Interferometric Imaging and Direction Dependent Effects

S. Bhatnagar NRAO

High sensitivity imaging

- Sensitivity $\propto \frac{N_{ant} A_{ant} \sqrt{N_t \tau N_{chan} \Delta v}}{T_{out}}$
- Higher sensitivity is achieved using larger collecting area (∞N_{ant}), wider bandwidths ($N_{channels}$) and longer integrations in time (N_{t})

- Data volume $\propto N_{ant}^2 N_{channels} N_t$

- Implications for high dynamic range imaging
 - Wider field imaging required \rightarrow finer sampling in time and frequency
 - $N_{channels} = 1-10GHz/MHz$ and $N_{t} = 10hr/(1-10sec)$
 - Wider range of angles on the sky (==> Direction Dependence)
 - Smaller scale variations over larger parameters space to be accounted for
 - Algorithm efficiency remains a critical parameter
 - 10-100x increase in the number of samples to achieve the required sensitivities

Synthesis Imaging

Measurement Equation

$$W_{ij}^{Obs}(v) = M_{ij}(v,t) W_{ij} \int M_{ij}^{S}(s,v,t) I(s,v) e^{2\pi \iota(b_{ij},s)} ds$$

 $b_{ij} = b_i - b_j$: The Baseline Vector; *i* and *j* represent the two antennas $M_{ij}(v, t) = J_i(v, t) \otimes J_j^*(v, t)$:Direction independent gains $M_{ij}^s(s, v, t) = J_i(s, v, t) \otimes J_j^*(s, v, t)$:Direction dependent gains

- Unknowns in are the M_{ii} , M^{s}_{ii} and I
- Combined RHS determines the 'time constant" over which averaging will help

Some observations

- Conventionally, calibration and imaging are treated as independent processes
 - Solving for calibration terms: Solve for *M*, using observations of a field with known structure
 - Calibration: Make $V^{Calibrated} = M^{-1} V^{obs}$
 - Imaging: Keep the calibration terms fixed, solve for *I*

- When Direction Dependent (DD) effects are significant, imaging and calibration can no more be treated as orthogonal
 - Correction for Direction Dependent (DD) effects cannot be separated from imaging

$$V(b_{ij}) = \int M^{s}_{ij}(s) I(s) e^{2\pi \iota \left(b_{ij} \cdot s\right)} ds$$

- Algorithms must fundamentally separate *I(s)* from *M*^s

Parametrized Measurement Equation

- Need more sophisticated parametrization of the ME
 - Better parametrization of the J_i , J_i^S and the Sky (I^M)
 - Solver for the (unknown) parameters
 - Forward and reverse transform that account for the DD terms
 - Efficient run-time implementation
- Useful parametrization:
 - Which models the effects well and with minimum DoF
 - For which efficient solvers can be implemented
 - Which optimally utilizes the available SNR
 - Noise on the solved parameters: $\sigma(p) = \left[\frac{2k_b T_{sys}}{\eta_a A \sqrt{N_{out} V_{out} \tau_{out}} \sqrt{N_{solsonn}}}\right] \frac{1}{S}$

where
$$S = \int \frac{\partial E_i(s,p)}{\partial s} E_j^*(s,p) I^M(s) e^{2\pi \iota s \cdot b_{ij}} ds$$

Example of DD effects

Time and DD Primary Beam: EVLA

Ionospheric Phase Screen

Examples of DD effects

Time and DD Primary Beam: LWA

Ionospheric Phase Screen

Deconvolution and Calibration: Theory

 Calibration and image deconvolution operations can be described as function optimization

$$V^{Obs} = M A M^{S} I^{True} + N$$

- *N* is independent gaussian random variable -in the data domain
- Image deconvolution (CLEAN, MEM,...) $\chi^2 = |\mathbf{M}^{-1}\mathbf{V}^o \mathbf{AI}^M|^2$ where $I^M = \sum_k P_k$; P_k is the Pixel Model

$\frac{\partial \chi^2}{\partial I^M} \equiv \text{Dirty Image}$	$= FT \left[V^{Corr} \right]$	
--	--------------------------------	--

$$I_{lter}^{M} = I_{lter-1}^{M} + \alpha \Delta \chi^{2}$$

• Calibration ('antsol', 'self-cal') $\chi^2 = |\mathbf{V}^o - \mathbf{M} \mathbf{A} \mathbf{I}^M|^2$

 $\frac{\partial \chi^2}{\partial M} \equiv \text{Update direction}$

 $M_{lter} = M_{lter - 1} + \beta \Delta \chi^2$

• Requires: (1) Residual = Obs. Data – Current Model

 $(V^{o}-Model(M, M^{s}, I))$

(2) Derivative computation (approx.)

Advances in Calibration and Imaging Techniques in Radio Astronomy, Rau et al., Proc. IEEE, Vol. 97, No. 8, Aug.2009, 1472

Deconvolution: Parametrization of the emission

- Scale-less deconvolution algorithms:
 - $I^{M} = \sum_{k} A_{k} \delta(x x_{k})$: Treat each pixel as an independent DoF
 - CLEAN (and its variants), MEM (and its variants)

Deconvolution: Parametrization of the emission

- Scale-sensitive deconvolution algorithms:
 - $-I^{M} = \sum_{k} A_{k} f(Scale, Position)$: Decompose the image in a scale-sensitive basis
 - Asp-Clean (A&A, 747, 2004 (astro-ph/0407225), MS-Clean (IEEE JSPSP, Vol. 2, No. 5, 2008)

Source structure: Frequency and spatial

- MS-MFS: Multi-scale modeling of the source structure + Taylor expansion along frequency axis
- Snap shot uv-coverage per Spectral Window (10x50 MHz)
- Carilli et al.: Full synthesis in multiple VLA configuations.

(PhD Thesis, Rao Venkata, NRAO/NMT, 2010)

Direction Dependent Effects

• Difficult to 'correct' raw data for DD terms.

$$V(b_{ij}) = \int M^{S}_{ij}(s) I(s) e^{2\pi \iota \left(b_{ij} \cdot s\right)} ds$$

- Removal of DD effects then fundamentally couples calibration and imaging processes
 - Include DD effects as part of imaging/deconvolution process.
- Pieces required
 - Efficient algorithms to correct for DD effects during imaging
 - Develop well constrained parametrized models that described DD effects
 - Efficient algorithms to solve for the parametrized the DD terms
 - 100s GB data sets, higher computing needs of new algorithms ==> integrated approach for largely automated/pipeline processing
 - All effects of the same order **must** be accounted for simultaneously to validate the algorithms

DD Effects: Non co-planar baselines

• 2D Fourier Transform approximation is not valid: The W-term"error

DD Effects: Time varying Primary Beams

- Variations with time due to
 - Rotation with Parallactic Angle for El-Az mount antennas (GMRT, EVLA, ALMA)
 - Frequency and polarization dependence (most telescopes)
 - Projection effects (Aperture Array elements)
 - Pointing errors (all telescopes), structural deformation
 - Heterogeneous antenna arrays

40 30 20 10 0 -10 -20 -30 -40 Relative J2000 Right Ascension (arcmin)

Faceted imaging: Piece-wise constant approx.

• A fundamentally measurement effect, modeled as an image domain effect

$$V^{Obs}(b_{ij}) = \int P^{S}_{ij}(s, v, t) I(s, v) e^{2\pi \iota [u_{ij}l + v_{ij}m + w_{ij}(\sqrt{1 - l^{2} - m^{2}} - 1)]} ds$$

• Combination of FFT (on the flat facets) + DFT

- Trouble with extended emission
- •Multiple intermediate images
- •High algorithmic complexity
- •Difficult to interface with other algorithms to account for other effects
- •Computationally sub-optimal

Projection methods

• The Measurement Equation in linear algebra notation

$$V^{Obs} = F^T M^S I = E V$$

- *E* represents direction dependent effects in the visibility (data) domain
- If an operator *K* that models *E* and has appropriate properties can be constructed, *K^T* and *K* can be used in forward and inverse transforms to produce distortion free images (a.k.a. 'operater pre-conditioning').

- Forward transform:
$$FK^T V^{Obs} = I^d$$
 (Imaging)

- Inverse transform: $KF^T I^M = V^M$ (Model Data computation)
- For computational efficiency, **E** should have a finite support size
- Residual and derivative computation done at approximately FFT efficiency

The W-Term: Optics interpretation

•
$$V^{Obs}(b_{ij}) = \int P^{S}_{ij}(s, \nu, t) I(s, \nu) e^{2\pi \iota [u_{ij}l + v_{ij}m + w_{ij}(\sqrt{1 - l^{2} - m^{2}} - 1)]} ds$$

- Visibility and the image are not related by a 2D Fourier Transform

• 2D FT only if (1) small field-of-view, or (2) small baseline length

- What we measure is <**E**₁**E**^{*}₂>
- What want to measure: $\langle E'_1 E'_2 \rangle$

G(u, v, w) = Fresnel Propaga

W-Projection algorithm

```
• G = FT \left[ e^{2\pi \iota \sqrt{1 - l^2 - m^2} - 1} \right]
```

$V^{o}(u,v,w)=V^{M}(u,v)*G(u,v,w)$

- About 10x faster than faceted imaging algorithm
- Straight forward to combine with wide-band imaging and algorithms to correct for other DD effects

The non-coplanar baseline effect: The W-Projection algorithm, IEEE JSTSP, 2008

Without W-term correction

The Coma Cluster At 74 MHz

With W-Projection algorithm

The Coma Cluster At 74 MHz

Time varying DD gains due to PB

S. Bhatnagar: ASTRON, Dwingeloo, June 29th 2010

NRA

A-Projection algorithm

• $V^{o}(u, v, w) = V^{M}(u, v) * G(u, v; Time, Poln)$

- Modified forward and reverse transforms:
 - No assumption about sky properties

Model for EVLA aperture illumination (real part)

- Spatial, time, frequency and polarization dependence naturally accounted for
- Done at approximately FFT speed
- Combining with W-Projection or image plane part of the various deconvolution algorithms is straight forward (algorithm complexity is lower)
- Efficient solvers to solve for more precise parametrized models (Pointing SelfCal and its extensions)

A-Projection algorithm, A&A 2008

Full beam imaging

- Limits due to the rotation of asymmetric PB
 - Max. temporal gain variations @ $\sim 10\%$ point
 - DR limit: few X 10⁴:1
- Limits due to antenna pointing errors
 - In-beam error signal max. @ 50% point
 - DR limit: few X 104:1
 - Limits for mosaicking would be worse
 - Significant flux at half-power point
 - Significant flux in the side-lobes for most pointing
- Approach taken
 - Algorithm R&D (SNR per DoF, error propagation, computing requirements,....)
 - Proof-of-concept tests with realistic simulation

- Apply to real data

A-Projection algorithm: PB corrections

Goal: Full-field, full-polarization imaging at full-sensitivity

A-Projection: Bhatnagar et al., A&A,487, 2008

EVLA L-Band Stokes-I: Before correction

- 3C147 field at L-Band with the EVLA
- Only 12 antennas used
- Bandwidth: 128 MHz
- ~7 hr. integration
- Dynamic range: ~700,000:1

EVLA L-Band Stokes-I: After correction

- 3C147 field at L-Band with the EVLA
- Only 12 antennas used
- Bandwidth: 128 MHz
- ~7 hr. integration
- Dynamic range: ~700,000:1

EVLA L-Band Stokes-V: Before correction

Is it M(s, Poln)? Or is it I(s, Poln)?

Use physical model for the Stokes-V pattern:

Contours: Stokes-I power pattern Colour: Stokes-V power pattern

3C147: Full field

NRA

3C147: Full field

NRA

Example: Imaging extended emission

Wide-band PB effects

• For wide-band observations, frequency dependence of the PB is a first order effect

$$V(b_{ij}) = \int M^{S}_{ij} I(s) e^{2\pi \iota \left(b_{ij},s\right)} ds$$

• Is it M(s, v) or is it I(s, v)?

Fundamental separation: Include PB as part of the measurement process
*(include its effect as part of forward and reverse transforms)

Wide band imaging of 3C286 field

S. Bhatnagar: ASTRON, Dwingeloo, June 29th 2010

NRA

Wide band imaging with the EVLA

S. Bhatnagar: ASTRON, Dwingeloo, June 29th 2010

NRA

Wide band imaging with the EVLA

Wide band imaging with the EVLA

NRA

Pointing SelfCal: DD SelfCal algorithm

PB effects in mosaicking: Wide(r) field

Computing load

I/O load

- Near future data volume (1-2 years)
 - Statement about an year ago: "100-1000 GB/12hr by mid-2010"
 - Recent data with the EVLA: 120 GB
- Next 5 years
 - 100X increase (in volume and effective I/O)
- Non-streaming data processing
 - Expect 20-50 passes through the data (flagging + calibration + imaging)
 - Effective data i/o: few TB
 - Exploit data parallelism
 - Distribute normal equations (SPMD paradigm looks promising)
 - Deploy *computationally efficient* algorithms (P'of SPMD) on a cluster

Computing challenges

- Calibration of direction dependent terms
 - As expensive as imaging
- Significant increase in computing for wide-field wide-band imaging
 - E.g. convolution kernels are larger (up to 50x50 for single facet EVLA A-array, Lband imaging)
 - E.g. Multiple terms for modeling sky and aperture for wide-band widths
- Terabyte Initiative: 4K x 4K x 512 x 1Pol tests using 200 GB data set
 - Timing
 - Simple flagging : 1h
 - Calibration (G-Jones) : 2h15m
 - Calibration (B-Jones) : 2h35m
 - Correction : 2h
 - Imaging : 20h

- Compute : I/O ratio

S. Bhatnagar: ASTRON, Dwingeloo, June 29th 2010

: 2:3

Parallelization: Initial results

- Spectral line imaging: (8GB RAM per node)
 - Strong scaling with number of nodes & cube size
 - Dominated by data I/O and handling of image cubes in the memory
 - 1024 x 1024 x 1024 imaging
 - Run-time with 1-Node : 50hr
 - Run-time with 16-nodes : 1.5 hr
- Continuum imaging: (No PB-correction or MFS)
 - Requires inter-node I/O (Distribution of normal equations)
 - Dominated by data I/O
 - 1024 x 1024 imaging:
 - 1-node run-time : 9hr
 - 16-node run-time : 70min (can be reduced up to 50%)

Parallelization: Initial results

- Image deconvolution is the most expensive step
- Matching data access and in-memory grid access patterns is critical
- Optimal data access pattern for imaging and calibration are in conflict
 - Freq-Time ordered data optimal for imaging
 - Time-ordered data optimal for calibration
- DD calibration comparable to imaging in computing
- SS deconvolution + MSF might make FLOPS per I/O higher: A good thing!
- Production Cluster
 - 32 nodes, 2x4 cores, 12 GB RAM, InfiniBand inter-connect
 - Data served via a Luster FS
 - Measured I/O throughput: 800-900 MB/s

Conclusions:

- For EVLA and ALMA, the dominant (similar order) DD effects:
 - Time dependence of the PB: rotation with PA, pointing errors
 - Frequency dependence of the PB
 - Frequency dependence of the sky
 - Modeling of extended emission deconvolution (certainly for mosaic imaging)
- Solutions: AW-Projection (PB effects) + MS-/Asp-Clean + MFS (frequency dependence of the sky)
- Additionally -needs to deal with 100GB -1TB datasets
 - Need efficient algorithms which can be deployed on parallel computers
- Work in progress on extensions and generalization of algorithms for SKAclass imaging and calibration problems.
- All of this work is/will be available in the CASA libraries

Conclusions:

- Three fundamentally different approaches being pursued
 - Corrections in the data domain (FFT based transforms)
 - AW-Projection, Pointing SelfCal, Mosaicking,...
 - Challenges: Controlling the propagation of errors
 - Corrections in the image plane (DFT based transforms)
 - Faceting
 - Challenges: Curse of dimensionality, run time efficiency with realistic data volumes
 - Linear Algebra methods (Least-Square All Sky Imaging)
- Hybrid:
 - Image- (or UV-) plane faceting + Projection algorithms
 - Facets on a few strong sources only

References:

- W-Projection: IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 5, 2008
- A-Projection: A&A, 487, 419, 2008 (arXiv:0808.0834)
- Pointing SelfCal: EVLA Memo. 84, 2004
- Scale sensitive deconvolution of astronomical images: A&A, 426, 747, 2004 (astro-ph/0407225)
- MS-Clean: IEEE Journal of Selected Topics in Signal Processing, Vol.2, No.5,2008
- Advances in Calibration and Imaging in Radio Interferometry: Proc. IEEE, Vol. 97, No. 8, 2008
- Calibration and Imaging challenges at low frequencies: ASP Conf. Series, Vol. 407, 2009
- Parametrized Deconvolution for Wide-band Radio Synthesis Imaging; PhD Thesis, Rao Venkata; NMT, 2010
- http://www.aoc.nrao.edu/~sbhatnag , http://www.aoc.nrao.edu/~rurvashi
- Home pages of SKA Calibration and Imaging Workshops (CALIM), 2005, 2006, 2008, 2009

