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Goal

 Develop strategic thinking:

Understand telescope capabilities, science requirements and technology predictions in the
coming decade to develop scalable algorithms/architecture in the context of the ngVLA
and ALMA upgrade.

e Algorithm R&D: Navigate complex interaction between three drivers

Size-of-computing
Technology evolution

Algorithms R&D
Complexity mitigation

e The process we followed:
— Derive required algorithms - size-of-computing
— Develop scalable algorithm- and computing-architecture
— Prototype to test performance, scaling and flexibility
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ngVLA Size of computing estimates

« Establish the algorithms required for the key science goals (KSGSs)

« Develop a theoretical model for the computational complexity
— Develop scaling laws

— ldentify the highest-nail(s) in an end-to-end data processing pipeline

« Measure the code efficiency on a single-core of an implementation.
— Compare against industry standard to normalize the s/w and h/w used.

« Estimate and verify the SofC based on code efficiency.

HPG imaging on V100 GPU - singlethread vs. multithread
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Size of computing

ngVLA

» Data rates weighted by the fraction of telescope time.
— SKA: Latest estimates are similar Lol (ST e A 2 |

Used Queuing Theory to model the trade-off between latency and
affordability: Peak vs steady-state queues

[ Heriart, in prep]
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Challenges

N

NRA:

The estimated size of the computer for the ngVLA

* Some of the largest facilities are ~40 PFLOP/sec machines (peak!)
Large-scale parallelization is essential - even with technology predictions

Total available computing capacity:
— A typical desktop: 0.1 TFLOP/s
— A typical GPU: 10 TFLOP/s

How do we harvest the available capacity?

 New kind of h/w + Algorithms and software to efficiently utilize it (more on this later...).
« A flexible architecture that can adopt to rapid tool-chain evolution.
« Managing the resulting level of complexity.
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Future outlook: The Computing Stack

Technology 01010011 01100011

01101001 01100101 E

01101110 01100011
01100101 00000000

Algorithms Hardware architecture

Opportunity Software performance
engineering
Examples Removing software bloat New problem domains Processor simplification

Tailoring software to New machine models Domain specialization
hardware features

The Bottom

for example, semiconductor technology

Performance gains after Moore’s law ends. In the post-Moore era, improvements in computing power will
increasingly come from technologies at the "Top™ of the computing stack, not from those at the “Bottom’,

\ ne the historics 1
. Leiserson et al. Science (2020)
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- Leiserson et al. (2020)

Current capacity utilization:
In single-digit percentage

Need algorithms with high
Arithmetic Intensity

Mooer’s Law era

“There is room at the Bottom”
- Feynman (1959)




The Computing Stack: The Bottom &
The Top

: Th e B Otto m : M O O re ’ S- La W e ra Technology 01010011 01100011
. . . . | e e '@ %5
— Runtime reduced by 2x if one just waited [——\

Hardware architecture

— Improvements were more predictable Oppertunity

— Led to Sys-on-Chip — Multiple cores Eamples
— Not all of the h/w is used by any given application

— Not cost-effective in construction cost (silicon yield),
or operating costs (power).
— Not all algorithms are a good fit: I/O, Memory bottlenecks

for example, semicondu

Performance gains after Moore’s law ends. In the post-Moore era, improvements in computing power will
increasingly come from technologies at the “Top” of the computing stack, not from those at the “Bottom”,
versi istorica

Number of GP cores now is also limited by the
end of Moore’s-law era.

- The Top: Post Moore’s-Law era:
Massively parallel h/w of simpler cores (not GP)

* Improvements will come from performance engineering,

1000 SPECint=SPECint rate
lcore

Clock frequency

new algorithms, better silicon utilization

Relative performance or relative clock frequency

« Algorithms that effectively parallelize on multiple scales
' of the pr0b|em - 4 (P Dennard-sa::alingera Multicore era

: - | 1990 2000 2005 2010 2015
\/ Year
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The Computing Stack: The Algorithms

- Algorithms R&D

— Historically AR&D has delivered runtime gains comparable to the Moore’s Law
— Moore’s Law has historically caught up...but that has now ended!
1,000,000,000

100,000,000 Algorithm trajectory
@ Edmonds and Karp, 1972 (60)
10,000,000 Sleator and Tarjan, 19
@ Ahuja, Orlin, and Tarjan,
I,DDD,DDD . GDldbEr‘g and FTaDr 1998 (.
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Outlook:

e Algorithms with higher Computational Intensity (Compute-to-1/O ratio) + cache-friendly

_,:7| e Data locality will matter more
\ e General-purpose vs bespoke software (and hardware!)
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Scalable Algorithm Architecture

Architecture must be flexible for the evolving computing needs, algorithms,
computing h/w and s/w

A mathematical framework based on fundamental Physics/Optics, Sig. Proc.
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https://www.aoc.nrao.edu/~sbhatnag/misc/AlgoArch.pdf

Algorithm Architecture: Components

* Mathematical framework is the same for calibration and imaging
* Specialization of the components delivers various calibration and imaging algorithms

SolverFramework

entry InLoopPrep

PreCompute Can be a NoOp DataTransform

HTCImpl ModelUpdate HPCImpl > Optional

SPMD/Cluster | ExitCriteria < @Node =
Exit -— Parallelization
Closer to h/W  ——— | ageTransform

Updated Model
StepSize
Optional

ImageSolver

Imaging

InLoopPrep

PresolvePrep ?

NoB o) ModelUpdate
DataTransform

entry
b PreCompute ‘
: HPCImpl NoopMad )10
Can be a NoOp BDA
PSF, PB, CFC, Weight, —_— HTCImpl

SPMD/Cluster

®
rallelizati
g— Parallelization X1 _ = ImageTransform
A R —
Continue i ri = i N ontinu Feed — Stokes basis
od

If — I — o [PSF» max (I7)]
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Algorithm Architecture: Components
view

* Mathematical framework is the same for calibration and imaging

Specialization of the components delivers various calibration and imaging algorithms

SolverFramework
entry InLoopPrep
’ PreCompute

DataTransform UpdateDir
Can be a NoOp >
HTCImpl Continu ModelUpdate HPCImpl > Optional
SPMD/Cluster - ExitCriteria ? = @Node $
X

-— Parallelization
Updated Model

: Closer tohiw ImageTransform Derivative
StepSize

Optional

Calsolver
Calibration

InLoopPrep

CorrectedVis
= =0 ==
Ve — [JJ\] Ve
PreCompute

DivByModVis
entry Degrid
O VM

PreSolvePrep > 3 X — [V.U]*l Ve
! - HTCImpl —_— -
™ vM _)'SFMD 19 Centinu

UpdateDir
o€ Cluster parallelization <& ExitCriteria ’ DataTransform ?
ModelUpdate |—>

Noop X | g DeltaGains
HPCImpl

@MNodeParallel
NewGains Closer to h/w ‘(I— ImageTransform

& 1 N Tk J—— NoOp
JE [_1 ) SV a VI
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Calibration of DD Effects: Example of
UpdateDir

Measurement Equation

Vil(v) = Ay(v,t)xV"™(v,¢)

ij

Find an operator X which when applied to the above equation, projects-out the
undesirable effects of A

Then F XU V;‘al — F VTrue — IRaw

X encodes the Physics of the problem

2
FX[VObs_X—lF—llM] — R — S?M

.

N
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Wide-band AW-Projection

NRAO

Standard imaging

WB A-Projection

Effects of wide-band optics
PulsanSp. Ndx -3.0

PulsanSp. Ndx -0.29

Rau, Bhatnagar, Green, Rupen

Spectral Index

P MTMFS+SI

5 MTMFS | AWP

= —=® MTMF5+WBAWP

Alpha” ~
a=-05

Source 1 Source? Source3 Source4 Source5
apg=-0.03 app=-0.38 apg=-1.06 app=-5.32 ap=0.42
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The Asp algorithm: Example of ModelUpdate

Adaptive Scale Pixel (Asp): Scale-sensitive image reconstruction of complex emission

*  Asp-Clean: Narrow-band implementation

*  WAsp: Wide-band Asp

hegbomeison_cygA_Sk imoge—raster
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The WAsp algorithm

* Adaptive Scale Pixel (Asp): Scale-sensitive image reconstruction of complex emission
WAsp: Wide-band Asp
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Arithmetic Intensity

RA algorithms have high Arithmetic Intensity (Compute-to-i/o ratio)

— Compute scaling: N? : Dominated by residual image (the “Major cycle”)

support vis

P

— Memory footprint: NZScaIes+ .

.- Dominated by Deconvolution (the “Minor Cycle”)

Gather M Weights+PSF - [l Model

“Minor cycle”

Image reconsturction accounts for >90% of the computing cost in a “typical”
end-to-end processing

Heterogeneous h/w for optimal execution of the processing graph:
— Cluster of cheaper CPU-GPU for the Major cycle
» — Fewer faster computers for the Minor Cycle
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Algo Arch: Deployment on heterogeneous h/w

* Different components deployed on a variety of h/w resources

entry PreCompute

O——> can be a NoOp
PSF, PB, CFC, Weight,

CPU single/multi-cores, cluster, variety of GPUs,..., wide-area network of GPUs

Single pointing, pointed mosaic, pointing correction + MSCLEAN, Asp,...

Parallelization framework

Bash-, Py-scripts
HTCondor

Loosely connected
Network of computers

HTCImpl
er

https://htcondor.org/
https://github.com/kokkos

InLoopPrep

PreSolvePrep ?

NoOp

—_—

Exit

Continue ExitCriteria

Deconvolver app

Derivative app
Uses Perf. Engg. Tools (Kokkos)

On a single node (CPU or GPU)
On a Cluster of CPUs/GPUs
On a wide-area network of CPUsGPUs

On a fast multi-core CPU

Multi-threaded CPU code
On the GPU-Host

B -

ModelUpdate

MinorCycle HPCImpl
@Node
Parallelization
Closer to hfw

Continue
Accumulate

et M 4 aemax (I'7)

ImRes

Iff — If — o [PSF+max (I7)]

i

Resource hog: Needs large-n-fast memory
Large memory footprint
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Derivative

?

Degrid
Mod 7 Mod
I — ¥

DataTransform
Noophled  Data

Res

ImageTransform
-—

Feed — Stokes basis

Normalize

Resource hog: Needs compute cores
- High compute load
- Relatively lower memory footprint
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Scaling: On multi-CPU/cores hardware

« High Computational Intensity (FLOP per byte)
— 0O(10%3) FLOP per data point. Number of data points: O(10%2-15)

UpdateDir

Derivative

?

Degrid

MEK&PEF;%\E]P B+FC’}E
; DataTransfarm ake +av, —
: — D T1g"16/N (PSF+avgPB) —a—

HPCImpl  ————>= Noogdied 'Pata VR — 1o _ yrate _ Make Residual
_@Node - \ T 18’? :_I;e‘s.ld{__lalj —
Parallelizatio : mager Data Selection —e—

Closer to hiw = < ImageTransferm f g
I IES— ric

Feed : Stokes basis

Runtime {min)

No. of cores {each node has 16 cores)

* Data scatter overheads, due to
1. Partitioning monolith MS
2. Organiztion of the bulk-data on disk

: * Work in progress in CASA/ngCASA
i 1. Differently organized on the disk
= /| 2. Improvements in storage model
. ngVLA would need parallization!
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Complexity reduction

Scaling: On massively parallel h/w

« High Computational Intensity (FLOP per byte)

— 0O(10?%3) FLOP per data point.

UpdateDir

Derivative

DataTransferm

— NoopMod . Data

HPCImp!

 @Node
Parallelization
Cleser teh/w  <———  |mageTransform :

77 -
Feed : Stokes basis

e pR

Normalize

uuuuuu

N

[62)

o
1

visibility throughput HTG : CASA

Speedup w.r.t. CPU

ngVLA would need

parallization!

Number of data points: O(1012-13) }

factor(osmp)
20

- 40

32 128 512
cf size

ngVLA Computing Memo #5, #7

HPG imaging on V100 GPU - singlethread vs. multithread

W Gridding M Residual cycle overhead Gather [l Weights+PSF [l Model

17280

Gridding+Degridding

htclean {16x parallel)

singlethread multithread

Multi-core Single CPU-core

CPU +GPU +GPU
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The High Performance Gridder

* Agridder on a GPU connected to a CPU host (NGVLA Memo #05)
*  What does it mean in real-life application?

200-pointing wide-band mosaic: 7-10 days vs 2.5hr

HPG imaging on V100 GPU - singlethread vs. multithread
W Gridding W Residual cycle overhead Gather [ Weights+PSF [l Model

17280
Gridding+Degridding

4320 -
0

hiclean (16x parallel) singlethread multithread

Multi-core Single CPU-core Multi CPU-cores
CPU +GPU +GPU

e .
. ngVLA would need parallization!
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Scaling: On Wide-area network
- High Throughput Computing:

Center for High Throughput Computing, U of W-M.
GPU cluster: Computing at g national scale
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Scaling: On hardware generations

Scaling on the GPU: View from the “inside”

NVIDIA T4 GPU

Floating Point Operations Roofline

1,000

=)
=]

=)

Performance [FLOP/s]
(1= 100,000,000,000)
o

A

HPG is compute bound

o
2

01 1 10 100 1,000 10000 [Courtesy Jagannathan, Heriart]

Arithmetic Intensity [FLOP/byte]

Algorithms and implementation needs to
be compute-limited for run-time to scale.

Number of CUDA cores, FLOP rate is

increasing with GPU generations.
Memory bandwidth is not.

.

N
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Scaling: On hardware generations

Scaling on the GPU: View from the “inside”

NVIDIA V100 GPU

Floating Point Operations Roofline

=
=)
(=)
2
1
I

D

HPG is memory-bandwidth bound

Performance [FLOP/s]
(1=1E+12)
o
A

o

=
I

o

01 1 10 100 1,000 10,000 [Courtesy Jagannathan, Heriart]
Arithmetic Intensitv [FLOP/bvtel

Algorithms and implementation needs to
be compute-limited for run-time to scale.

Number of CUDA cores, FLOP rate is §
increasing with GPU generations. g
Memory bandwidth is not. =
" Data vo|, (#VBs)

J
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Filling the room at The Top

1. Removing software bloat

Python shell
Tasks (Py)
Swig (+XML+XSLT)

Tools Layer
RA ImCal Framework

[ libhpg RA Algorithms

% RA Data Access/lterators |
[STD ClC++["EASACore
STD C/C++

Application layer

Data Access/Iterators infrastructure
Translation To/From STL|

libhpg RA Algorithms

_ Kokk:as STD C/C++ :
STD C/C++ * Work in ARDG/ngCASA on C++ — Py

interface (Jagannathan, Jan-W)

Technology 01010011 01100011
01101001 01100101
01101110 01100011
01100101 00000000

Software Algorithms

Opportunity

Examples

Performance gains after Moore’s law ends. In the post-Moore era, improvements in computing power will
increasingly come from technologies at the “Top” of the computing stack, not from those at the “Bottom”,

Tailoring software to h/w: HPG
Software performance engineering: Kokkos
Algorithms: Asp/Wasp, WiSClean: Reduce the number of the expensive Major Cycles
New Hardware: CEREBRAS? +New Algorithms
Yet unknown tech/arch

s BN

~ 6. Flexible s/w arch, with clearer separation of domains will be critical for success (adapt to
" h/w evolution without needing to re-write large parts of the code base).
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Algorithms/Software outlook

Focus on Arithmetic Intensity of the algorithmic engines
— Successful scaling will depend on efficient use of the silicon real estate
— Algorithms tuned for telescope capabilities/peculiarities, Plug-in architecture
— Hawk’s Eye on complexity (computational, software, deployment,...)

Heterogeneous computing will be essential
— Needs flexible architecture which can be re-configured quickly and cheaply

Performance engineering tools will be important

— Reduces complexity: E.g. Kokkos: Front-end - Back-end design: Same code for CPU, GPUs,...

— Prescriptive programming: Library- vs language-based approach to performance and
portability

Build scientific functionality from simpler components, minimize
software bloat

— Enables cross-discipline collaborations: Clear separation of RA/CS/HPC-domains

— Various components deployed on geographically distributed, heterogeneous hardware

— Simpler dependency graph
\ﬂ » Resolving dependency graph is a complex problem (formally unsolvable!). Simplicity helps (a lot!)

.
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Algorithms/Software outlook

Implications for design/planning:

— Expect rapid technology evoluation: Scalable algorithms, scalable architecture needed
— Operational efficiency: time(deployment) << time(Tech. evoluation)

— Moore’s era characterized by “Minimize software development time”
— Now: Minimize run-time. Ease of programming a secondary driver

— Core implementation in run-time performant languages

“Software components: Only the giants survive.”
- Lampson; Theory, Tech., & Applications; Herbert, Jones Eds., (2004) pp 137

— Implementation for specific problems, optimized for specific h/w
Plugged-in in a higher-level (generic?) framework

— Opposite of the “...no bespoke components...everything general-purpose...” mantra

Paradigms appropriate for the past decade(s) may not be for the
» Ccoming one(s)

N
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Imaging with the EVLA @ L-Band

Single pointing, wide-band image (Rau, Owen) Wide-band ~200 pointing mosaic+Single Dish
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