GPU based imager for radio astronomy

GTC2014, San Jose, March 27th 2014

Rau, Bhatnagar, Green, Rupen

S. Bhatnagar, National Radio Astronomy Observatory, NM, USA P. K. Gupta, NVIDIA-India, Pune M. Clark, NVIDIA-US, CA

Introduction

- Sanjay Bhatnagar
 - Algorithms R&D Scientist at the National Radio Astronomy Observatory, Socorro, New Mexico

- Motivation:
 - Deploy all compute-intensive imaging operations on the GPU
 - Why? How? Listen on...

Overview of the talk

- Introduction to NRAO
 What is it? Why it is?
- Quick intro. to the scientific projects that pose the HPC problem

- Overview of RA imaging
 - What is needed for imaging with current & future telescopes

- Details of the current hot-spots
 - Motivate the three Proof-of-Concept (PoC) projects
 - Progress so far, future plans

National Radio Astronomy Observatory

- A NSF funded national observatory
- To build and operate large radio facilities
 - Operate three of the largest ground-based radio telescopes
 - » EVLA, ALMA, VLBA, GBT
 - Central Development Lab (CDL):
 - Digital Correlators for EVLA, ALMA, VLBA; digital back-end for the GBT
 - Off-line software for calibration, imaging and astronomical computing
 - » Open source
 - » Most widely used RA imaging software world-wide
 - » Runs on laptops, desk-tops, Compute Clusters
 - » Now exploring using GPUs to mitigate compute and memory footprint hotspots

The Very Large Array (NM, USA)

- Very Large Array
- 27 antennas
- Antennas movable on rails 1 – 27 Km radius
- Spread over 27 Km radius
- Size of the "lens"
 30 Km
- Frequency range 300 MHz – 50 GHz

Atacama Large MM Array (ALMA), Chile

- In partnership with EU & Japan
- •At an altitude of 16,500 ft
- 50 antennas
- Effective size of the lens: 3 Km
- Frequency range 100 GHz – 950 GHz
- Re-configurable with antennas movable on a special transporter.

Very Long Baseline Array (VLBA), US

- 10 antennas
- Antennas across the US
- Size of the "lens" few 1000 Km
- Frequency range 100 GHz – 950 GHz
- Angular resolution milli arcsec

Other RA Observatories in the world

Other RA Observatories in the world

Interferometric Imaging: Big Data

• Uses the technique of Aperture Synthesis to synthesize a "lens" of size equal to the maximum separation between the antennas

• Not a direct imaging telescope: Data is in the Fourier Domain

• Image reconstruction using iterative algorithms

Data volume with existing telescopes : 10 – 200 TB
 with SKA Telescope: Exa Bytes

Effective data i/o for image reconstruction: 10x

- Sensitivity improvements of 10x or more in modern telescopes
 - What was an ignorable/too weak an effect earlier, now limits the imaging performance of modern telescopes

- Need more compute-intensive imaging algorithms
 - Tera/Peta Flops now. Exa Flops SKA (soon....ish)

• Orders of magnitude more expensive algorithms for imaging using many orders of magnitude more data

Imaging algorithms in CASA for EVLA and ALMA The "aw-imager" for LOFAR (NL) – a modified version of CASA Imager ASKAP Imager (AU) optimized for large cluster computing

- Bottom line for computing
 - Tera Exa(SKA) scale computing using Tera Exa(SKA) Bytes of data to make Giga-Pixel images

• Full end-to-end processing will require a cluster

Computing hot spots

- Gridding / de-gridding:
 - Irregularly sampled data to a regular grid for FFT
- Computing Convolution Functions (CF):
 PoC 2
 - Computing convolution kernels for Gridding
 - » Pre-compute-n-cache OR On-demand computing
 - » Memory foot print issues

- Wide-band Image Reconstruction:
 - Requires convolutions of many large images
 - » Pre-compute-n-cache OR
 - » On-demand Computing using GPU

PoC - 1

PoC - 3

Scientific projects: Deep Imaging

- Requires high resolution, high dynamic range imaging
 - i.e. Big Data
 - Compute-intensive algorithms
- Large area surveys of the radio sky

- Dynamic range
 - Ratio of strongest to weakest Source: 10⁶
 - Dynamic range of raw images 10^{2-3}
- Need high resolution to reduce background sky-noise ("confusion noise")

Scientific projects: Deep Imaging

- Requires high resolution, high dynamic range imaging
 - i.e. Big Data
 - Compute-intensive algorithms
- Large area surveys of the radio sky

- Dynamic range
 - Ratio of strongest to weakest Source: 10⁶
 - Dynamic range of raw images 10^{2-3}
- Need high resolution to reduce background sky-noise ("confusion noise")

Scientific projects: Fast Imaging

- Transient sky
 - Storing data at high time resolution for later processing is not an option
 - Needs fast (near real-time) imaging \rightarrow as a trigger to store busts of data

- A short blip in time
 - Spike of ms in 10s of hours of data
- Data rate too high to be recorded at ms resolution
- Need fast imaging as a trigger to record short busts of data
- Need interferometric imaging to localize on the sky

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

Scientific projects: Fast Imaging

• Transient sky

- Storing data at high time resolution for later processing is not an option

- Needs fast (near real-time) imaging \rightarrow as a trigger to store busts of data

- A short blip in time
 - Spike of ms in 10s of hours of data
- Data rate too high to be recorded at ms resolution
- Need fast imaging as a trigger to record short busts of data
- Need interferometric imaging to localize on the sky

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

ms

- Single dish Resolution too low for many scientific investigations
 - Limited collecting area + resolution limits sensitivity at low frequencies

Single dish resolving power *Wavelength* Dish Diameter

Biggest steerable single dish = 100 m

- Single dish Resolution too low for many scientific investigations
 - Limited sensitivity/limits sensitivity at low frequencies

Synthesis Array resolving power *Wavelength* Max. separation between antennas

Max. separation in VLA = 35 km

Resolution: ~ 350x better

- Aperture Synthesis or Fourier Synthesis technique
 - An interferometric imaging technique (Nobel Prize in '74)

Each pair of antennas measure **one** Fourier Component

Many antennas separated by 10s – 100s Km

- Synthesized aperture equal to the largest separation between antennas
 - S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

- Aperture Synthesis
 - An interferometric imaging technique (Nobel Prize in '74)
 - Many antennas separated by 10s 100s Km
 - Each pair of antennas measure **another** Fourier Component

- Synthesized aperture equal to the largest separation between antennas

- Aperture Synthesis
 - An interferometric imaging technique (Nobel Prize in '74)
 - Many antennas separated by 10s 100s Km
 - Each pair of antennas measure **another (one)** Fourier Component

- Synthesized aperture equal to the largest separation between antennas

- Aperture Synthesis
 - An interferometric imaging technique (Nobel Prize in '74)

All pairs with **one** antenna measure N-1 Fourier Component = 26

Many antennas separated by 10s – 100s Km

- Synthesized aperture equal to the largest separation between antennas
 - S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

- Aperture Synthesis
 - An interferometric imaging technique (Nobel Prize in '74)
 - Many antennas separated by 10s 100s Km
 - All pairs with all antenna measure N(N-1)/2 Fourier Component = 351

- Synthesized aperture equal to the largest separation between antennas
 - S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

- Aperture Synthesis
 - Use **Earth Rotation Synthesis** to fill the Fourier plane
 - **All** pairs with **all** antenna measures N(N-1)/2 Fourier Component
 - Measure N(N-1)/2 x 2 Fourier components over 2 integration time = 702

- Synthesized aperture equal to the largest separation between antennas

- Aperture Synthesis
 - Use **Earth Rotation Synthesis** to fill the Fourier plane
 - **All** pairs with **all** antenna measures N(N-1)/2 Fourier Component
 - Measure N(N-1)/2 x 10 Fourier components over 10 integrations = 7020

- Synthesized aperture equal to the largest separation between antennas

- Aperture Synthesis
 - Use **Earth Rotation Synthesis** to fill the Fourier plane
 - **All** pairs with **all** antenna measures N(N-1)/2 Fourier Component
 - Fourier Components measured over 10 hr: **O(10¹¹⁻¹²)**

Up to Exa Bytes for SKA-class telescopes

- Data Size: 10s 100s TB now
 - Data not on a regular grid.
 - S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

- Aperture Synthesis Imaging
 - Indirect imaging: data in the Fourier domain
 - Incomplete sampling \rightarrow artifacts in the image

• Raw image (FT of the raw data) is dynamic range limited

Dynamic range: > 1 : 1000, 000

Dynamic range: 1:1000

- Processing: Remove telescope artifacts to reconstruct the sky brightness
- Image reconstruction is a High-Performance-Computing-using Big-Data problem

- Image reconstruction is an ill-posed Inverse Problem
 - $\mathbf{D} = \mathbf{A} \mathbf{I}^{\text{true}}$

D: The Raw Data
A: The Measurement Matrix
I^{true}: The True Sky Brightness distribution

• Recover I^{true} given D

 $\mathbf{A}^{-1} \mathbf{D} = \mathbf{I}^{\text{True}}$

- A is singular ==> Non-linear (iterative) algorithms required to reconstruct the Sky Brightness distribution
- Typically 10 iterations, using **ALL** the data in each iteration

Raw Data: 10 – 100 TB Effective data volume: 100 – 1000 TB

The Computing Problem

Basic computing steps

- 1. Use FFT to transform to the image domain: Gridding + FFT
- 2. Image-plane deconvolution of the PSF :
- 3. Inverse transform to the data domain:

Search and subtract on images De-gridding + Inv. FFT

The Computing Problem

- Basic computing steps
 - 1. Use FFT to transform to the image domain: Gridding + FFT
 - 2. Image-plane deconvolution of the PSF : Search and subtract on images
 - 3. Inverse transform to the data domain:
- Search and subtract on images De-gridding + Inv. FFT
 - 2 Supply Convolution Functions Gridding De-Gridding De-Gridding 1

Computing architecture

- Make images on the GPU
 - Use GPU as a Gridding + FFT server
 - CPU host for image reconstruction

Computing architecture

- Make images on the GPU
 - Use GPU as a Gridding + FFT server
 - CPU host for image reconstruction + GPU as a image convolution server

Computing architecture

- Fast imaging
 - 100s of image in milli seconds on the GPU
 - Search for peak on the GPU
 - If peak found, send a trigger to the host to save the data buffer on the disk

The Computing Problem: Why Gridding?

- Use FFT to transform to the image domain
 - Raw data is not on a regular grid

The Computing Problem: Why Gridding?

Use FFT to transform to the image domain ullet

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

The Computing Problem: Why Gridding?

• Use FFT to transform to the image domain

NRAO

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

The Computing Problem: Why Gridding?

- Gridding/De-gridding $\leftarrow \rightarrow 2D$ Interpolation via convolutional reulletsampling
- Convolution Function $\leftarrow \rightarrow 2D$ Weighting Function •

- Gridding/De-gridding $\leftarrow \rightarrow$ 2D Interpolation via convolutional resampling
- Convolution Function $\leftarrow \rightarrow 2D$ Weighting Function

- Gridding/De-gridding $\leftarrow \rightarrow$ 2D Interpolation via convolutional resampling
- Convolution Function $\leftarrow \rightarrow 2D$ Weighting Function

- Gridding/De-gridding $\leftarrow \rightarrow$ 2D Interpolation via convolutional resampling
- Convolution Function $\leftarrow \rightarrow 2D$ Weighting Function

- Gridding/De-gridding $\leftarrow \rightarrow$ 2D Interpolation via convolutional resampling
- Convolution Function $\leftarrow \rightarrow 2D$ Weighting Function

- Divide the grid into sub-grids, each with multiple pixels
- Map each sub-grid to a CUDA Block of threads
 - One thread per sub-grid pixel

For each data D_i

Calculate the range of the CF centered on D_i If this block in range For all threads in range local_Grid_j += $D_i * Cf_{i-j}$ Write local Grid to GMEM Grid

For Data 1

Calculate the range of the CF centered on D

this block in range

For all threads in range local_Grid, += D, * Cf_{i,i}

Write local_Grid to GMEM Grid

Sub-grids/Blocks of 10x10 threads

For Data 2

Calculate the range of the CF centered on D

this block in range

For all threads in range local_Grid, += D, * Cf,

Write local_Grid to GMEM Grid

Sub-grids/Blocks of 10x10 threads

For Data 3

Calculate the range of the CF centered on D

this block in range For a

Write local_Grid to GMEM Grid

Sub-grids/Blocks of 10x10 threads

- No thread contentions
 - No atomic-operations required
- But current implementation is limited by global memory accesses

- Solution: reduce GMEM access
 - Coarse-grid the raw data / sort the raw data
 - Copy data required for each block to SMEM
- Cache-coherent access
 - Re-arrange GMEM buffers

Convolution Functions (CFs)

- Convolution Functions encode the physics of the measurement process
- Prolate Spheroidal: As anti-aliasing operator
- W-Term: Account for Frensel Propagation term
- A-Term: Account for antenna optics

Bhatnagar et al. (2008)

Cornwell et al. (2008)

- Final function: Convolution of all three
 - PS * W-Term * A-Term
 - N×N = 10×10 few x 100×100

In use in CASA (NRAO), "aw-imager" for LOFAR (NL), ASKAP Imager (AU)

Compute CFs on the GPU: PoC - 2

- CFs as tabulated functions in the computer RAM
- Minimize the quantization errors, by over-sampling
 - Typical over-sampling 10x 100x
- Memory footprint gets prohibitive
 - Total Memory = $10^{3-8} \times 1000$ s of CF = 10s 100s GB

PoC-2: Can we compute the CF s on-the-fly (as against compute-n-cache)?

– Compute + Multiply + FFT

Status-1: CF Computations – PoC-2

Status-1: CF Computations – PoC-2

Status-1: CF Computations – PoC-2

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

54

Status-1: Compute CFs on GPU – PoC-2

• Negligible I/O – mostly computing

- GPU: Pre-compute A-Term and cache it in GPU GMEM
 - Compute W-term OTF one thread per pixel
 - Multiple A x W
 - FFT
- Sizes involves: 2K x 2K Complex images
- GPU: 1024 CFs made in ~1 ms.
 - ~20x faster than CPU
 - Room for improvement by another 2 3x

Image reconstruction: PoC - 3

• Simplest algorithm: CLEAN

Iteratively search for the peak in the Raw image and subtract the PSF image at the location of the peak

- Most complex algorithms: Multi-scale Multi-freq. Synthesis (MS-MFS)
 - Requires convolutions of large images +
 - Requires CLEAN
- Use GPU as a convolution-server PoC 3
 - Do deconvolution on the GPU (future)

Status-2: Image deconvolution – PoC-3

- Wide-band image reconstruction
 - Multi-Term Multi-Scale

$$- N_{terms} = 2 - 3 \qquad N_{scales} = 3 - 10$$

- Computing cost
 - N_{terms} gridding cycles
 - Convolutions of $N^2_{Terms} \times N^2_{scales}$ images
 - Search in N_{terms} images

Status-2: Image deconvolution – PoC-3

- High memory footprint: High resolution wide-band imaging currently not possible
- Solution being pursued
 - Use GPU as an enabler technology (high resolution wide-band imaging)
 - Compute the multi-scale images OTF
 - Use GPU as a convolution-server

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

Low DR, fast imaging needs

- Transient source localization on the sky
 - Data rates too high for store-n-process approach
 - Need fast, low-DR imaging to trigger storage of short busts of data
- EVLA: Data dumps every 5 ms
- Computing
 - Make 119 images (DM search): 1K x 1K size
 - Trigger storage if peak > threshold

- Current CPU based processing (14 nodes x 16 cores)
 - ~ 10x slower than real-time

Fast-imaging GPU pipeline

- Simplify the gridder
- On-GPU FFT
- On-GPU peak detection
 - If (peak > threshold) trigger data storage

- Compute to I/O ratio ~ $O(10^{5-6})$
 - Data (@900MB per sec) goes into the GPU
 - Only trigger info. Comes out

Fast-imaging GPU pipeline estimates

• Imaging is FFT-limited

- GPU: Gridding + FFT + Peak search
 - Once per $\sim 1 \text{ ms}$
 - 50 (100x?) faster than single CPU core

- Initial estimates for fast-imaging (work-in-progress):
 - 5 (2?) K20Xs become comparable to 14x16 CPU cores
 - » 10x slower than real-time
 - 50 (25?) K20X GPU cluster can enable real-time processing

Conclusions, future work

- The algorithms for the three hot-spots ported on GPU (the three PoCs)
- Work in progress on the gridding algorithm
 - Minimize Global Memory transactions, other optimizations
 - Take decision about which algorithm to use
- Optimize the CF severe code and image convolution code
- Integrate to make a imaging pipeline
- Scientifically test the results
 - Measure actual run-time performance with real data
- Prototype and check Fast Imaging pipeline
 - If the estimates of run-time improvements hold up, deploy for real-time fast-imaging

Back up slides

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

Number of CFs required

- Not all CF terms can be computed analytically
 - Final convolution function can't be computed analytically

 No. of CF s required for wide-band, full-polarization high-dynamic range imaging is large

Total number of CF s : 10s – 1000s

- Expensive to compute
 - Current solution: Pre-compute and cache
 - Memory Footprint issues

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

Computing architecture

- Make images on the GPU
 - Use GPU as a Gridding + FFT server
 - CPU host for deconvolution

• GPU as a Image Convolution + on-demand CF server

Computing architecture

- Make images on the GPU
 - Use GPU as a Gridding + FFT server
 - CPU host for deconvolution
- GPU as an Enabling Technology
 - GPU as a Convolution and Convolution Functions server
 - Where GPU RAM is not sufficient to hold all CF and buffers for MS-MFS
 - Imaging + Deconvolution loops on the Host
- GPU as a trigger for fast-transients
 - 100s of images from a given set of data
 - Image + search for transients on the GPU

Aperture Synthesis Imaging: How?

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

NRAO

Aperture Synthesis Imaging: How?

- Aperture Synthesis
 - An interferometric imaging technique (Nobel Prize in '74)
 - Many antennas separated by 10s 100s Km
 - Each pair of antennas measure **another (one)** Fourier Component

- Synthesized aperture equal to the largest separation between antennas

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

Gridding on the GPU: PoC - 1

• Each data point is multipled by a NxN complex Convolution Function followed by NxN additions to the Global Grid

•
$$N_{data} \times N_{CF}^2 \times 8 FLOP + overheads$$

= $O(10^{10-12}) \times (10 \times 10) \times 8.2 = 100s TFLOP$
 $\times (100 \times 100) \times 8.2 = \sim PFLOP$

• SKA

 $O(10^{15}) \times ... \times 8.2 = \sim ExaFLOP$

- Gridding cost dominates computing load for all imaging
- Compute to I/O ratio: 10²⁻⁵

Massively Parallel H/W should help: PoC 1

- Gridding / de-gridding:
 - Dominates to cost of High Dynamic Range imaging
- Compute to i/o ratio: 10^{2-5}
 - Dominant cost for most imaging
 - Wide-band imaging: comparable to the cost of the deconvolution step
- Scaling:
 - Run-time cost: (data volume) x (CF size)
 - W-, AW-Projection: $10^{12} \times 10^{2-5}$ FLOP
 - A-Projection: $10^{12} \times 10^{2-3}$ FLOP

- Existing literature
 - GPU: Cornwell et al. (2010), Romien (2012), Daniel Mascot (2014)
 Non-imaging: Margo et al. (2013),
 FPGA: Clarke et al. (2014)

70

Gridding

Status-2: Image deconvolution – PoC-3

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

Status-1: CF Memory footprint – PoC-2

• Negligible I/O – mostly computing

- Tabulated CF requires oversampling to minimize quantization errors
- Memory per CF for high DR imaging with the EVLA:
 - Oversampling: 100; Pixels: 2K x 2K = 8 Mbytes
 - No. of CF s : 100 W-Terms x 100-ATerms = 10^4
 - Total memory footprint : 80 GB
- Memory footprint for SKA several orders of magnitude larger

Conv

Sridding → FF
Status-3: Gridding – PoC-1 (on-going)

- Solutions: Load balancing
 - Non-regular sub-grids

S. Bhatnagar: GTC 2014, San Jose, USA, March 27th 2014

Gridding

Image

Conv