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Introduction
• Sanjay Bhatnagar

– Algorithms R&D Group at the National Radio Astronomy Observatory

• NRAO: A NSF funded national observatory
– Build and operate large radio astronomy facilities: VLA/ALMA/VLBA

– Next-gen: ngVLA with 300 antennas spread across the US South-west

• Open source software for calibration and image reconstruction
– Widely used in the RA community internationally

– Runs on laptops, cluster, GPU/CPU,…,heterogeneous h/w

27 antennas, in NM
300 antennas in NM,UT,AZ,TX,MX
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The Very Large Array (NM, USA)

● Very Large Array
 

● 27 antennas

● Antennas movable
 on rails 
    1 – 27 Km radius

● Spread over 
  27 Km radius

● Size of the “lens”
   30 Km

● Frequency range
 300 MHz – 50 GHz
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Other RA Observatories in the world 

VLA
CARMA

LWA

ALMA

MeerKAT

PAPER

ASKAP

MWA

ATCA

GMRT

WSRT

LOFAR

SKA (to be built)



5S. Bhatnagar:  KUG 2023, Albuquerque, Dec. 14th 2023

Other RA Observatories in the world 
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Aperture Synthesis Imaging: Why?

• Single dish Resolution too low for many scientific investigations
– Limited collecting area + resolution limits sensitivity at low frequencies 

Single dish resolving power

Biggest steerable single dish
   = 100 m
   

100m

Wavelength
Dish Diameter
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Aperture Synthesis Imaging: Why? 

• Single dish Resolution too low for many scientific investigations
– Limited sensitivity/limits sensitivity at low frequencies 

Synthesis Array resolving power

Max. separation in VLA
   = 35 km
 
Resolution: ~ 350x better

35 Km

Wavelength
Max. separation between antennas
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Aperture Synthesis Imaging: How?

• An indirect imaging technique that collects data in the Fourier 
domain

– Many antennas separated by 10s – 100s Km

– Each pair of antennas measure one Fourier Component

– Synthesized aperture equal to the largest separation between antennas

The Fourier Plane
The Data Plane
The UV-Plane
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Aperture Synthesis Imaging: How?

• An indirect imaging technique that collects data in the Fourier 
domain

– Many antennas separated by 10s – 100s Km

– Each pair of antennas measure another Fourier Component

– Synthesized aperture equal to the largest separation between antennas

The Fourier Plane
The Data Plane
The UV-Plane
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Aperture Synthesis Imaging: How?

• An indirect imaging technique that collects data in the Fourier 
domain

– Many antennas separated by 10s – 100s Km

– Each pair of antennas measure another (one) Fourier Component

– Synthesized aperture equal to the largest separation between antennas

The Fourier Plane
The Data Plane
The UV-Plane
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Aperture Synthesis Imaging: How?

• An indirect imaging technique that collects data in the Fourier 
domain

– Many antennas separated by 10s – 100s Km

– All pairs with one antenna measure N-1 Fourier Component = 26

– Synthesized aperture equal to the largest separation between antennas

The Fourier Plane
The Data Plane
The UV-Plane
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Aperture Synthesis Imaging: How?

• An indirect imaging technique that collects data in the Fourier 
domain

– Many antennas separated by 10s – 100s Km

– All pairs with all antenna measure N(N-1)/2 Fourier Component = 351

– Synthesized aperture equal to the largest separation between antennas

Digital Backend Correlator
Massively Parallel H/w
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Aperture Synthesis Imaging: How?

• Aperture Synthesis
– Use Earth Rotation Synthesis to fill the Fourier plane

– All pairs with all antenna measures N(N-1)/2 Fourier Component

– Measure N(N-1)/2 x 2 Fourier components over 2 integration time =  702

– Synthesized aperture equal to the largest separation between antennas

Digital Backend Correlator
Massively Parallel H/w
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Aperture Synthesis Imaging: How?

• Aperture Synthesis
– Use Earth Rotation Synthesis to fill the Fourier plane

– All pairs with all antenna measures N(N-1)/2 Fourier Component

– Measure N(N-1)/2 x 10 Fourier components over 10 integrations = 7020

 

– Synthesized aperture equal to the largest separation between antennas

Digital Backend Correlator
Massively Parallel H/w



15S. Bhatnagar:  KUG 2023, Albuquerque, Dec. 14th 2023

Aperture Synthesis Imaging: How?

• Aperture Synthesis
– Use Earth Rotation Synthesis to fill the Fourier plane

– All pairs with all antenna measures N(N-1)/2 Fourier Component

– Fourier Components measured over 10 hr: O(1012 – 15)

– Data Size: 10s – 100s TB now      Up to Exa Bytes for SKA-class telescopes

– Data not on a regular grid.  

Digital Backend Correlator
Massively Parallel H/w
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Interferometric Imaging

• Raw image (FT of the raw data) is dynamic range limited

• Processing:   Remove telescope artifacts to reconstruct the sky 
brightness

• Image reconstruction is a High-Performance-Computing-using-
Big-Data problem 

Dynamic range:  1 : 1000Dynamic range:  > 1 : 1000, 000

Raw ImageReconstructed Image
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The Computing Problem

• Basic computing steps
1. Use FFT to transform to the image domain: Gridding + FFT

2. Image-plane deconvolution of the PSF :       Search and subtract on images

3. Inverse transform to the data domain:         De-gridding + Inv. FFT

Image deconvolution
Iterative in nature

Image DomainData Domain

Resample
On regular
grid

FFT

FFT-1Resample: Regular grid to
Irregularly sampled data

Use all data
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The Computing Problem: Why Gridding?

• Raw data is not on a regular grid
- FFT require re-sampling on a regular grid

Raw data Re-sampled
On grid

Raw image

FFT

u

v

Regular
Grid

Raw data

NU-FFT: But with specialized kernels
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Computing requirements

• N
data

 x N2
CF

 x Gridding FLOP + overheads

• ngVLA
:
 O(1013 - 14) x (10x10) x ...= ~50 PFLOP/s 

• SKA: O(1015) x ...  = ~ExaFLOP

• HPC + Big-Data
– Continuous data flow (24x7 observing)

– PFLOPS / ExaFLOPS to keep-up with the data rates

– 100s of Tera Bytes for a typical observing session

• Computing needs to be efficient and 24x7
– Not a one-shot experiment on a homogeneous super-computer 

• Requirement: Seamless computing 24x7 on a heterogeneous cluster

u

v
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Algorithm Architecture: Components 
view

P j
k +1

= P j
k

+ [H ]
−1 f (

∂ χ2

∂P j
k )

a.k.a. the  “Loop gain”

a.k.a. the “Major Cycle”

Compute Residual Image
 a.k.a. the “Minor cycle”
 
 Update Model Image

Imaging
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Scaling: On multi-CPU/cores hardware

 

ngVLA would need O(Million)-way parallization!

● Data scatter overheads
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Scaling on GPU: Using Kokkos 

ngVLA would need O(103)-way parallization!

Gridding+Degridding

Multi-core
CPU

Single CPU-core
+GPU

Multi CPU-cores
+GPU

~120x
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ngVLA would need O(103)-way parallization!
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• A gridder on a GPU using Kokkos (NGVLA Memo #05)

• What does it mean in real-life application?

– 200-pointing wide-band mosaic: 7-10 days  vs 2.5hr

Scaling in real-life

Gridding+Degridding

Multi-core
CPU

Single CPU-core
+GPU

Multi CPU-cores
+GPU

~120x

ngVLA would need O(103)-way parallization!
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Scaling: On Wide-area network (OSG)

UCSD

UofNE

UofW-M UofSyracuse

Int. UofF

NRAO

TACC?
Austin

CHTC

UIUC

Madsen, et al.

• Distributed High Throughput Computing: 
– Center for High Throughput Computing, U of W-M.

» PATh: A GPU cluster at a national scale

– AWS: CPU cluster

• Opportunistic computing + Edge-caching

• Work in progress
• Currently effort is resource-limited!

• More human and computing resources

• International resources
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Optimization: Hardware generations
• Scaling on the GPU: View from the “inside”

HPG is compute bound

NVIDIA T4 GPU

HPG is memory-bandwidth bound

NVIDIA V100 GPU

[Courtesy Jagannathan, Heriart]
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Issues, future work

• Ported one compute hot-spot using Kokkos
– O(100x) improvement compared to a CPU core, but still need O(103) GPUs!

– GPU occupancy remains low: < 50%

• Scaling with data volume (in GPU memory)  
– Runtime remains unchanged with data volume, No. of Streams

• I/O bandwidths
– Data store → Compute nodes → GPU

• Move more compute to GPU
– Calibration : Multiple iterations on data in GPU memory

– Compute CF in the GPU: OTF numerically, Analytical 

• Kokkos for logically partitioned GPUs (H100)?

• Performance of the same code on GPU and CPU?

• Decorations for Roofline model of a code segement?
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