Challenges in advanced imaging with radio interferometric telescopes

S.Bhatnagar NRAO, Socorro April 08, 2005

Basic Interferometry

<u>Terminology:</u>

- •Visibility: $V_{ij} = \langle E_i E_j^* \rangle$, E_i is the electric field
- Baseline: Length of the projected separation between the antennas (B).
 Only relative separation matters for incoherent emission
 Co-ordinates: (u_{ij}, v_{ij}, w_{ij}) u_{ij} = u_i u_i
- An *N*-element array

instantaneously measures N (N-1)/2 baselines (complex values)

Basic Interferometry

• In terms of the sky brightness distribution $(I^{\circ}(l,m))$

$$V(u_{ij}, v_{ij}, w_{ij}) = \int \int I^{o}(l, m) S(u, v, w) e^{-2\pi \iota(u_{ij}l + v_{ij}m + w_{ij}(n-1))} \frac{dl \, dm}{n} + N_{ij}$$

- S: uv-sampling function, (l,m): direction in the sky
- $n=\sqrt{(1-l^2-m^2)}$ For $l^2+m^2 << 1$ or *small* w_{ij} , sky is the 2D Fourier transform of the Visibility function (van Cittert-Zernike Theorem)

$$I^{o} = FT[V^{o}]$$
 and $V^{Obs} = SV^{o}$
 $I^{d} = PSF * I^{o}$ $PSF = FT[S]$: The Dirty Beam

 V^{o}

Sampling in the Fourier plane

- N-element array instantaneously measures $O(N^2)$ Fourier components.
- As earth rotates the projected baseline changes ==> each baseline measures a new Fourier component

S

 W^{Obs}

Image plane

PSF = FT[S]

 $I^{o} = FT[V^{o}]$

Sampling function

 $I^{d} = FT[V^{Obs}] = PSF * I^{o}$

Imaging

- The Measurement Eq.: $V = AI^{\circ} + AN$ where A is the measurement matrix, V, I and N are the Visibility, Image and noise vectors.
- A=FS where F is the Fourier Transform operator and S is a diagonal matrix of weights (w_{ii}) .
 - Due to finite Fourier plane sampling, A is singular and in general rectangular
- Image reconstruction: Solve for I^{o}

$$A^T V = BI^o + BN$$
 where $B = A^T A$

- **B**: The Toeplitz Beam Matrix
- $A^T A = I^d$: The Dirty Image vector

Data corruption

- The full Measurement Eq.: $V_{ij}^{Obs}(v,t) = G_{ij}(v,t) \left[\int \int X_{ij}(v,t) I^{M}(l,m) e^{2\pi \iota (lu_{ij}+mv_{ij})} dl dm \right]$ Data Corruptions Sky
 - G_{ij} are the direction independent corruptions (e.g., multiplicative complex gains, etc.)
 - X_{ij} are the direction dependent corruptions (e.g., ionospheric/atmospheric effects, Primary beam effects, etc.)
 - Often G_{ij}, X_{ij} are separable into antenna based quantities as $G_{ij} = G_i G_j^*$ $V_{ij}^{Obs} = G_{ij} \cdot [E_{ij} * V_{ij}^o]$ where $E_{ij} = E_i * E_j^*$ and $E_i = FT[X_i]$

Data analysis operations

$$V_{ij}^{Obs} = J_{ij} (AI^M)_{ij}$$

- Calibration: Keeping I^M fixed, determine J_i 's.
- Calibrate the data:
 - For direction independent corrections: $V_{ij}^{Corrected} = J_{ij}^{-1} V_{ij}^{Obs}$
 - Incorporate direction dependent corrections in imaging

- Imaging: Keeping J_{ii} fixed
 - Estimate I^{M} such that $V^{Corrected} AI^{M}$ is noise like

Calibration

- For full polarization treatment: $V_{ij}^{Obs} = J_{ij} \cdot V_{ij}^{o}$ $V = [V_{RR}, V_{RL}, V_{LR}, V_{LL}]$ $J_{ij} = J_i \otimes J_j$ $J_i = \begin{pmatrix} g_i^R & d_i^L \\ -d_i^R & g_i^L \end{pmatrix}$
- Given I^{M} , solve for J_{is} such that $V_{ij}^{Obs} J_{ij}$. V_{ij}^{M} is noise like
 - Image using $V_{ij}^{Corrected} = J_{ij}^{-1} V_{ij}^{Obs}$
- For single polarization: min: { $\frac{V_{ij}^{Obs}}{V_{ij}^{M}} g_i g_j^*$ }

Imaging

- Use of FFT requires re-sampling the Vis. (V(u,v) is not measured on a regular grid)
- Convolutional gridding: $V^G = (GCF * V^{corrected})(k \Delta u)$
- Make the Dirty Image as: $I^d = FFT[V^G]$
- Deconvolve the PSF to estimate I°
- General structure of deconvolution algorithms:
 - *Major cycle:* Compute the model and the residual vis as AI^{M} and $V AI^{M}$
 - *Minor cycle:* Update the model image

Deconvolution: 2D geometry

• General formulation

•
$$\chi^2 = [V - AI^M]^T W[V - AI^M]$$
 $I^M = \sum_k a_k P(p_k)$

$$\nabla \chi^2 = -\boldsymbol{I}^{\boldsymbol{R}} \nabla \boldsymbol{P}$$

- The Clean algorithm: $I^M = \sum_k a_k \delta(x x_k)$
 - Image representation in the pixel basis. $\nabla \chi^2 = -I^R$
 - Steepest descent
 - → Minor cycle: Step size: $s=max\{\nabla \chi^2\}$
 - $\rightarrow I_i^M = I_{i-1}^M + \alpha s$
 - → Major cycle: Update using FFT: $V_i^R = V AI_i^M$

Example

Some observations

- Expensive function evaluation is simplified: Convolution becomes a shift-and-add operation.
- Clean (and its variants) ignore inherent pixel level correlation in *I*^o (each pixel is a DOF) errors are correlated with extended emission.
 - Search space is assumed to be orthogonal.
- Too many DOFs for extended emission (no. of pixels).
- Search space constrained by user defined boxes.

Image plane corrections

$$V_{ij}^{Obs}(u, v, w) = \int \int X_{ij}(l, m, w) I^{M}(l, m) e^{2\pi \iota (lu_{ij} + mv_{ij})} dl dm$$
$$V_{ij}^{Obs}(u, v, w) = E_{ij}(u, v, w) * V^{Obs}(u, v)$$

A is more complicated (not a FT operator) General approach:

- Major cycle involves: $V AI^{M}$ and $A^{T}(V AI^{M})$
 - Use E_{ij} as the GCF to predict the model data (AI^M)
 - Compute V^{R} at high accuracy.
 - Use an approximation for A^T : Use E^T_{ii} as the GCF

Primary Beam Effects

- E_{ij} as function of direction is measured a priori $V_{ii}^{Obs} = G_{ii} \cdot [E_{ii} * V^M]$ where $E_{ii}(l_i, l_j, u_{ii}; p_i, p_j)$
- Primary beam effects $E_{ij} = E_i^o * E_j^o$ where $E_i^o = FT[Measured PB_i]$
 - •Polarized primary beam: Beam squint
 - For full beam polarimetry (EVLA)
 - Pointing offset calibration
 - •For mosaicing (EVLA, ALMA)
 - •GCF different for each visibility!

Example

Residual image before and after pointing correction.

Scale-sensitive deconvolution

- Pixel-to-pixel noise is correlated at the scale of the PSF support $I^d = BI^o + BI^N$ (Pixon methods not applicable they are patented anyway!).
- The scale of the emission fundamentally separates the signal (I^{o}) from noise (I^{N}) .

- Use a pixel-model with finite support
 - Convolution is no more a shift-n-add operation. Function evaluation becomes very expensive.

 $V^{R} = FT[I^{d} - PSF * I^{M}]$

Scale sensitive deconvolution

- Search space is non-orthogonal
- The total DOFs decrease, but computing cost is a strong function of the number of parameters.
- Asp-Clean (Adaptive Scale Pixel model) [A&A, 2004] • Use $I^{M} = \sum_{k} a_{k} P(p_{k})$ e.g., where $P(p_{k}) = Gaussian$

→ Find the local scale by fitting

- For emission covering 100,000 pixels, required 1000 $P_{k}s$
- Computing cost prohibitive for more ~100 active parameters.
 - → Sub-spaces

Example

Challenges

• Fast and accurate forward and backward transform in the presence of image plane effects

$$min: V_{ij}^{Obs} - E_{ij} * [AI^M]_{ij}$$

- Solve for direction dependent effects:
 - Primary beam effects (pointing, squint, variable beam shape,...) [EVLA, ALMA]
 - → Wide-band imaging: $E_{ij} = E_{ij}(\nu)$ [EVLA]
 - → Need more sophisticated parametrization of E_{ij} [EVLA,ALMA,LWA,SKA...] $E_{ij}=E_{ij}(v,t)$
- Ionospheric/atmospheric calibration [LWA, SKA]
 - Simple functional representation may be difficult

Challenges

- Component based image model
 - → Gridding errors limit the highest dynamic range achievable.
 - → FFT based inversion of the ME may not be usable.

- Image sizes and visibility data sets will be large
 - \rightarrow 100s of GB 1TB of data, 15K X 15K images
 - → 10-100 transforms between image and data
 - → Parallelization of computing as well as I/O

Challenges

- Scale sensitive deconvolution
 - Pixel model parameterized by the amplitude, (local) scale, position, frequency, and perhaps polarization.
 - → Total no. of parameters: ~10K
 - → Fast algorithm for parameter estimation
 - Handle the coupling between pixels (non-orthogonal search space)
 - Adaptively control on the dimensionality of the search space.

References

• Interferometry and Synthesis in Radio Astronomy

Thompson, Moran and Swenson, 2001, John Wiley&Sons

- <u>Clean:</u> Hogbom, J.A., 1974, A&AS,15,417
- <u>MEM:</u> Cornwell,T.J, &Evans, K.J.,1985,A&A,143,77
- <u>Review of various methods:</u> Narayan, R. & Nityananda, R.,1986, ARA&A,24,127
- Math. analysis of the Clean Algo.: Schwarz, U.J., 1978, A&A, 65,345
- <u>Asp-Clean:</u> Bhatnagar,S., & Cornwell, T.J., 2004,A&A,436,747
- <u>W-projection</u>: Cornwell,T.J., Golap,K., & Bhatnagar,S.,2005,A&A,in press
- Pointing cal: Bhatnagar, S., Cornwell, T.J., & Golap, K., 2004, EVLA Memo #84
- Ninth Synthesis Imaging Summer School lectures,

http://www.aoc.nrao.edu/events/synthesis/2004