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High sensitivity imaging

● Sensitivity 

● Higher sensitivity is achieved using larger collecting area (∝N
ant

), wider band-

widths (N
channels

) and longer integrations in time (N
t
)

– Data volume  ∝ N2
ant

 N
channels

 N
t

● Implications for high dynamic range imaging

– Wider field imaging required  finer sampling in time and frequency→

● N
channels 

= 1-10GHz/MHz     and    N
t
 = 10hr/(1-10sec)

● Wider range of angles on the sky (==> Direction Dependence)

– Smaller scale variations over larger parameters space to be accounted for

– Algorithm efficiency remains a critical parameter
● 10-100x increase in the number of samples to achieve the required sensitivities

∝
N ant Aant N tN chan 

T sys
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● Measurement Equation

                          : The Baseline Vector; i and j represent the two antennas 

                                                        :Direction independent gains

                                                        :Direction dependent gains

● Unknowns in are the M
ij
 , Ms

ij 
 and I

● Combined RHS determines the “ time constant”  over which averaging 
will help

● Measurement Equation

                       : The Baseline Vector; i and j represent the two antennas 

                                            : Direction independent gains

                                                      : Direction dependent gains

● Parameters in this are the J
ij
 s, Js

ij 
s and I

● Calibration: Keeping I fixed, estimate  J
ij
-1 ,  Js

ij 
and use them to remove 

instrumental/atmospheric effects

● Imaging: Keeping J
ij
-1 ,  Js

ij 
fixed, estimate the image that best fits the data

V ij
Obs

  = M ij  , t W ij∫ Mij
S
 s , , t  I  s ,  e2   bij . s d s

bij = bi−b j

M ij  , t= J i , t ⊗ J j
∗
 , t 

M ij
S
 s ,  , t =J i s , , t ⊗J j

∗
 s , , t 

Synthesis Imaging
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● Conventional Imaging:

–

–       

● Conventionally, calibration and imaging are treated as independent 
processes

– Solving for calibration terms:   Solve for M, using observations of a field with known 
structure

– Calibration:                               Make VCalibrated  =  M-1 Vobs  

– Imaging:                                   Keep the calibration terms fixed, solve for I

● When Direction Dependent (DD) effects are significant, imaging and 
calibration can no more be treated as orthogonal

– Correction for Direction Dependent (DD) effects cannot be separated from imaging

– Algorithms must fundamentally separate I(s) from Ms 

Some observations

V  bij  = ∫M ij
S  s I  s e

2   bij . s d s
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Parametrized Measurement Equation

●   Need more sophisticated parametrization of the ME

– Better parametrization of the J
i
 , J

i
S and the Sky (IM)

– Solver for the (unknown) parameters

– Forward and reverse transform that account for the DD terms

– Efficient run-time implementation

● Useful parametrization: 

– Which models the effects well and with minimum DoF

– For which efficient solvers can be implemented

– Which optimally utilizes the available SNR  

● Noise on the solved parameters:  p=[ 2kbT sys
a A N antcorr corr NSolSamp ]

1
S

where S=∫
∂E i s , p 

∂ s
E j

∗
 s , p IM s e2 s . bij d s
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● Conventionally, calibration and imaging are treated as independent 
processes

– Solving for calibration terms:   Solve for M, using observations of a field 
with known structure

– Calibration:                Make VCalibrated  =  M-1 Vobs  

– Imaging:                     Keep the calibration terms fixed, solve for I

● When Direction Dependent (DD) effects are significant, imaging and 
calibration can no more be treated as orthogonal

– Correction for Direction Dependent (DD) effects cannot be separated from 
imaging

– Algorithm design must fundamentally separate I(s) from Ms 

Example of DD effects

Time and DD Primary Beam: EVLA Ionospheric Phase Screen
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Examples of DD effects

Time and DD Primary Beam: LWA Ionospheric Phase Screen
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● Calibration and image deconvolution operations can be described as function 
optimization

● Conventional data processing: When direction dependent effects can be 
ignored, Calibration and Imaging are treated as orthogonal operations

● Typical data processing steps:

– Using observations of a field with known structure, make VCalibrated   

– Imaging:  Keep the calibration terms fixed, solve for I

●

– Self Calibration: Using the best IM, solve for J
ij
 to improve calibration

●

Deconvolution and Calibration: Theory

● Calibration and image deconvolution operations can be described as function 
optimization

● N is independent gaussian random variable –  in the data domain

● Image deconvolution (CLEAN, MEM,...)

●   Calibration (“antsol”, “self-cal”)

●  Requires:  (1) Residual = Obs. Data –  Current Model

                  (2) Derivative computation (approx.)

V Obs=M AMS I TrueN


2
=∣M−1V o

−AIM∣
2
where IM=∑k

Pk ; Pk is the Pixel Model

∂2

∂ IM
≡Dirty Image =FT [V Corr ] I Iter

M =I Iter −1
M 2


2
=∣V o

−M A IM∣
2

∂2

∂M
≡Update direction M Iter =M Iter −12

Advances in Calibration and Imaging Techniques in 
Radio Astronomy, Rau et al., Proc. IEEE, Vol. 97, No. 8, 
Aug.2009, 1472 

V o−Model M ,M S , I 



S. Bhatnagar: ASTRON, Dwingeloo, June 29th 2010 9/46

● Calibration and image deconvolution operations can be described as function 
optimization

● Conventional data processing: When direction dependent effects can be 
ignored, Calibration and Imaging are treated as orthogonal operations

● Typical data processing steps:

– Using observations of a field with known structure, make VCalibrated   

– Imaging:  Keep the calibration terms fixed, solve for I

●

– Self Calibration: Using the best IM, solve for J
ij
 to improve calibration

●

● Scale-less deconvolution algorithms:

–                                     :Treat each pixel as an independent DoF

– CLEAN (and its variants), MEM (and its variants)

I M
=∑k

Akx− xk 

Deconvolution: Parametrization of the emission

Component Model Restored Model Residuals
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● Scale-less deconvolution algorithms:

–                               : Treat each pixel as and independent DoF

– CLEAN (and its variants), MEM (and its variants)

● Scale-sensitive deconvolution algorithms:

–                                                  :Decompose the image in a scale-sensitive basis

– Asp-Clean (A&A, 747, 2004 (astro-ph/0407225), MS-Clean (IEEE JSPSP, Vol. 2, No. 5, 
2008)

I M
=∑k

A k f Scale ,Position 

Deconvolution: Parametrization of the emission

Component Model Restored Model Residuals
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● Scale-less deconvolution algorithms:

–                               : Treat each pixel as and independent DoF

– Clean (and its variants), MEM (and its variants)

● MS-MFS: Multi-scale modeling of the source 
structure + Taylor expansion along frequency axis

● Snap shot uv-coverage per Spectral Window 
(10x50 MHz)

● Carilli et al.: Full synthesis in multiple VLA 
configuations.

                                     

    (PhD Thesis, Rao Venkata, NRAO/NMT, 2010)

Source structure: Frequency and spatial

CLEAN Model MS-MFS Model

Carilli et al. Model
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● Difficult to “correct” raw data for DD terms.     

● Removal of DD effects then fundamentally couples calibration and imaging 
processes

– Include DD effects as part of imaging/deconvolution process.

● Pieces required

– Efficient algorithms to correct for DD effects during imaging

– Develop well constrained parametrized models that described DD effects

– Efficient algorithms to solve for the parametrized the DD terms

Direction Dependent Effects

V  bij  = ∫M ij
S  s I  s e

2   bij . s d s

● 100s GB data sets, higher computing needs of new algorithms ==> integrated approach for 
largely automated/pipeline processing

● All effects of the same order must be accounted for simultaneously to validate the 
algorithms
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● 2D Fourier Transform approximation is not valid: The “w-term” error 

V Obs
 bij =∫ P ij

S
 s , , t  I  s ,e2[u ij lv ij mwij 1−l2

−m2
−1 ]d s

DD Effects: Non co-planar baselines
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● Variations with time due to

– Rotation with Parallactic Angle for El-Az mount antennas (GMRT, EVLA, 
ALMA)

– Frequency and polarization dependence (most telescopes) 

– Projection effects (Aperture Array elements)

– Pointing errors (all telescopes), structural deformation

– Heterogeneous antenna arrays 

● PB rotation for El-Az mount antennas
● Time varying antenna pointing errors
● Antenna deformation
● Projection on the sky for AA

DD Effects: Time varying Primary Beams
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● A fundamentally measurement effect, modeled as an image domain effect 

● Combination of FFT (on the flat facets) + DFT

V Obs
 bij =∫ P ij

S
 s , , t  I  s ,e2[u ij lv ij mwij 1−l2

−m2
−1 ]d s

Faceted imaging: Piece-wise constant approx.

●Trouble with extended emission
●Multiple intermediate images
●High algorithmic complexity
●Difficult to interface with other 

algorithms to account for other 

effects
●Computationally sub-optimal
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● The Measurement Equation in linear algebra notation

– E represents direction dependent effects in the visibility (data) domain

● If an operator K that models E and has appropriate properties can be 
constructed, KT and K can be used in forward and inverse transforms to 
produce distortion free images (a.k.a. “operater pre-conditioning”).

– Forward transform: 

– Inverse transform: 

● For computational efficiency, E should have a finite support size

● Residual and derivative computation done at approximately FFT efficiency   

VObs
= FT M S I = EV

KT E

FK T VObs
= I d (Imaging)

KF T I M
= V M (Model Data computation)

Projection methods
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VObs
 bij =∫ P ij

S
 s , , t  I  s ,  e2  [u ij l vij mw ij  1− l 2−m2−1 ] d s

● What we measure is <E
1
E*

2
>

● What we assume we measure: <E'
1
E*

2
>

● E
1
 is E'

1
 propagated using the Fresnel Diffraction

V o
u ,v ,w=G V u ,v 

Gu , v , w = Fresnel P ropagater

V 12
o
=∫ e2 w121−l 2

−m 2
−1 I l , me2 [u 12 lv12 m ] dl dm

●

– Visibility and the image are not related by a 2D Fourier Transform

● 2D FT only if (1) small field-of-view, or (2) small baseline length

● What we measure is <E
1
E*

2
>

● What want to measure: <E'
1
E*

2
>

● E
1
 is E'

1
 propagated using the Fresnel Diffraction

The W-Term: Optics interpretation
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●

● The above equation in linear algebra notation

● If       is unitary operator (or approximately so), GT and G can be used in 
forward and inverse transforms to produce distortion free images.

– Forward transform:

– Inverse transform: 

● For computational efficiency, G should have a finite support size  

W-Projection algorithm

G=FT [e21−l 2−m2−1 ]●

● About 10x faster than faceted imaging algorithm

● Straight forward to combine with wide-band imaging and algorithms to correct for other DD effects

V o
u , v , w=V M

u , v ∗G u , v , w

The non-coplanar baseline effect: The W-Projection 
algorithm, IEEE JSTSP, 2008
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Without W-term correction

The Coma Cluster
At 74 MHz
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With W-Projection algorithm

The Coma Cluster
At 74 MHz
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Time varying DD gains due to PB

 

 I=PSF∗ I PB

 PB
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A-Projection algorithm

●

● Modified forward and reverse transforms: 

– No assumption about sky properties

– Spatial, time, frequency and polarization dependence naturally accounted for

– Done at approximately FFT speed

● Combining with W-Projection or image plane part of the various deconvolution algorithms is 
straight forward (algorithm complexity is lower)

● Efficient solvers to solve for more precise parametrized models (Pointing SelfCal and its 
extensions)

V o
u , v , w=V M

u , v ∗G u , v ;Time, Poln.

A-Projection algorithm,  A&A 2008

Model for EVLA aperture illumination 
(real part)
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Full beam imaging

● Limits due to the rotation of asymmetric PB

– Max. temporal gain variations @ ~10% point

– DR limit: few X 104:1

● Limits due to antenna pointing errors

– In-beam error signal max. @ 50% point

– DR limit: few X 104:1

– Limits for mosaicking would be worse

● Significant flux at half-power point
● Significant flux in the side-lobes for most pointing

● Approach taken

– Algorithm R&D (SNR per DoF, error propagation, computing requirements,....)

– Proof-of-concept tests with realistic simulation

– Apply to real data 
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A-Projection algorithm: PB corrections 

Before Correction After Correction

Minimize :V ij
O
−Eij∗[ FI

M
] w.r.t. IM

A-Projection: Bhatnagar et al.,
A&A,487, 2008 

Goal:  Full-field, full-polarization imaging at full-sensitivity
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● 3C147 field at L-Band
with the EVLA

● Only 12 antennas used
● Bandwidth: 128 MHz
● ~7 hr. integration

● Dynamic range: ~700,000:1

EVLA L-Band Stokes-I: Before correction
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 ● 3C147 field at L-Band
with the EVLA

● Only 12 antennas used
● Bandwidth: 128 MHz
● ~7 hr. integration

● Dynamic range: ~700,000:1

● 3C147 field at L-Band
with the EVLA

● Only 12 antennas used
● Bandwidth: 128 MHz
● ~7 hr. integration

● Dynamic range: ~700,000:1

EVLA L-Band Stokes-I: After correction
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● 3C147 field at L-Band
with the EVLA

● Only 12 antennas used
● Bandwidth: 128 MHz
● ~7 hr. integration

● Dynamic range: ~700,000:1

EVLA L-Band Stokes-V: Before correction

Is it  M  s , Poln ?
Or is it  I  s , Poln ?
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● 3C147 field at L-Band
with the EVLA

● Only 12 antennas used
● Bandwidth: 128 MHz
● ~7 hr. integration

● Dynamic range: ~700,000:1

EVLA L-Band Stokes-I: After correction

Use physical model for the 
Stokes-V pattern:

Contours: Stokes-I power pattern
Colour: Stokes-V power pattern
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● 3C147 field at L-Band
with the EVLA

● Only 12 antennas used
● Bandwidth: 128 MHz
● ~7 hr. integration

● Dynamic range: ~700,000:1

● 3C147 field at L-Band
with the EVLA

● Only 12 antennas used
● Bandwidth: 128 MHz
● ~7 hr. integration

● Dynamic range: ~700,000:1

3C147: Full field

W-Term errors!

W-term+PB
Side-lobes errors?
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● 3C147 field at L-Band
with the EVLA

● Only 12 antennas used
● Bandwidth: 128 MHz
● ~7 hr. integration

● Dynamic range: ~700,000:1

● 3C147 field at L-Band
with the EVLA

● Only 12 antennas used
● Bandwidth: 128 MHz
● ~7 hr. integration

● Dynamic range: ~700,000:1

3C147: Full field

W-Term errors!

Errors due PB
side-lobes?
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Example: Imaging extended emission

● Stokes-V imaging of extended emission

● Algorithms designed for point sources will 
not work

Conventional imaging Imaging with A-Projection

Run time for both
is comparable.
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Wide-band PB effects

● For wide-band observations, frequency dependence of the PB is a first order 
effect

●  Is it                  or is it              ?

● Fundamental separation:  Include PB as part of the measurement process 
(include its effect as part of forward and reverse transforms)

PB “Spectral Index”

V  bij  = ∫M ij
S I  s e

2  bij . s d s

M  s ,  I  s , 



S. Bhatnagar: ASTRON, Dwingeloo, June 29th 2010 33/46

Wide band imaging of 3C286 field

PB 50% point

Without PB 
correction

With PB 
correction

Sp. Ndx. Image

(Rao Venkata, PhD Thesis, 2010)
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● For wide-band observations, frequency dependence of the PB is a first order 
effect

●  Is it                  or is it              ?

● Fundamental separation:  Include PB as part of the measurement process 
(include its effect as part of forward and reverse transforms)

Wide band imaging with the EVLA

PB 50% point

●1.2-1.8GHz

●~40 microJy/Beam

●RSRO Projects
 (AB1345, Bhatnagar et al. 
  AT374, Taylor et al.)

●Scientific goals
 Spectral Index 
       imaging
 RM Synthesis
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Wide band imaging with the EVLA

PB 50% point



S. Bhatnagar: ASTRON, Dwingeloo, June 29th 2010 36/46

Wide band imaging with the EVLA

PB 50% point
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●Typical antenna pointing  offsets for VLA as 
a function of time 

●Over-plotted data: Solutions at longer 
integration time

●Noise per baseline as expected from EVLA

(Bhatnagar et al., EVLA Memo 84, 2004)

Pointing SelfCal: DD SelfCal algorithm

Sources from NVSS.
Flux range ~2-200 
mJy/beam

Minimize :V ij
O
−Eij∗V ij

M w.r.t. Ei
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PB effects in mosaicking: Wide(r) field
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Computing load

● Scaling laws for imaging

– Non co-planar baseline correction

● W-Projection: (N2
wproj

+ N2
GCF

)N
VIS

● Faceting:        N2
facets

N2
GCF

N
vis

– Combine with Scale-sensitive deconvolution

     

●   N
vis

: 1010-12   ,            N2
GCF

: 7-50 ,             N
comp

: 104-5 
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I/O load

● Near future data volume (1-2 years)

– Statement about an year ago: “100-1000 GB/12hr by mid-2010”

● Recent data with the EVLA: 120 GB

● Next 5 years

– 100X increase (in volume and effective I/O)

● Non-streaming data processing

– Expect 20-50 passes through the data (flagging + calibration + imaging)

● Effective data i/o: few TB

– Exploit data parallelism 

● Distribute normal equations (SPMD paradigm looks promising)

– Deploy computationally efficient algorithms (‘P’ of SPMD) on a cluster
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Computing challenges

● Calibration of direction dependent terms

– As expensive as imaging 

● Significant increase in computing for wide-field wide-band imaging

– E.g. convolution kernels are larger (up to 50x50 for single facet EVLA A-array, L-
band imaging)

– E.g. Multiple terms for modeling sky and aperture for wide-band widths

● Terabyte Initiative: 4K x 4K x 512 x 1Pol tests using 200 GB data set

– Timing
● Simple flagging               : 1h

● Calibration (G-Jones)     :  2h15m

● Calibration (B-Jones)     :  2h35m

● Correction                      :  2h

● Imaging                          :  20h

– Compute : I/O ratio          : 2:3
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Parallelization: Initial results

● Spectral line imaging: (8GB RAM per node)

● Strong scaling with number of nodes & cube size

● Dominated by data I/O and handling of image cubes in the memory

● 1024 x 1024 x 1024 imaging

● Run-time with 1-Node     :       50hr
● Run-time with 16-nodes  :      1.5 hr

● Continuum imaging:  (No PB-correction or MFS)

● Requires inter-node I/O (Distribution of normal equations)

● Dominated by data I/O

● 1024 x 1024 imaging: 

● 1-node run-time       :      9hr
● 16-node run-time     :      70min (can be reduced up to 50%)
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Parallelization: Initial results

● Image deconvolution is the most expensive step

● Matching data access and in-memory grid access patterns is critical

● Optimal data access pattern for imaging and calibration are in conflict

● Freq-Time ordered data optimal for imaging
● Time-ordered data optimal for calibration

● DD calibration comparable to imaging in computing

● SS deconvolution + MSF might make FLOPS per I/O higher: A good thing!

● Production Cluster

● 32 nodes, 2x4 cores, 12 GB RAM, InfiniBand inter-connect
● Data served via a Luster FS

● Measured I/O throughput: 800-900 MB/s
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Conclusions:

● For EVLA and ALMA, the dominant (similar order) DD effects:

● Time dependence of the PB: rotation with PA, pointing errors

● Frequency dependence of the PB

● Frequency dependence of the sky

● Modeling of extended emission deconvolution (certainly for mosaic imaging)

● Solutions: AW-Projection (PB effects) + MS-/Asp-Clean + MFS (frequency 
dependence of the sky)

● Additionally –  needs to deal with 100GB –  1TB datasets

– Need efficient algorithms which can be deployed on parallel computers

● Work in progress on extensions and generalization of algorithms for SKA-
class imaging and calibration problems.

● All of this work is/will be available in the CASA libraries
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Conclusions:

● Three fundamentally different approaches being pursued

– Corrections in the data domain (FFT based transforms)

● AW-Projection, Pointing SelfCal, Mosaicking,...
● Challenges: Controlling the propagation of errors

– Corrections in the image plane (DFT based transforms)

● Faceting 
● Challenges: Curse of dimensionality, run time efficiency with realistic data 

volumes

– Linear Algebra methods (Least-Square All Sky Imaging)

● Hybrid: 

– Image- (or UV-) plane faceting + Projection algorithms

– Facets on a few strong sources only
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● W-Projection: IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 5, 2008

● A-Projection:  A&A, 487, 419, 2008 (arXiv:0808.0834)

● Pointing SelfCal: EVLA Memo. 84, 2004 

● Scale sensitive deconvolution of astronomical images: A&A, 426, 747, 2004 (astro-ph/0407225)

● MS-Clean: IEEE Journal of Selected Topics in Signal Processing, Vol.2, No.5,2008

● Advances in Calibration and Imaging in Radio Interferometry: Proc. IEEE, Vol. 97, No. 8, 2008

● Calibration and Imaging challenges at low frequencies: ASP Conf. Series, Vol. 407, 2009

● Parametrized Deconvolution for Wide-band Radio Synthesis Imaging; PhD Thesis, Rao Venkata; NMT, 2010

● http://www.aoc.nrao.edu/~sbhatnag , http://www.aoc.nrao.edu/~rurvashi

● Home pages of SKA Calibration and Imaging Workshops (CALIM), 2005, 2006, 2008, 2009  
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