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Telescope sensitivity

• Noise limit for imaging with interferometric radio 
telescopes

• Sensitivity improvements achieved by 

Noise ∝
T sys

Aeff T

 :Wide band receivers: >60% fractional bandwidth

T : Long integration times: many hours ­­ months

Aeff : More antennas: 30 ­­ many 100s

Long baselines: To beat confusion limit
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Sky at low frequencies: No. of sources

• PSF side-lobe at 1% level →  deconvolve sources >100μJy for 1μJy/beam RMS

• 104-5 sources per deg2  >10μJy @1.4GHz
– Source size distribution important at resolution < ~2”

• Implications for imaging
1. Wide-field imaging

2. HDR imaging: few X 100 mJy – 1 Jy source ~few sq. deg.

3. Deconvolution of crowded fields (same problem as deconvolution of 
extended emission)
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Sky at low frequencies: Confusion limit

1μJy/b

• σ
confusion

 ∝ ( ν-2.7/B2

max
) :  B

max
~100 Km at 200MHz for σ

confusion
 ~ 1μJy/beam

• Implications for imaging
1.Long baselines: B

max 
> 2-3 Km & DR > 104

2.Wide-field effects: W-term, PB effects, ionospheric effects 
3.Larger data volume

Wide-field, wide-band, high resolution, HDR imaging using large data 
volumes is a natural consequence of low frequency and high sensitivity

10 100 300 Km
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Sky at low frequencies: Confusion limit

1μJy/b
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) :  B

max
~100 Km at 200MHz for σ

confusion
 ~ 1μJy/beam

• Implications for imaging
1.Long baselines: B

max 
> 2-3 Km & DR > 104

2.Wide-field effects: W-term, PB effects, ionospheric effects 
3.Larger data volume

Wide-field, wide-band, high resolution, HDR imaging using large data 
volumes is a natural consequence of low frequency and high sensitivity

10 100 300 Km

Point source sensitivity 1-sigma 12hr. Synthesis:
    VLA                    EVLA                   Factor
    10uJy                  1uJy                       10

Data volume:
   ~1GB             100-1000GB                102 - 4 
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Wide-band implies Wide-field imaging

 ● EVLA @L-Band
● BW=600 MHz
  (1.2 – 1.8 GHz)
 

● Algorithmic 
 Challenge:
   - Time-varying
     direction-dependent
     gains

   - Wide-band effects

   - Extended
     emission with
     superimposed
     compact 
     emission   

   - Full Stokes
     + Mosaicking
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Wide-band implies Wide-field imaging

 ● EVLA @L-Band
● BW=600 MHz
  (1.2 – 1.8 GHz)
 

● Algorithmic 
 Challenge:
   - Time-varying
     direction-dependent
     gains

   - Wide-band effects

   - Extended
     emission with
     superimposed
     compact 
     emission   

   - Full Stokes
     + Mosaicking

EVLA Wide-band Sensitivity pattern
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Imaging challenges

• Challenges in imaging at low frequencies

1.Wide-field imaging

Account for Direction Dependent (DD) effects

PB: Time, frequency and poln. dependence 

W-term

2.Wide-band imaging

All of the above plus...

...frequency dependence of the sky brightness

 

1.HPC:  Data volume proportional to N2
ant 

N
chan

1. Sky brightness stronger and complex: Multi-Scale deconvolution

2. Ionospheric effects

Requires DD solvers: An algorithmic & computing challenge in itself
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Direction Dependent (DD) Effects

• DI Calibrated  ME

• Fastest varying term on the RHS determines the averaging 
scale (time and frequency)

• Removing the effects of the DD terms cannot be separated 
from imaging

• Imaging equation:

V ij
DI−Cal = W ij∫ Pij  s , ,t  I  s , e s.bij d s

Data DI 
Calibration

Sky GeometryDD Term
Instrumental
Ionospheric

I continuum
Dirty

=∫∫PSF  , t ∗[PB  , t ×ITrue ] d  dt
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Direction Dependent (DD) Effects

• DI Calibrated  ME

 

• Standard Imaging assumes: 

• PB is independent of time, frequency and polarization

• Sky brightness is independent of frequency

• Geometry is 2D

• Lets look at the DD-term one at a time (the terms marked in 
white in the equation above)

V ij
DI−Cal = W ij∫ Pij  s , ,t  I  s , e s.bij d s

Data DI 
Calibration

Sky GeometryDD Term
Instrumental
Ionospheric
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Time dependent terms

• Antenna PB (                     )

– Time dependence

– Rotation of PB with PA leads

to time-varying DD gains

The P
ij
 s , , t 
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Polarization dependent terms

• Antenna PB (                     )

– Polarization dependence

– Off-axis polarization due to antenna optics

– Time variation due to PB rotation with PA

The P
ij
 s , , t 

Contours: Stokes-I
Colours:   Stokes-V
           PB

RR 
- PB

LL
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Errors due to time+polarization 
dependence

Errors due to PB
Squint + Rotation + Pointing errors

Purely instrumental
Stokes-V artifacts

Due to avg. PB

Due to time-variable PB

Stokes-I

Stokes-V
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Instrumental frequency dependence

• Continuum imaging

• Antenna PB (                     )

– Frequency dependence

– First order: scaling with frequency 

by 2x across the EVLA band

I continuum
=∫P ij  s , , t  I  s , d 

The P
ij
 s , , t 

PB Freq. dependence
(blue curve)
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All PB effects together: Time, 
Frequency, Polarization effects

RR

LL
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Instrumental frequency dependence

Pulsar Sp. Ndx -3.0

Artificially steep
Spectral Index
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Sky frequency dependence

V ij
DI−Cal = W ij∫ Pij  s , ,t  I  s , e s.bij d s

Data DI 
Calibration

Sky GeometryDD Term
Instrumental
Ionospheric

S  ∝ 
−0.7

Variations of sky brightness with frequency Resulting Imaging artifacts 
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Non co-planar baselines: W-Term

• Imaging

• The geometric term (non co-planar baselines)

– Transform is no more 2D Fourier Transform

V ij
DI−Cal = W ij∫ Pij  s , ,t  I  s , e s.bij d s

Data DI 
Calibration

Sky GeometryDD Term
Instrumental
Ionospheric
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MT-MFS: Freq. dependence of the sky

● Model the frequency dependence of the sky brightness as a polynomial in frequency
● Solve for the coefficients as a joint deconvolution problem

Rau et al., A&A, 2011

MT-MFS
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DD Corrections: Projection Algorithms

• Can we find an operator X which when applied to the above 
equation, projects-out the undesirable effects of A?

• Then

V ij
DI−Cal = W ij∫ Pij  s , ,t  ITrue  s , e s.bij d s

V ij
DI−Cal

= Aij  , t ∗V True
 , t 

X ij V ij
DI−Cal

= X ij Aij V True

such that  X ij Aij = 1

F X ij V ij
DI −Cal

= F V True
= I True

Understand the Physics of the problem; use mathematical techniques to find a solution
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PB Polarization Effects

● L-Band VLA imaging
● DR ~ 104 

A-Projection

Stokes-V Images 
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Wide-Band AW-Projection

• Correct for PB effects + W-term

– Polarization: Squint + in-beam polarization

– Time variability: Rotation with Parallactic Angle

WB A-Projection Effective PB

PB Frequency dependence
(blue curve)
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Wide-Band AW-Projection
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PB Gain variation with frequency

Narrow-band A-Projection

Wide-band A-Projection
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Wide-Band AW-Projection + MT-MFS

A&A, 2008, ApJ, 2013

Pulsar Sp. Ndx -3.0 Pulsar Sp. Ndx -0.29

● Intensity weight Spectral Index Map
● Wide-field Spectral Index maps comes out in the wash correctly

Artificially steep (due to PB)
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WB AW-Projection + MT-MFS
● Simultaneously account for the PB effects and frequency dependence of the sky

● PB effects corrected by WB A-Projection
● PB-corrected image used in MT-MFS for model the frequency dependence 

of the sky brightness

MFS+SI

MT-MFS+
A-Projection

MT-MFS+
WB A-Projection

MT-MFS+SI

Ap.J., 2013
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Status-1
• W-Term correction:  Dominant DD term at low frequencies

– Facted-imaging, W-Projection, W-Stacking

• Extended emission
– MS-Clean, Asp-Clean, various variants

• Frequency dependence of the sky brightness
– MS-MFS, MT-MFS

• PB corrections
– A-Projection: Time and polarization dependence

– WB A-Projection: Also frequency dependence

• W-Term + WB A-Projection + MT-MFS
– Simultaneously account for instrumental and sky terms

• Wide-band Mosaic
– All of the above for mosaic imaging (work in progress)
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Wide-band Mosaic Imaging + SD

● Simultaneous corrections
 for instrumental effects+
 Frequency Dependence 
 of the Sky

●  WB AW-Projection + 
   MS-MFS + Mosaic  

● Wide-band
 100-pointing mosaic

● EVLA + GBT
 Feathering (existing
 algorithm)

● In progress:
   - Mosaic spectral
      Index mapping

● Parallel execution /
 Optimization /

● Numerical tests
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Status-2
• Full-polarization imaging

– Extend PB correction to full polarization (student PhD project)

– RM Synthesis at the sensitivity and band-width now available

• Ionospheric phase corrections
– Corrections:  Can be included as a term in  A-Projection for 

correction during imaging (Tasse et al., A&A) 

– Ionospheric phase screen solvers
» SPAM
» Other similar “peeling” based solvers
» More generic solvers

• Deployment on HPC platforms
– Cluster computing

– Multi-threaded CPUs, GP-GPUs
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Computing Cost

• Imaging + deconvolution accounts for ~70% of the 
computing cost in an “typical” end-to-end processing

• Computing Scaling
– Computing costs: N2

support
 + N

vis        
: Dominated by Projection

– Memory footprint: N2
Scales 

+N2
Terms    

: Dominated by MT-MFS

• Imaging : Embarrassingly parallel 
– Scatter-Gather Paradigm on the Cluster scale

• Optimal utilization of the computing multi-core CPUs 
is harder

– Multiple process per node:  Limited by total memory footprint

– Single multi-threaded process:  Algorithmically challenging 
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Algorithm Design: 3D Parameter space

Algorithm design
● Move towards algorithms with higher compute-to-I/O ratio
● Reduce memory foot print 

● remain inside the Green Box

Computing

I/O
M

em
o

ry

Compute-to-I/O Ratio

More memory 
per FLOP

Lesser memory 
per FLOP
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Challenges

Simulations for LWA @50MHz
(Masaya Kuniyoshi (LWA/NRAO))

Model for EVLA PB at L-Band

 Aperture Array PB (LOFAR, MWA, LWA)   vs   Antenna PB

 Antenna-to-antenna variations
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Challenges

• Algorithms
– Scientific commissioning (in progress)

» WB-AWP + MT-MFS + Mosaic 

– All of the above + full Polarization (starting Jan. 2014)

– Wide-band RM Synthesis

– DD Solvers: Ionospheric screen, Pointing Errors, ...

• Computing
– Use of (massively) parallel hardware

» Multi-core CPUs, GP-GPUs

– Memory footprint

– Data I/O
» Algorithms are fundamentally iterative
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Challenges

• Current algorithms
– Performance

– Efficiency

– PB variations, Pointing errors, Shape

• Full-polarization treatment
– 1 vs 2 vs 4x4 Mueller Matrix treatment

• Rate of convergence: Crucial for SKA-scale problems
– Optimal algorithms, Optimal utilization

• SKA sensitivity → wider-field imaging, expose more error terms
– Instrumental terms: Measure vs Model vs Solve

• We collect enormous amounts of data → more  information

– Are we utilizing the available information optimally?
» In terms of algorithm design
» In terms of extracting astrophysical information
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Imaging with the EVLA @ L-Band

Intensity-weighted Sp. Ndx. Map

Single pointing, narrow field, wide-band image
(Owen, Rau)

Wide-band mosaic+Single Dish (GBT)
Working on Stokes-I + Sp.Ndx. Mapping
(Bhatnagar et al.)
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Challenges: Human resources
• Algorithm R&D is not yet main-stream astronomy

– Algorithm R&D is a service mind-set needs to break

• Data taken under many proposals, but science not achievable 
without algorithm commissioning work

• Many telescopes in construction, with ambitious scientific and 
time-line goals around the Globe

• Appeal to the young-guns
– Think of ambitious scientific goals, do not be shy of technical work 

(telescope debugging, algorithms R&D, commissioning)

– It's great fun.  Mind-liberating, scientific-horizon widening

– “...it does not work” kind of gripes are insufficient

• Appeal to the seniors
– Policy changes: Encourage & support multidisciplinary research  – 

at least at the observatories!
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