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Algorithms R&D Group activities

• R&D for new post-processing algorithms required for wide-
band wide-field full-polarization imaging...in a reasonable 
computing time.

• Various activities, not all of which I will go in detail today:
• Wide-field imaging and calibration      [active]

• Wide-band imaging and calibration     [active]

• High Performance Computing              [active]

• RM-Synthesis                                       [active] 
                         [AIPS Task FARS; Kogan,Greisen,Owen]

• Wide-band mosaicking                         [active/on wait]

• Automatic RFI removal                         [active/R&D+testing]  

• Improvements in Scale Sensitive Image reconstruction [R&D/planning]

• Wide-band on-axis calibration, DD-Calibration  [Advanced R&D]
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Interferometric Imaging

• Interferometric telescopes are indirect imaging devices
• Observations are in the Fourier domain: The Coherence 

Function

• van-Cittert Zernike Theorem: Coherence Function is 2D 
Fourier transform of the Sky Brightness distribution

• Sampling function(S) encodes the incomplete sampling of the 
data domain

• (u
ij
,v

ij
) are implicitly a function of time

• Aperture Synthesis: 
– Integration in time            → Leads to wide-field issues 
– Integration in frequency   → Leads to wide-band issues

VObs
u ij , v ij=S uij , vij∫ I  l ,m e [u ij l vij m] dl dm

=S uij , vij ⋅V Skyu ij , v ij 
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Interferometric Imaging

•

•

• Deconvolution algorithms assume
• Isky is time-invariant

• Isky is frequency-invariant

V ij
Obs

=∑ t
Sij  t ⋅V ij

Sky
 t 

I Obs
=FT [∑ t S ij  t ⋅V ij

Sky
 t  ]=∑ t [ PSF  t ∗ I Sky]
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High sensitivity imaging

• Sensitivity 

• Data volume  ∝ N2

ant
 N

channels
 N

t

• Higher sensitivity is achieved using larger bandwidths (e.g. 
EVLA) or larger collecting area (e.g. ALMA) or both (SKA PF).

• Higher sensitivity → Wide-field issues
• Sources farther out also affect imaging performance

• Long integration in time
• Need to account for time-variability, farther out 

• Long integration in time over wide bandwidths
• Account for time & frequency dependence of the instrument

• Account for frequency dependence of the sky

∝
N ant  Aant   N t  N chan 

T sys
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• Today's discussion will use
–

–

V ij
Obs

  = M ij  , t  S ij  t ∫ Mij
S
 s , , t  I  s ,  e2  b ij . s d s

Synthesis Imaging Measurement Eq.

M ij  , t =J i  , t ⊗J j
∗ , t 

M ij
S
s , , t =J i s , ,t ⊗J j

∗
s , , t 

: Direction independent (DI) gains
: Direction dependent (DD) gains

M ij
S
 s ,  , t  to represent antenna Primary Beams (PB)

I  s ,  to represent frequency dependent extended sky­emission

Image Domain:  IObs=∑t∑
PSF  , t ∗[PB s , , t  I Sky  ]

Data Domain: V ij
Obs =S ij t  [ Aij  , t ∗V  ]

Aij  , t  is correlation of Antenna Aperture Illumination patterns
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Deconvolution and Calibration: Theory

• Calibration and image deconvolution operations can be 
described as function optimization

• Image deconvolution (CLEAN, MEM,...) estimates model parameters for 
the sky-emission

• Calibration (“antsol”, “self-cal”)

• Corrections for DI terms (M) can be done independent of imaging

Corrections for DD terms can only be done during imaging

•  Accounting for DD terms fundamentally couples calibration and imaging.

V Obs=M AMS ITrueN


2
=∣M−1V o

−A IM∣
2
where IM=∑k

Pk ; Pk is the Pixel Model


2
=∣V o

−M A IM∣
2

Advances in Calibration and Imaging Techniques in 
Radio Astronomy, Rau et al., Proc. IEEE, Vol. 97, No. 8, 
Aug.2009, 1472 
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Wide-field wide-band imaging issues

• Wide-field Imaging: Antenna Primary Beams vary in time 
and direction

• Residual errors due to conventional imaging techniques are 
significant

• Wide-band Imaging
• Antenna Primary Beams & Sky emission vary with frequency

• Both affects are directionally dependent

• Data volume increase by 102-3x
• Computing and I/O load increase

• Deployment on HPC platforms

• Direction dependent calibration
• Instrumental gains vary across the FoV
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Range of imaging challenges

Field with compact sources filling the FoV Compact + extended emission filling the FoV

Used mostly auto-flagging + some manual flagging



10/52S. Bhatnagar: Colloquium, Socorro, Feb. 11th 2011

Parametrized Measurement Equation

• Two approaches 
• Faceting: Partition the data & apply DI techniques per facet

– Use DFT, multiple passes through the data
– Difficult to generalize for DD correction/calibration
– Higher algorithmic and software complexity

• Global/Projection methods: Include DD terms in the Measurement 
Equation

– FFT, single pass through the data
– Parametrization in the natural domain
– Lower complexity

• Noise per antenna based DoF:   p=[ 2kbT sys

a A N ant  corr corr NSolSamp ]
1
S

where S=∫
∂ Ei  s , p 

∂ s
E j

∗
 s , p IM  s e

2  s .b ij d s
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High sensitivity imaging

• Higher sensitivity is achieved using larger bandwidths (e.g. 
EVLA) or larger collecting area (e.g. ALMA) or both.

• Sources farther out also affect imaging performance
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High sensitivity imaging

• Time variability due to antenna Primary Beams increase 
away from the pointing center

• Due to PB rotation asymmetry, rotation with PA and pointing errors

Difference between rotationally
symmetric PB model and more 
realistic PB
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High sensitivity imaging

• Time variability of the PB increases away from the center 

• Frequency dependence increases with fractional bandwidth

IObs
=∑t∑

PSF t ∗[PB  s I Sky
 s/o

s ,]

=−1.1 =−2.7

=−0.9 ≈−3.2

≈−2.9
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High sensitivity imaging

• To the first order, scaling of the PB with frequency

I Obs=∑t∑
PSF t ∗[PB  s , , t  I Sky  ]

∑


PB  s , , t 
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High sensitivity imaging

• Image corresponds to the sum of all the data.
• Only average of antenna-based quantities are available in the image 

domain

∑t ∑
PB s , , t 

I Obs=∑t∑
PSF t ∗[PB  s , , t  I Sky  ]

● Image domain corrections for time, frequency 
 and antenna dependence is hard

● Projection methods apply corrections in the
 Natural Domain
    - A-Projection for PB-corrections
    - W-Projection for W-term correction
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Implications for imaging: Wide-field 
effects

 I=PSF∗ I PB

● Errors are due to time-varying
 Primary Beam

● Errors are directionally 
 dependent

● Imaging performances of the
 telescope is limited by these
 errors (and not the thermal
 noise)
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Implications for imaging: Wide-band 
effects

● 3C286 field
 I=14.4Jy @1.4GHz
 Sp.Ndx=-0.47
 BW = 1.1 GHz

● Conventional imaging
   - Frequency oblivious
     Image model
 

●DR = 1600-13000
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Implications for imaging: Computing

• To keep time and band width smearing errors below thermal 
limit for wide FoV, needs finer sampling in time and frequency.

• Data volume  ∝ N2
ant

 N
channels

 N
t

• N
channels 

= 1-10GHz/KHz-MHz     and    N
t
 = 10hr/(1-10sec)

• N
ant

      = 27 (EVLA), ~50 (ALMA), Cast of thousands (SKA)

• 100-1000x increase in the number of samples to achieve the required 
sensitivities

– Algorithm efficiency remains a critical parameter

• Algorithms for wide-field and wide-band effects require more 
floating point operations (FLOP)

• Inherent information content in the data is higher

• Need computing platforms with (much) higher I/O rates and 
FLOPS (FLOP per sec) capacity.

– ...and larger RAM (possibly)
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Lower the number of parameters in the model that leaves noise-like 
residuals, higher is the information extracted.

              – Papers on Information Theory (possibly by Donoho, 2000)

• Models in the Natural Domain of the information one seeks 
minimizes the number of parameters

• Image domain: Natural Domain for sky-emission
– Structure 

– Frequency and polarization dependence

• Visibility Domain: Natural Domain for instrumental effects
– PB effects

– Electronics gains, etc.

Parametrization of the ME
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•                                                   
                                                       

                                                       

• The function I(s) represent sky emission
• Information it represents is inherently in the sky domain

– Parametrize structure: Asp-Clean, MS-Clean
– Parametrize frequency dependence: MS-MFS

V ij
Obs

  = M ij , t W ij∫ Mij
S
 s , , t  I  s ,  e2   bij . s d s

Parametrized model for sky emission

Image Domain
Visibility Domain
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•                                                   
                                                       

                                                       

• The function I(s) represent sky emission
• Information it represents is inherently in the sky domain

– Parametrize structure: Asp-Clean, MS-Clean
– Parametrize frequency dependence: MS-MFS

V ij
Obs

  = M ij , t W ij∫ Mij
S
 s , , t  I  s ,  e2   bij . s d s

Parametrized model for sky emission

Image Domain
Visibility Domain

I M
=∑k

Akx− xk  I M
=∑k

A k f Scale , Pos. NComps=104 NComps=103

● Better parametrization
 in the Natural Domain
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•                                                   
                                                       

                                                       

• The function I(s) represent sky emission
• Information it represents is inherently in the sky domain

– Parametrize structure: Asp-Clean, MS-Clean
– Parametrize frequency dependence: MS-MFS

V ij
Obs

  = M ij , t W ij∫ Mij
S
 s , , t  I  s ,  e2   bij . s d s

Parametrized model for sky emission

4.0GHz

Rau, PhDThesis, 2010

Sp. Ndx 1.0GHz
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Wide-band imaging: Multi-Term MFS

● 3C286 field
 I=14.4Jy @1.4GHz
 Sp.Ndx=-0.47
 BW = 1.1 GHz

 
●DR = 1600-13000



24/52S. Bhatnagar: Colloquium, Socorro, Feb. 11th 2011

Wide-band imaging: Multi-Term MFS

● 3C286 field
 I=14.4Jy @1.4GHz
 Sp.Ndx=-0.47
 BW = 1.1 GHz

● Multi-term  MFS
● Nterm = 2
 

●DR = 10000-17000

MT-MFS: Collection of components whose amplitude follow a polynomial in frequency
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Wide-band imaging: Multi-Term MFS

● 3C286 field
 I=14.4Jy @1.4GHz
 Sp.Ndx=-0.47
 BW = 1.1 GHz

● Multi-term  MFS
● Nterm = 4
 

●DR = 110,000-180,000
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Wide-band Stokes-I imaging: MS+MT-
MFS

• The sky emission varies with frequency

• Frequency dependence is also directionally dependent

=−1.1
=−2.7

=−0.9 ≈−3.2

≈−2.9

I D
=∑


PSF ∗[ PB  ⋅I Sky

  ]

Need:
   MS: For extended emission
+ MT-MFS: For DD Sp.Ndx.
+ W-Term correction
+ WB PB-correction

MS-MFS; Rau, PhDThesis, 2010
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Wide-band Spectral Index Imaging: 
MS+MT MFS

=−1.1

=−2.7

=−0.9 ≈−3.2

≈−2.9

• Spectral Index map

Need:
   MS: For extended emission
+ MT-MFS: For DD Sp.Ndx.
+ W-Term correction
+ WB PB-correction

MS-MFS; Rau, PhDThesis, 2010
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Wide-field Imaing: PB effects

• The observed data corresponds to Isky multiplied by the 
antenna primary beam

 

• PB varies with time due to rotation with PA and pointing errors.

• PB gain in general is also Directionally Dependent  

I D
=∑ t∑

PSF  , t ∗[ PB s , t ⋅ISky ]
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The A-Projection algorithm

• Modified forward and reverse transforms: 
• No assumption about sky properties

• Spatial, time, frequency and polarization dependence 

naturally accounted for

• Done at approximately FFT speed

• A-Projection is the first term of the series expansion of the Aperture Illumination 
pattern.   

  

• Projection formulation delivers efficient solvers to solve for parametrized 
models (Pointing SelfCal and its extensions)

V o
u , v , w=V M

u , v ∗J iu ,v ; s∗J j
∗
u , v ;s 

A-Projection algorithm,  A&A 2008

Model for EVLA aperture illumination 
(real part)

One element of the Sky-Jones 
(Jones Matrix per pixel)

A u= Ao u [1ao Zou ...]
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A-Projection algorithm: Simulations 

Before Correction After Correction

Minimize :V ij
O
−Eij∗[ FI

M
] w.r.t. IM

A-Projection: Bhatnagar et al.,
A&A,487, 2008 

Goal:  Full-field, full-polarization imaging at full-sensitivity
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● 3C147 field at L-Band 

● Dynamic range: ~700,000:1

● A single baseline based
 correction was applied

EVLA L-Band Stokes-I: Before correction
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● 3C147 field at L-Band
with the EVLA

● Only 12 antennas used
● Bandwidth: 128 MHz
● ~7 hr. integration

● Dynamic range: ~700,000:1

EVLA L-Band Stokes-I: After correction
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EVLA L-Band Stokes-V: Before correction

Is it  M  s , Poln ?
Or is it  I  s , Poln?

V ij
Obs

= Mij∫M ij
S
 s I  s e2  bij . sd s
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EVLA L-Band Stokes-I: After correction

Use physical model for the 
Stokes-V pattern:

Contours: Stokes-I power pattern
Colour: Stokes-V power pattern
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•                                                     
                                                       

                                                       

• Instrumental effects are fundamentally antenna-based

• MS
ij 
represents information inherently in the visibility domain

• Image domain: Only average MS
ij
 is available

• Difficult to handle the case of non-identical antennas

• Visibility Domain: Remains separable as antenna-based 
terms 

• Opens up algorithms for DD corrections, calibration,...

V ij
Obs

  = M ij , t W ij∫ Mij
S
 s , , t  I  s ,  e2   bij . s d s

Parametrized model for aperture 
illumination

FT [ Mij
S ]=FT [ J i ]∗ FT [ JT ]
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Implications for imaging: Wide-band 
effects

• To the first order, antenna primary beams scale with frequency
• E.g., size of the PB changes 2x for EVLA bandwidths

 

• PB in general is rotation asymmetric
• Frequency dependence of the PB is also directionally dependent

I D
=∑ t∑

PSF  ∗[ PB s , t , ⋅ISky ]

PB “Spectral Index”
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Time varying DD gains due to PB
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Extension to mosaicking

 

● In the data domain, PB effects correspond to convolution
   - It is included as part of the convolutional gridding
     operation for Projection algorithms

● Mosaicking, polarization squint, pointing errors, etc. are a 
 matter of putting the correct phase gradient

● A
ij
= A

i 
* A

j
 : The functions can be computed in a antenna  

                   dependent manner

● Naturally accounts for heterogeneous arrays (ALMA) 

● DD calibration algorithms can be designed to modify A
i
 to fit 

 the data (e.g. Pointing SelfCal). 

V
ij
Obs =S

ij
 t  [ A

ij
 , t ∗V   ]
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Wide-field wide-band imaging with the 
EVLA

PB 50% point

●1.2-1.8GHz
(4x128 MHz)

●~25 microJy/Beam

●RSRO Projects
(AB1345, Bhatnagar et al.)

●Scientific goals
- Spectral Index imaging
- RM Synthesis

- Wide-band, wide-field          
    imaging
- HPC
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● Effect of antenna pointing error is a 
 direction dependent effect

● A purely Hermitian effect in the data 
 domain, in the absence of DI gains
  –  To the first order, amplitude-only error in  
      image domain

 

●However, there is significant in-beam 
 phase structure –  particularly for 
 wide-field, full-Stokes imaging

Effect of antenna pointing errors

A B
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Effect of antenna pointing errors

● Effect of antenna pointing error is a 
 direction dependent effect

● A purely Hermitian effect in the data 
 domain, in the absence of DI gains
  –  To the first order, amplitude-only error in  
      image domain

 
● Faceting approach: 
   –  Solve for gains for A and B separately
   –  Interpolate in between

● Pointing SelfCal
   –  Solve for the shape of the function 
      which best-fits the gain variations at A 
      and B

A B
Pointing error
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● EVLA polarization squint solved as pointing error (optical pointing error).
● Squint would be symmetric about the origin in El-Az plane in the absence 
of antenna servo pointing errors.

● Pointing errors for various antennas detected in the range 1-7 arcmin.
● Pointing errors  confirmed independently via the EVLA online system.

[paper in preparation]

DD SelfCal algorithm: EVLA Data

R-beam

L-beam

Pointing error
R-beam

L-beam

Pointing error

● El-Az mount antennas
● Polarization squint due to off-axis feeds
    - The R- and L-beam patterns have a pointing 
        error of +/- ~0.06
 

● DoF used: 2 per antenna
● SNR available for more DoF to model the PB shape



D
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DD SelfCal: General comments

• Pointing SelfCal formulation is generalization of DI SelfCal

• Effects of PB/antenna pointing is purely Hermitian in the data 
domain – in the absence of DI gains or in-beam phase etc.

• I.e., amp-only effect in the image plane

• Fundamentally an antenna based effect
• Difficult to decouple/interpret in the image plane

• Fundamentally a data-domain effect
• Not an “image plane effect”

• Unlike, e.g., effects of sky spectral index variations (a DD error)

• Clean works, but scale-sensitive methods work better

Similarly, Partitioning/SelfCal works, but DD SelfCal should 
work better!

Standard SelfCal (DI):  V ij=G i⊗G j
∗
V ij

M

Pointing SelfCal:  V ij= J i
S
⊗J j

S∗

∗V ij
M
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I/O load

• Recent data with the EVLA: 100-500 GB

• Expect 20-50 passes through the data (flagging + calibration + 
imaging + human errors)

• Effective data i/o: few TB

• Typical disk I/O rates: 30-80 MB/s

• Exploit data parallelism 
• Distribute normal equations (SPMD paradigm)

• Deploy computationally efficient algorithms (‘P’ of SPMD) on 
a cluster
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Computing load

• More data samples used for imaging
• Few X 100-1000 frequency channels

• 1-30 sec. Integration intervals

• More computing per gridding/de-gridding
• Convolution support size increase for W- and A-Projection

• More images made for Multi-term MFS
• Each term constitutes full gridding/de-gridding load 

• Various optimization possible to balance between memory 
footprint and computing footprint

• Most operations are embarrassingly parallel 
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Cluster Computing

Local Store (Disk/RAM)

dMS, 
dI

Inter-
connect

Big disk

MS

Controller 
node

dMS, 
dI

dMS, 
dI

dMS, 
dI

dMS, 
dI

dMS, 
dI

● Goal: CPU Bound Processing  

● Gridding/de-gridding on each 
 node using a subset of the data

● Data fed through a high speed
 link to fast-disk (Lustre)
   - 10 MB/s per node
 

● Multiple processes per node

● Asynchronous I/O
  - A single thread per node does
    read-ahead
  - Processing becomes CPU 
    bound

Golap, Robnett, Jacobs, Kern
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Parallelization: Initial results
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Parallelization: Initial results

● Continuum imaging:  (No PB-correction or MFS)
● Requires inter-node I/O (Distribution of normal equations)
● 4-6x speed-up using 8-cores per node
● I/O bound without async-I/O
● Expected close to linear speed-up with async-I/O

  - Async-I/O in the process of being deployed

●  Work in progress
● Calibration: Gain, Bandpass, polarization
● Flagging: simple flagging + possibly auto-flagging
● Self-Cal
● Simple data visualization
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Summary

● Modeling various terms in the Natural Domain of information 
they represent
● W-Term, Antenna Aperture effects in the visibility domain

● W-Projection, WB A-Projection
● Use in mosaicking as well

● Extended emission, sky frequency- and polarization-
dependence in the image domain

● MS-MFS, Asp, …
● RM-Synthesis

● Developing DD solvers to solve for for low-order models for 
Aperture illumination 

● Pointing SelfCal and beyond
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What keeps us busy?

● Shooting for full-sensitivity full-polarization wide-band imaging

● Bug discovery and fixes (many thanks to FO, CC, JM-J, EF, JU,...)
● Re-worked the code to enable

● Wide-band A-Projection
● Heterogeneous arrays (ALMA)

 

● Next steps:
● WB A-Projection + W-Projection
● Integrate MS-MFS and WB A-Projection
● Extend to mosaic imaging
● Extend to full-polarization
● Integrate with RM-synthesis

D. Petry, ESO
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What keeps us busy?

● Projects in various stages of R&D
● Automatic RFI detection/removal

● Pointing SelfCal
● An issues for ALMA and mosaicking in general

● Asp-Clean based MFS, RM-Synthesis(?)
1.  Memory foot-print 
2.  Reduce error bars on Spectral Index images

● Integrate with parallel computing framework for deployment on 
HPC platforms

● Multi-threading where possible (e.g. minor cycle)
● Develop pipelines or integrate with existing pipeline processing 

framework
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Thanks

● Various testers of the bleeding-edge code

● Various members of the EVLA commissioning team

● Computing Staff

● CASA team

● Various people whose brain I often borrow... 
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Era of Data Deluge

● “My” reaction to Data Deluge skeptics 
● Beginning of telephone era: People reported shock lasting 

days after a phone call
● Much opposition is simply romantic

● Mathematics Tells us
● Information technology is not magic
● Extracting information from data is not a sure thing
● Specific hard work on a case-by-case basis
● You can learn what must be done

                                            “Data! Data! Data! Challenges and  

                                                                     opportunities of the coming Data Deluge”

                                                                          - David Dohono, Stanford Univ.

                                                                            USNA Michelson Lecture, 2001
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