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Imaging algorithms: General structure

e Interferometric observations can be described as:

V =A(I +N) where A = FT operator, I=Image vector,
and N the noise vector.

* [terative algorithms involve two major operations:
> Reconcile with the data: A"(v-4r") (major cycle)
> Update model image using B'(V—AI")whereB'isanapprox.of A" (minor cycle)

* For scale-less deconvolution, major cycle costs dominate.
This 1s addressed 1n the first half of the talk (w-projection).

* Quality of 1mage reconstruction, image fidelity and dynamic
range depends on the image modeling in the minor cycle.
This 1s addressed in the second half of the talk (Asp Clean).



Wide field imaging: Image plane faceting
* Major cycle 1n wide-field imaging uses multiple facet-

images to compute the residual visibilities.

* Image plane faceting
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* Multiple images and facet edge effects are a problem



Wide tield image: UV-faceting

* Linear image co-ordinate transformation (C) has an
equivalent UV co-ordinate transformation (Sault et al.
(1996) ; rotation and stretching in the image plane):

1(Cl)-l|det(C)'V(C" u)

* Projection error: e:sin((?l)(l—cos(@z))N%(?lG; same as 1n 1mage
plane faceting!

v Single image
v No edge effects
v Global deconvolution possible

v Region definition as in the usual case



Interferometry: Recap

* V(u,v,w)=G(u,v,w)*V(u,v,w=0) R

wherea(l,m,w)Zezmiw( =]
o p,=(E,(u,v,w=0)E,"(0,0,0))
E =E’ (u,v,w) propagated using Fresnel

diffraction theory. The above convolution

equation is reproduced with %NW

* A w#0 interferometer is not a device to

measure a single Fourier component. T

* Thickness of the uv-tracks changes along .
the tracks as w changes. { )

* The concept of redundant baselines 1s much // Z;)I
more restricted than usually thought. ~



UV-coverage: Recap




W-projection

* Visibility computation (de-gridding): =
> Multiply model image by taper T’ ;
> Do a 2D Fourier transform E
> Evaluate the convolution to de-grid 5

* Dirty image computation (gridding): e
> Evaluate the convolution for (u,v,w=0)

plane Scaling .law.s:
W-projection: (N,+Nger) N,

wproj

UV-facet: N Noce N

> Do a 2D inverse Fourier transform .
Ratio: ~n éCF forlarge no. of facets

> Divide the image by T

* Pre-compute T(u,v)G(u,v,w) with uniform sampling in , such that
aliasing effects are less than the required dynamic range.



W-projection: Stimulation/Example

Galactic Plane at P-band — VLA B,C,D (Brogan et al.)
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Scaleless deconvolution

* Measurement equation describing an interferometer can be written as:

V=AI"+AN  whereI’=Trueimagevector , N = Noise vector

 Deconvolution is a search for a model image (I"') which solves:
A'V=A"AI"+A"AN v I’=BI"+I"

* Clean (and its variants) is steepest descent minimization of the objective
function x’=[vV-AI"['w[v-4Ar"]  using the update relation:
I;=I; —g|maxI;_]

* MEM (and its variants) 1s constraint minimization of the objection
function, with prior (assumed) knowledge encoded in the entropy H:

(", \)=H-AX’



Multiscale methods

e However both use 1"=), F,6(x-x,)  which has no scale information
(leads to a diagonal approximation of the Hessian).

* Scale fundamentally separates signal from noise without which large scale
low level emission cannot be recovered (BIY and I are comparable)

e Pixon method (Putter&Pina (1994); Putter&Yahil(1999))

Explicitly assumes finite support PSF (filled aperture telescopes) and independent
image-plane noise (direct imaging devices). Not useful for interferometric imaging.

e MS-Clean (Cornwell&Holdaway (in prep.))

Decomposes the image into a set of a few symmetric kernels.
v Reasonably fast and retains the shift-scale-n-add nature of Clean
» Non-symmetric features poorly reconstructed + slow convergence
« Effectively uses diagonal approximation of the Hessian (ignores coupling)

« Scales poorly



Scale sensitive (Asp) decomposition

* Scale sensitive parametrization using Adaptive Scale Pixel (Asp) model
IM — Zk Fk P (Ec)

* Compute the approximate Asp model in the minor cycle. Use analytical
form to compute the gradient: a.=[r*] S—ﬂ (second term provides a

finite support).

* Use w-projection for full reconciliation with the data.

v Uses minimum DOFs compared to other algorithms.

v Continuous range of scales.

v Good reconstruction of all shapes. Residuals noise-like.
v Explicitly retains coupling between Aspen.

« Comparatively slower (3 times slower than MS-Clean).

« Slows down with iterations (dimensionality of the search space increases).



Asp decomposition: Examples

5. Bharmgarand T). Cornwell: Scale s=nsitve decomolodon of inverfero mecric images 5

The residual image

Tig. 2. Fignre showing an example of Asp recomstroction of a typical astuonomical image. Top kf panel shows che HL image made wih
the WLA, med as cthe “troe image™ (/) for che simohcion. The image comains ~ 1000 picelks with significant emismion. This image was
nz=d ro simnlane visibilities cmesponding to 2 VLA obsenarion. The cormesponding diry image (), shown in the op right panel, was then
decmotbved nsing the AspClean algorichm. A 800 Asp componem reconmncted model image (/*7 iz shown in che lower left panal The
lower right pane] shows che reswored Asp-mode] image (S + 1%, whete C iz the smoothingo prratar corresponding w the rasolnton elemenc).



Asp decomposition: Acceleration

* Not all Aspen are active at all iterations.
Significant loss of efficiency due to in-
active Aspen.

I
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e Adaptively contain the dimensionality of s s R
the search space by retaining only the "I
active-set. B |

* Active set computed at the beginning of
each iteration by thresholding 1 =V, x|

* Threshold Z,«)_ I
* To Do:

B BB 3

> Fast computation of the covariance matrix for thresholding.
> Use more exotic Asp forms (further reduce the final DOFs).

> MCMC? Its variations?



Asp decomposition: Acceleration

e Gaussians allow control on the scale, and orientation. There is no
handle on the shape or support/roll-off.

* [eads to larger number of components and higher runtime.

* Higher Order Gaussians (HOGs)?

Q=5 Qirlar=2




