beam using ionospheric physics/geometrical effects/primary beam effects (de-focusing, time varying illumination, etc.)
- X_{ij} is separable into antenna based quantities X(p_j).X^{*}
 (p_j) Solve for p's

S.Bhatnagar: Signal Recovery and Synthesis (OSA), Charlotte, June 6, 2005

Computing and I/O costs

 Increase in computing due to more sophisticated parameterization

•Deconvolution: Fast evaluation of $B * \sum_{k} A_{k} P(Scale_{k}, Pos_{k})$

•Calibration: Fast evaluation of $E_{ij} * V^M$

- Cost of computing residual visibilities is dominated by I/O costs for large datasets (~200GB for EVLA)
 - •Deconvolution: Approx. 20 access of the entire dataset
 - Calibration: Each trial step in the search accesses the entire dataset
- Solutions: Analytical approximations, caching, Parallel computing and I/O,...