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What do we call wide-field? 
● Imaging that requires invoking any of the following:

– Corrections for non co-planar baseline effects

– Corrections for the rotational asymmetry of the PB

● Imaging beyond 50% point, mosaicking
– Corrections for the frequency or polarization dependent effects

– Noise limited imaging at 4-,P-,L-, S- (and probably C-Band)

● Because of the radio brightness distribution

● Noise limited imaging of structure comparable to the PB beam-width

● Mosaicking: imaging on scales larger than the PB beam-width 

λ
Bmax

≤ θ f
2

“True” sky



S. Bhatnagar: Astro Seminar, UNM, April 2016, ABQ 3/50

Why wide-field?
● Primarily due to improved continuum sensitivity

● @L-Band, PB gain ~1 deg. away can be up to 10%

– In the EVLA sensitivity pattern, VLA sensitivity is achieved at the 
location of the VLA-null! 

– No null in the EVLA sensitivity pattern

 

● E.g. a 1% PSF side lobe due to a source away from the center 
is now significantly above continuum thermal noise limit

– This is a largely independent of the total integration time

T and 

50, 25, 15, 10, 6%
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Wide-field Issues
 

ApJ (EVLA Sp. Issue), L20, 2011
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Wide-field sensitivity because of wide-bandwidths

1

4

G55.7+3.4 : Galactic supernova remnant :  4 x 4 degree field-of-view from one EVLA pointing

 1 Jy total flux

 24 arcmin 

(PB: 30 arcmin)

10 micro Jy RMS

=> Need to combine wide-field imaging techniques with wideband..
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What do we call wide-band?
● When fractional signal bandwidth used for imaging > ~20%

● Plus source spectral index >= -1.0

● Plus target dynamic range > 1000

● Spectral effects for higher source spectral index will become 
significant at lower bandwidth ratios

● Empirical  Dynamic range : 

● Spectral line imaging, by definition, does not require wide-band imaging 
algorithms

Iα
100

S( ν)∝( ν / νo)
−0.7
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Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b


=
b

c- PSF structure scales with frequency

F0 F1 F2 F3 F4 F5

PSF sidelobes for sub-band imaging
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Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b


=
b

c- PSF structure scales with frequency

PSFContinuum=∑
ν
PSF (ν)

Lower PSF sidelobes compared to sub-band imaging
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Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b


=
b

c- PSF structure scales with frequency
- PSF amplitude also changes with frequency at the location of the sources
  due to frequency dependent flux Flux( ν)∝( ν/ ν o)

−α
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Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b


=
b

c- PSF structure scales with frequency
- Due to source Spectral Index, PSF amplitude also changes with frequency

PSF( xo)Continuum=∑ν
I (xo , ν)PSF(x−xo ,ν)

Effective PSF for wide-band imaging becomes direction dependent
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Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b


=
b

c- PSF structure scales with frequency
- Due to source Spectral Index, PSF amplitude also changes with frequency

Res(x o)Continuum=∑ν
PSF( x−xo , ν)−∑ν

I (xo ,ν)PSF (x− xoν)
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Frequency-dependent UV-coverages and PSFs
Spatial-frequency coverage and imaging properties change with frequency: 

Su , v =
b


=
b

c- PSF structure scales with frequency
- Due to source Spectral Index, PSF amplitude also changes with frequency

Res(x o)Continuum=∑ν
PSF( x−xo , ν)−∑ν

I (xo ,ν)PSF (ν)

Deconvolution errors when frequency dependence of sky brightness is ignored
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Single-channel vs MFS imaging – Angular Resolution

Simulated Example :  3 flat-spectrum sources + 1 steep-spectrum source ( 1-2 GHz )

Images made separately at different frequencies between 1 and 2 GHz

Combine all 
single-frequency 
images (after 
smoothing)

Use all 
UV-coverage 
together, but 
ignore spectra

Use all UV-coverage together   
+ Model and fit for spectra too

Output : Intensity and Spectral-Index

=> Imaging with a spectrum model :  higher angular resolution + continuum sensitivity. 
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Dynamic-range with MS-MFS : 3C286 example : Nt=1,2,3,4

NTERMS = 1

Rms :  9 mJy -- 1 mJy

DR :  1600 -- 13000

NTERMS = 2

Rms :1 mJy  -- 0.2 mJy

DR :10,000 -- 17,000

NTERMS = 4

Rms 0.14 mJy  -- 80 uJy

DR :>110,000 -- 180,000

NTERMS = 3

Rms : 0.2 mJy -- 85 uJy

DR : 65,000 -- 170,000
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The Imaging Problem

● Basic computations

● Use of FFT to transform data to image domain: Gridding + FFT

● Image reconstruction (a.k.a. “deconvolution”):  Search and subtract

● Predict data given a model of the sky:                FFT-1 + De-gridding

Iterative Image 
reconstruction

Gridding

FFT

FFT-1De-Gridding

Data Domain

Major cycle

M
in

o
r cy

cle

Image Domain
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The Imaging Problem

● Basic computations

● Use of FFT to transform data to image domain: Gridding + FFT

● Image reconstruction (a.k.a. “deconvolution”):  Search and subtract

● Predict data given a model of the sky:                FFT-1 + De-gridding

Iterative Image 
reconstruction

Gridding

FFT

FFT-1De-Gridding

Data Domain

Major cycle

M
in

o
r cy

cle

Image Domain

Projection Algorithms
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Gridding: Computations

● Gridding/de-gridding: 2D interpolation via convolutional resampling

● 2D convolution functions ← → 2D weighting functions

Data

v

u

2D Convolution 
Function
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Gridding: Computations

● Gridding/de-gridding: 2D interpolation via convolutional resampling

● 2D convolution functions ← → 2D weighting functions

v

u

Data
2D Convolution 
Function
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Gridding: Computations

● Gridding/de-gridding: 2D interpolation via convolutional resampling

● 2D convolution functions ← → 2D weighting functions

v

u

Data
2D Convolution 
Function
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Gridding: Computations

● Gridding/de-gridding: 2D interpolation via convolutional resampling

● 2D convolution functions ← → 2D weighting functions

Data

N
c
 x N

c
 Complex 

Multiply
Single 
Data

N
c
 x N

c
 Complex

Additions

v

u

2D Convolution 
Function
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Gridding: Computations

● Gridding/de-gridding: 2D interpolation via convolutional resampling

● 2D convolution functions ← → 2D weighting functions

Data

N
c
 x N

c
 Complex 

Multiply
Single 
Data

N
c
 x N

c
 Complex

Additions

v

u

2D Convolution 
Function

Single 
Data 102 – 5 FLOP

  NN
datadata

 x 12 N x 12 N22

C  C  
     N     N

datadata
= O(10= O(1010 -- 1210 -- 12))
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WF imaging: A-Projection

● WF imaging needs larger convolution functions (CF)

V

U

Antenna aperture FoV on the sky

Number of uv-pixel
across antenna aperture  

Just the main lobe (20% point) 
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WF imaging: A-Projection

● WF imaging needs larger convolution functions (CF)

U

V

Antenna aperture

Number of uv-pixel
across antenna aperture  

Include the first sidelobe (few%)
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WF imaging: A-Projection

● WF imaging needs larger convolution functions (CF)

U

V

Antenna aperture

Number of uv-pixel
across antenna aperture  

..beyond the first sidelobe
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WF imaging: AW-Projection

● WF imaging needs larger convolution functions (CF)

● Support size strongly affects gridding load

– W-Projection: N
c
 → 10 – few x 100    

– A-Projection: N
c
 →  10 – 20

● CF computations for projection algorithms is expensive

– Current approach: Compute once and cache

– Increases memory footprint E.g. A-array imaging at L,S (and C?)-band

(∝N c
2
)
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WF imaging: Full-pol A-Projection

● Number of CF determine the memory footprint

– N
w
 :  few x 100 – 1000 x (oversampling of 100)   [Complex]

– N
a
 : 2 (Stokes-I only) – 8 (full Mueller)  x (oversampling of 100)

– AW-Projection: N
w
 x N

a
:  

● [100s (Hi) – 1000s (Lo)] x [10 (diag) – 100s (Mueller)]
● Up to 10s GB
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Imaging Memory footprint

● Each sky-image of size N
x
 x N

y
 requires

● 2 x Complex x (N
x
 x N

y
)+ (N

x
 x N

y
) = 5 x (N5 x (N

xx
 x N x N

yy
) floats) floats
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Imaging Memory footprint

● Each sky-image of size N
x
 x N

y
 requires

● 2 x Complex x (N
x
 x N

y
)+ (N

x
 x N

y
) = 5 x (N5 x (N

xx
 x N x N

yy
) floats) floats

Minor cycleMajor cycle

Sky image

Imaging

Mem. Buffers during 
gridding



S. Bhatnagar: Astro Seminar, UNM, April 2016, ABQ 29/50

MT-MFS: Higher memory footprint

● WB A-Projection: N
A
 x N

SPW 
(order 10x increase in CF memory footprint)

● MS-MFS

● Compute load: Gridding for N
terms 

images+ Convolution of large images

● Memory:          Multiple minor-cycle images (N
scales

)

● Total images (each of size N
x
 x N

y
) : N2

terms
 x N2

scales

Minor 
cycle

Gridding

:
:

Memory storage for: N2

terms
x N2

scales

Compute convolutions of images

Sky 
image

Minor 
cycle

Gridding

Sky 
image

Data

Term=0

Term=N
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The hot-spots

Gridding
De-Gridding

Image
Reconstruction

(Convolutions
Of large images)

Supply
Convolution
Functions

FFT

2

1

3
Data
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The hot-spots

Gridding
De-Gridding

Image
Reconstruction

(Convolutions
Of large images)

Supply
Convolution
Functions

FFT

2

1

3
Data

         Data scatter
                    +
   Multi-process computing
                   Vs
Multi-thread CPU computing

70-80% of the compute load!70-80% of the compute load!
(The major cycle)(The major cycle)
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The hot-spots

Gridding
De-Gridding

Image
Reconstruction

(Convolutions
Of large images)

Supply
Convolution
Functions

FFT

2

1

3
Data

Compute and cache
             Vs
Compute on demand
(on the GPU/FPGA)

         Data scatter
                    +
   Multi-process computing
                   Vs
Multi-thread CPU computing

70-80% of the compute load!70-80% of the compute load!
(The major cycle)(The major cycle)

Can dominate the memoryCan dominate the memory
footprintfootprint
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The hot-spots

Gridding
De-Gridding

Image
Reconstruction

(Convolutions
Of large images)

Supply
Convolution
Functions

FFT

2

1

3
Data

Compute and cache
             Vs
Compute on demand
(on the GPU/FPGA)

Compute and cache
             Vs
Compute on demand
(on the GPU/FPGA)

         Data scatter
                    +
   Multi-process computing
                   Vs
Multi-thread CPU computing

70-80% of the compute load!70-80% of the compute load!
(The major cycle)(The major cycle)

Can dominate the memoryCan dominate the memory
footprintfootprint

Minor cycle compute loadMinor cycle compute load
(Can dominate the total run-time)(Can dominate the total run-time)
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Gridding Parallelization (HS 1) - I

● Compute load: N
v
 x 12 N

c
2

● Scatter along data axis

● Deployed in CASA

Memory footprint increases 
Linearly with no. of procs.

Too high for A-array imaging

N
proc

 x 5 x (N
x
 x N

y
)
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Gridder Parallelization (HS 1) - II

● Multi-threaded gridder – one per node

● Compute threads per core; memory footprint same as that of 
one gridder 

Memo by K. Golap

Deployed in CASA
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Algorithm architecture

        FLOPS

I/O

M
em

o
ry

FLOPS-to-Mem Ratio

More memory 
per FLOP

Lesser memory 
per FLOPS

GPUs?

Algorithm design
● Move towards algorithms with higher compute-to-I/O ratio
● Reduce memory foot print, even if at the cost of higher compute-to-I/O ratio 
  (remain inside the Green Box)

● The memory footprint of current algorithms (Red Arrow) may be reduced by trading
 off memory usage to higher computing via use of GPUs (Blue Arrow)

CF Related calculations

● Compute and cache the  CFs 
● Tadeoff:  Extra mem.  N

CF
 = N

Ant
x N

W

    or

● Cache + OTF Convolutions
● Tradeoff: N

CF
 = N

ant
 + N

W
 

        Lesser mem + Extra FLOPS
    or

● All convolutions OTF
● Tradeoff: 

   N
CF

 = 1, Least mem.

             + More Extra FLOPS
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CPU vs  MPH (GPU)



S. Bhatnagar: Astro Seminar, UNM, April 2016, ABQ 38/50

CPU vs  MPH (GPU)
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CPU vs  MPH (GPU)
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CPU vs  MPH (GPU)



S. Bhatnagar: Astro Seminar, UNM, April 2016, ABQ 41/50

On-demand CF Computations (HS 2)

● Mostly computing (negligible I/o)

● Pre-compute A-term and cache on GPU

● GPU/FPGA: Computer W-term OTF – one thread per pixel

● GPU/FPGA: Multiply (W x A)

● GPU/FPGA: FFT

. . .
Image
Conv.

Gridding

CF
FFT

2
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On-demand CF Computations (HS 2)

● Mostly computing (negligible I/o)

● Pre-compute A-term and cache on GPU

● GPU/FPGA: Computer W-term OTF – one thread per pixel

● GPU/FPGA: Multiply (W x A)

● GPU/FPGA: FFT

● GPU measurements: 1K CF of size 2K x 2K in ~ 1ms

● ~20x faster than CPU

● Room for 2x – 3x improvement

. . .
Image
Conv.

Gridding

CF
FFT

2
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On-demand CF Computations (HS 2)

● Mostly computing (negligible I/o)

● Pre-compute A-term and cache on GPU

● GPU/FPGA: Computer W-term OTF – one thread per pixel

● GPU/FPGA: Multiply (W x A)

● GPU/FPGA: FFT

● GPU measurements: 1K CF of size 2K x 2K in ~ 1ms

● ~20x faster than CPU

● Room for 2x – 3x improvement

● Collaboration with ALTERA Corp. for use of FPGAs in progress

. . .
Image
Conv.

Gridding

CF
FFT

2
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Minor Cycle (HS 3)
● Compute Scale-images OTF

● Compute convolutions OTF

● Replace memory footprint with massively parallel HPC

● To Do: Also do search and subtract on the GPU/FPGA 

● Both operations well suited for massively parallel h/w

Mulit-scale imageMulit-scale image
computingcomputing

FFTFFT

TotalTotal

Gridding
Image
Conv.

CF
FFT

3
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Work from other groups
● ASTRON: Romain’s implementation of gridding.

● GPU algorithm similar/same as Golap’s.  

● Speed-up 2-3x.  Not quite clear compared to multi-core gridding or not 
(other packages do not have multi-threaded gridders for CPUs to 
compare with).

● University of Malta: PhD thesis of Daniel Muscat

● Claims of 100x speed up compared to CASA

● To be verified!

● Measure it’s performance in the useful part of the parameter space

● SKA: Various efforts with paid work from NVIDIA.  But not openly available.
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Work from other groups
● ASTRON: Romain’s implementation of gridding.

● GPU algorithm similar/same as Golap’s.  

● Speed-up 2-3x.  Not quite clear compared to multi-core gridding or not 
(other packages do not have multi-threaded gridders for CPUs to 
compare with).

● University of Malta: PhD thesis of Daniel Muscat

● Claims of 100x speed up compared to CASA

● To be verified!

● Measure it’s performance in the useful part of the parameter space

● SKA: Various efforts with paid work from NVIDIA.  But not openly available.

● None of these implementations processed realistic data.  Integration with 
CASA or other s/w is hard and therefore haven’t been verified with realistic 
data set.
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Take Away - 1

● GPU/FPGA very good match for computations that are independent for 
each pixel

● 1000 – 5000 threads available! (Massively parallel)

● Large on-board memory (though over slower bus)

● Can deploy one thread per pixel (or per few pixels)

● Good speed up with number of threads

– OTF computations of CF
– OTF computations of minor cycle scale images
– Search and subtract operations of minor cycles

● Gridding is harder

● CF support size couples pixels

● Hierarchical memory: faster small memory , slower large 
memory

● Lots of semi-random access of the image by multiple threads

● Best speedup O(Few x) – not clear compared to what (multi-core CPU 
performance?)
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Take Away - 2

● Basic architecture to exploit parallel computing

– Scatter along data axis

– Use multi-node cluster

– Reduce total gridding time 
– Good utilization of resources at each node

– Use one multi-threaded gridder per node

– Keep gridding memory footprint low
– ToDo: E2E characterization

● Use GPUs/FPGAs as compute servers

– OTF CF computations 

– Use component-based deconvolution (e.g. Asp-Clean)
● OTF computations of the components

– More efficient newer algorithms (Zhang et al., in prep)
– OTF convolutions of scales 
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Wide-field Effects
● Pointing errors:  E.g., squint: ~5.6% of PB (EVLA)                              

Varies across the band. Does it matter?     Limits Stokes-I DR ~10000:1

R-Beam

L-Beam

Data: R. Perley
Analysis: P.Jagannathan, S.Bhatnagar

In the graph below:  Optical effects should be independent of frequency (e.g. Poln. Squint)
                                   Mechanical effects should show linear trends (e.g. Antenna pointing errors)
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