Wide-band Wide-field Imaging

Colloquium, Socorro, Feb. 11th 2011

S. Bhatnagar K. Golap, U. Rau, J. Robnett NRAO

Algorithms R&D Group activities

- R&D for new post-processing algorithms required for wideband wide-field full-polarization imaging...in a reasonable computing time.
- Various activities, not all of which I will go in detail today:
 - Wide-field imaging and calibration [active]
 - Wide-band imaging and calibration [active]
 - High Performance Computing [active]
 - RM-Synthesis [active] [AIPS Task FARS; Kogan,Greisen,Owen]

- Wide-band mosaicking [active/on wait]
- Automatic RFI removal
 [active/R&D+testing]
- Improvements in Scale Sensitive Image reconstruction [R&D/planning]
- Wide-band on-axis calibration, DD-Calibration [Advanced R&D]

Interferometric Imaging

- Interferometric telescopes are indirect imaging devices
 - Observations are in the Fourier domain: The Coherence Function
- van-Cittert Zernike Theorem: Coherence Function is 2D Fourier transform of the Sky Brightness distribution

$$V^{Obs}(u_{ij}, v_{ij}) = S(u_{ij}, v_{ij}) \int I(l, m) e^{\iota[u_{ij}l + v_{ij}m]} dl dm$$

= $S(u_{ij}, v_{ij}) \cdot V^{Sky}(u_{ij}, v_{ij})$

- Sampling function(S) encodes the incomplete sampling of the data domain
- (u_{ij}, v_{ij}) are implicitly a function of time
- Aperture Synthesis:
 - Integration in time
- → Leads to wide-field issues
 - Integration in frequency \rightarrow Leads to wide-band issues

Interferometric Imaging

•
$$V_{ij}^{Obs} = \sum_{t} S_{ij}(t) \cdot V_{ij}^{Sky}(t)$$

•
$$I^{Obs} = FT\left[\sum_{t} S_{ij}(t) \cdot V_{ij}^{Sky}(t)\right] = \sum_{t} \left[PSF(t) * I^{Sky}\right]$$

- Deconvolution algorithms assume
 - **I**^{sky} is time-invariant
 - **I**^{sky} is frequency-invariant

- Sensitivity $\sum_{\alpha} \frac{N_{ant}(\eta A_{ant}) \sqrt{(N_t \tau)(N_{chan} \Delta \nu)}}{\sqrt{(N_t \tau)(N_{chan} \Delta \nu)}}$
- Data volume $\propto N_{ant}^2 N_{channels}^{T_{sys}} N_t$
- Higher sensitivity is achieved using larger bandwidths (e.g. EVLA) or larger collecting area (e.g. ALMA) or both (SKA PF).
- Higher sensitivity \rightarrow Wide-field issues
 - Sources farther out also affect imaging performance
- Long integration in time
 - Need to account for time-variability, farther out
- Long integration in time over wide bandwidths
 - Account for time & frequency dependence of the instrument
 - Account for frequency dependence of the sky

Synthesis Imaging Measurement Eq.

$$V_{ij}^{Obs}(\mathbf{v}) = M_{ij}(\mathbf{v}, t) S_{ij}(t) \int M_{ij}^{S}(s, \mathbf{v}, t) I(s, \mathbf{v}) e^{2\pi \iota(b_{ij}, s)} ds$$

$$M_{ij}(\mathbf{v}, t) = J_{i}(\mathbf{v}, t) \otimes J_{j}^{*}(\mathbf{v}, t) \qquad : \text{Direction independent (DI) gains}$$

$$M_{ij}^{Sij}(s, \mathbf{v}, t) = J_{i}(s, \mathbf{v}, t) \otimes J_{j}^{*}(s, \mathbf{v}, t) \qquad : \text{Direction dependent (DD) gains}$$

- Today's discussion will use
 - $M_{ii}^{s}(s, v, t)$ to represent antenna Primary Beams (PB)
 - I(s, v) to represent frequency dependent extended sky-emission

Image Domain:
$$I^{Obs} = \sum_{t} \sum_{v} PSF(v, t) * \left[PB(s, v, t) I^{Sky}(v) \right]$$

Data Domain: $V_{ij}^{Obs}(v) = S_{ij}(t) \left[A_{ij}(v, t) * V(v) \right]$

 $A_{ii}(v, t)$ is correlation of Antenna Aperture Illumination patterns

Deconvolution and Calibration: Theory

 Calibration and image deconvolution operations can be described as function optimization

$$V^{Obs} = M A M^S I^{True} + N$$

- Image deconvolution (CLEAN, MEM,...) estimates model parameters for the sky-emission $\chi^2 = |\mathbf{M}^{-1}\mathbf{V}^o - \mathbf{A} \bigotimes^2 \text{ where } I^M = \sum_k P_k; P_k \text{ is the Pixel Model}$
- Calibration ('antsol", 'self-cal')

$$\chi^2 = \left| \boldsymbol{V^o} - \boldsymbol{M} \boldsymbol{A} \boldsymbol{I}^{\boldsymbol{M}} \right|^2$$

- Corrections for DI terms (M) can be done independent of imaging Corrections for DD terms can only be done *during imaging*
- Accounting for DD terms *fundamentally* couples calibration and imaging.

Advances in Calibration and Imaging Techniques in Radio Astronomy, Rau et al., Proc. IEEE, Vol. 97, No. 8, Aug.2009, 1472

Wide-field wide-band imaging issues

- Wide-field Imaging: Antenna Primary Beams vary in time and direction
 - Residual errors due to conventional imaging techniques are significant
- Wide-band Imaging
 - Antenna Primary Beams & Sky emission vary with frequency
 - Both affects are directionally dependent
- Data volume increase by 10²⁻³x
 - Computing and I/O load increase
 - Deployment on HPC platforms

Direction dependent calibration

• Instrumental gains vary across the FoV

Range of imaging challenges

Field with compact sources filling the FoV

Compact + extended emission filling the FoV

Used mostly auto-flagging + some manual flagging

Parametrized Measurement Equation

- Two approaches
 - Faceting: Partition the data & apply DI techniques per facet
 - Use DFT, multiple passes through the data
 - Difficult to generalize for DD correction/calibration
 - Higher algorithmic and software complexity
 - Global/Projection methods: Include DD terms in the Measurement Equation
 - FFT, single pass through the data
 - Parametrization in the natural domain
 - Lower complexity
- Noise per antenna based DoF:

$$\sigma(p) = \left[\frac{2k_b T_{sys}}{\eta_a A \sqrt{N_{ant} \nu_{corr} \tau_{corr}} \sqrt{N_{SolSamp}}}\right] \frac{1}{S}$$

where
$$S = \int \frac{\partial E_i(s, p)}{\partial s} E_j^*(s, p) I^M(s) e^{2\pi \iota s. b_{ij}} ds$$

- Higher sensitivity is achieved using larger bandwidths (e.g. EVLA) or larger collecting area (e.g. ALMA) or both.
 - Sources farther out also affect imaging performance

S. Bhatnagar: Colloquium, Socorro, Feb. 11th 2011

- Time variability due to antenna Primary Beams increase away from the pointing center
 - Due to PB rotation asymmetry, rotation with PA and pointing errors

realistic PB

- Time variability of the PB increases away from the center
- Frequency dependence increases with fractional bandwidth

S. Bhatnagar: Colloquium, Socorro, Feb. 11th 2011

• To the first order, scaling of the PB with frequency

- Image corresponds to the sum of all the data.
 - Only average of antenna-based quantities are available in the image domain

$$I^{Obs} = \sum_{t} \sum_{v} PSF(t) * \left[PB(s, v, t) I^{Sky}(v) \right]$$

- $\sum_{t} \sum_{v} PB(s, v, t)$
- Image domain corrections for time, frequency and antenna dependence is hard
- Projection methods apply corrections in the Natural Domain
 - A-Projection for PB-corrections
 - W-Projection for W-term correction

Implications for imaging: Wide-field effects

- Errors are due to time-varying Primary Beam
- Errors are directionally dependent
- Imaging performances of the telescope is limited by these errors (and not the thermal noise)

Implications for imaging: Wide-band effects

- 3C286 field I=14.4Jy @1.4GHz Sp.Ndx=-0.47 BW = 1.1 GHz
- Conventional imaging
 Frequency oblivious Image model

•DR = 1600-13000

S. Bhatnagar: Colloquium, Socorro, Feb. 11th 2011

Implications for imaging: Computing

- To keep time and band width smearing errors below thermal limit for wide FoV, needs finer sampling in time and frequency.
- Data volume $\propto N_{ant}^2 N_{channels} N_t$
 - $N_{channels} = 1-10GHz/KHz-MHz$ and $N_{t} = 10hr/(1-10sec)$
 - $N_{ant} = 27$ (EVLA), ~50 (ALMA), Cast of thousands (SKA)
 - 100-1000x increase in the number of samples to achieve the required sensitivities
 - Algorithm efficiency remains a critical parameter
- Algorithms for wide-field and wide-band effects require more floating point operations (FLOP)
 - Inherent information content in the data is higher
- Need computing platforms with (much) higher I/O rates and FLOPS (FLOP per sec) capacity.

...and larger RAM (possibly)

Parametrization of the ME

Lower the number of parameters in the model that leaves noise-like residuals, higher is the information extracted.

- Papers on Information Theory (possibly by Donoho, 2000)

- Models in the Natural Domain of the information one seeks minimizes the number of parameters
- Image domain: Natural Domain for sky-emission
 - Structure
 - Frequency and polarization dependence
- Visibility Domain: Natural Domain for instrumental effects
 - PB effects

– Electronics gains, etc.

Parametrized model for sky emission

•
$$V_{ij}^{Obs}(v) = M_{ij}(v,t) W_{ij} \int M_{ij}^{S}(s,v,t) I(s,v) e^{2\pi \iota(b_{ij},s)} ds$$

- The function *l(s)* represent sky emission
 - Information it represents is inherently in the sky domain
 - Parametrize structure: Asp-Clean, MS-Clean
 - Parametrize frequency dependence: MS-MFS

Parametrized model for sky emission

•
$$V_{ij}^{Obs}(v) = M_{ij}(v,t) W_{ij} \int M_{ij}^{S}(s,v,t) I(s,v) e^{2\pi \iota(b_{ij},s)} ds$$

- The function *I(s)* represent sky emission
 - Information it represents is inherently in the sky domain
 - Parametrize structure: Asp-Clean, MS-Clean
 - Parametrize frequency dependence: MS-MFS

Parametrized model for sky emission

•
$$V_{ij}^{Obs}(v) = M_{ij}(v,t) W_{ij} \int M_{ij}^{S}(s,v,t) I(s,v) e^{2\pi \iota(b_{ij},s)} ds$$

- The function *l(s)* represent sky emission
 - Information it represents is inherently in the sky domain
 - Parametrize structure: Asp-Clean, MS-Clean
 - Parametrize frequency dependence: MS-MFS

S. Bhatnagar: Colloquium, Socorro, Feb. 11th 2011

Wide-band imaging: Multi-Term MFS

Wide-band imaging: Multi-Term MFS

MT-MFS: Collection of components whose amplitude follow a polynomial in frequency

- 3C286 field I=14.4Jy @1.4GHz Sp.Ndx=-0.47 BW = 1.1 GHz
- Multi-term MFS
- Nterm = 2

Wide-band imaging: Multi-Term MFS

Wide-band Stokes-I imaging: MS+MT-MFS

- The sky emission varies with frequency
- Frequency dependence is also directionally dependent

$$I^{D} = \sum_{v} PSF(v) * \left[PB(v) \cdot I^{Sky}(v) \right]$$

Wide-band Spectral Index Imaging: MS+MT MFS

• Spectral Index map

Wide-field Imaing: PB effects

The observed data corresponds to *I^{sky}* multiplied by the antenna primary beam

$$I^{D} = \sum_{t} \sum_{v} PSF(v, t) * \left[PB(s, t) \cdot I^{Sky} \right]$$

- PB varies with time due to rotation with PA and pointing errors.
- PB gain in general is also Directionally Dependent

350

400

The A-Projection algorithm

 $V^{o}(u, v, w) = V^{M}(u, v) * J_{i}(u, v; s) * J_{i}^{*}(u, v; s)$

- Modified forward and reverse transforms:
 - No assumption about sky properties
 - Spatial, time, frequency and polarization dependence naturally accounted for
 - Done at approximately FFT speed

Model for EVLA aperture illumination (real part)

One element of the Sky-Jones (Jones Matrix per pixel)

- A-Projection is the first term of the series expansion of the Aperture Illumination pattern. $A(u) = A_a(u) [1 + a_a Z_a(u) + ...]$
- Projection formulation delivers efficient solvers to solve for parametrized models (Pointing SelfCal and its extensions)

A-Projection algorithm, A&A 2008

A-Projection algorithm: Simulations

Goal: Full-field, full-polarization imaging at full-sensitivity

A-Projection: Bhatnagar et al., A&A,487, 2008

EVLA L-Band Stokes-I: Before correction

- 3C147 field at L-Band
- Dynamic range: ~700,000:1
- A single baseline based correction was applied

EVLA L-Band Stokes-I: After correction

- 3C147 field at L-Band with the EVLA
- Only 12 antennas used
- Bandwidth: 128 MHz
- ~7 hr. integration
- Dynamic range: ~700,000:1

EVLA L-Band Stokes-V: Before correction

EVLA L-Band Stokes-I: After correction

Use physical model for the Stokes-V pattern:

Contours: Stokes-I power pattern Colour: Stokes-V power pattern

Parametrized model for aperture illumination

•
$$V_{ij}^{Obs}(v) = M_{ij}(v,t) W_{ij} \int M_{ij}^{s}(s,v,t) I(s,v) e^{2\pi \iota(b_{ij},s)} ds$$

- Instrumental effects are fundamentally antenna-based
 - **M**^s_{ii} represents information inherently in the visibility domain
- Image domain: Only average *M^s*, is available
 - Difficult to handle the case of non-identical antennas
- Visibility Domain: Remains separable as antenna-based terms $FT[M_{ij}^{s}] = FT[J_{i}] * FT[J^{T}]$

Opens up algorithms for DD corrections, calibration,...

Implications for imaging: Wide-band effects

- To the first order, antenna primary beams scale with frequency
 - E.g., size of the PB changes 2x for EVLA bandwidths

$$I^{D} = \sum_{t} \sum_{v} PSF(v) * \left[PB(s, t, v) \cdot I^{Sky} \right]$$

- PB in general is rotation asymmetric
 - Frequency dependence of the PB is also directionally dependent

Time varying DD gains due to PB

S. Bhatnagar: Colloquium, Socorro, Feb. 11th 2011

Extension to mosaicking

$$V_{ij}^{Obs}(\nu) = S_{ij}(t) \left[A_{ij}(\nu, t) * V(\nu) \right]$$

- In the data domain, PB effects correspond to convolution
 It is included as part of the convolutional gridding
 - operation for Projection algorithms
- Mosaicking, polarization squint, pointing errors, etc. are a matter of putting the correct phase gradient
- $A_{ij} = A_i * A_j$: The functions can be computed in a antenna dependent manner
- Naturally accounts for heterogeneous arrays (ALMA)
- DD calibration algorithms can be designed to modify A_i to fit the data (e.g. Pointing SelfCal).

Wide-field wide-band imaging with the EVLA

•1.2-1.8GHz (4x128 MHz) •~25 microJy/Beam

•RSRO Projects (AB1345, Bhatnagar et al.)

- •Scientific goals - Spectral Index imaging - RM Synthesis
- Wide-band, wide-field imaging
 HPC

Effect of antenna pointing errors

Effect of antenna pointing errors

S. Bhatnagar: Colloquium, Socorro, Feb. 11th 2011

DD SelfCal algorithm: EVLA Data

- El-Az mount antennas
- Polarization squint due to off-axis feeds
 - The R- and L-beam patterns have a pointing error of +/- ~0.06 $\frac{\lambda}{D}$
- DoF used: 2 per antenna
- SNR available for more DoF to model the PB shape

- EVLA polarization squint solved as pointing error (optical pointing error).
- Squint would be symmetric about the origin in El-Az plane in the absence of antenna servo pointing errors.
- Pointing errors for various antennas detected in the range 1-7 arcmin.
- Pointing errors confirmed independently via the EVLA online system.

[paper in preparation]

DD SelfCal: General comments

• Pointing SelfCal formulation is generalization of DI SelfCal

Standard SelfCal (DI): $V_{ij} = (G_i \otimes G_j^*) V_{ij}^M$ Pointing SelfCal: $V_{ij} = (J_i^S \otimes J_j^{S^*}) * V_{ij}^M$

- Effects of PB/antenna pointing is purely Hermitian in the data domain in the absence of DI gains or in-beam phase etc.
 - I.e., amp-only effect in the image plane
- Fundamentally an antenna based effect
 - Difficult to decouple/interpret in the image plane
- Fundamentally a data-domain effect
 - Not an "image plane effect"
 - Unlike, e.g., effects of sky spectral index variations (a DD error)
- Clean works, but scale-sensitive methods work better

Similarly, Partitioning/SelfCal works, but DD SelfCal should work better!

I/O load

- Recent data with the EVLA: 100-500 GB
- Expect 20-50 passes through the data (flagging + calibration + imaging + human errors)
 - Effective data i/o: few TB
 - Typical disk I/O rates: 30-80 MB/s

- Exploit data parallelism
 - Distribute normal equations (SPMD paradigm)
- Deploy computationally efficient algorithms ('P' of SPMD) on a cluster

Computing load

- More data samples used for imaging
 - Few X 100-1000 frequency channels
 - 1-30 sec. Integration intervals
- More computing per gridding/de-gridding
 - Convolution support size increase for W- and A-Projection
- More images made for Multi-term MFS
 - Each term constitutes full gridding/de-gridding load
- Various optimization possible to balance between memory footprint and computing footprint
- Most operations are embarrassingly parallel

Cluster Computing

Golap, Robnett, Jacobs, Kern

Parallelization: Initial results

S. Bhatnagar: Colloquium, Socorro, Feb. 11" 2011

Parallelization: Initial results

- Continuum imaging: (No PB-correction or MFS)
 - Requires inter-node I/O (Distribution of normal equations)
 - 4-6x speed-up using 8-cores per node
 - I/O bound without async-I/O
 - Expected close to linear speed-up with async-I/O
 - Async-I/O in the process of being deployed
- Work in progress
 - Calibration: Gain, Bandpass, polarization
 - Flagging: simple flagging + possibly auto-flagging
 - Self-Cal
 - Simple data visualization

Summary

- Modeling various terms in the Natural Domain of information they represent
 - W-Term, Antenna Aperture effects in the visibility domain
 - W-Projection, WB A-Projection
 - Use in mosaicking as well
 - Extended emission, sky frequency- and polarizationdependence in the image domain
 - MS-MFS, Asp, ...
 - RM-Synthesis
 - Developing DD solvers to solve for for low-order models for Aperture illumination
 - Pointing SelfCal and beyond

What keeps us busy?

- Shooting for full-sensitivity full-polarization wide-band imaging
- Bug discovery and fixes (many thanks to FO, CC, JM-J, EF, JU,...)
- Re-worked the code to enable
 - Wide-band A-Projection
 - Heterogeneous arrays (ALMA)

- Next steps:
 - WB A-Projection + W-Projection
 - Integrate MS-MFS and WB A-Projection
 - Extend to mosaic imaging
 - Extend to full-polarization
 - Integrate with RM-synthesis

What keeps us busy?

- Projects in various stages of R&D
 - Automatic RFI detection/removal
 - Pointing SelfCal
 - An issues for ALMA and mosaicking in general
 - Asp-Clean based MFS, RM-Synthesis(?)
 - 1. Memory foot-print
 - 2. Reduce error bars on Spectral Index images
- Integrate with parallel computing framework for deployment on HPC platforms
- Multi-threading where possible (e.g. minor cycle)
- Develop pipelines or integrate with existing pipeline processing framework

Thanks

- Various testers of the bleeding-edge code
- Various members of the EVLA commissioning team
- Computing Staff
- CASA team
- Various people whose brain I often borrow...

Era of Data Deluge

- "My" reaction to Data Deluge skeptics
 - Beginning of telephone era: People reported shock lasting days after a phone call
- Much opposition is simply romantic

- Mathematics Tells us
 - Information technology is not magic
 - Extracting information from data is not a sure thing
 - Specific hard work on a case-by-case basis
 - You can learn what must be done

"Data! Data! Data! Challenges and

opportunities of the coming Data Deluge"

- David Dohono, Stanford Univ.

USNA Michelson Lecture, 2001

