

Socorro, New Mexico

Deconvolution: Problem definition

- Interferometers measure the data in Fourier space
- Final product needed is the image

Measurement Equation:

F: Fourier Transform operator

The goal is to estimate the Model Image (I^{M}), given the measurement (V) and an estimate of the PSF (B).

 $V = F I^{D} + noise$

 $I^{D} = R * I^{M}$

- Inverse of the Beam Matrix does not exist. Direct methods for deconvolution are not practical
- Represent $I^{M} = \sum_{k} P(p_{k})$: *P* is the Pixel Model and p_{k} are the Degrees of Freedom (DOFs)

Deconvolution: As an optimization problem

• χ^2 is an optimal estimator for a gaussian random process (the noise). $\chi^2 = \sum [V^{Obs} - FI^M]^T W [V^{Obs} - FI^M]$

Minimize:
$$\chi^2$$
 w.r.t. I^M

- Step size $\propto \frac{\partial \chi^2}{\partial p_k} = -2 \sum_k [I^D B * I^M] [\frac{\partial P}{\partial p_k}]$ Residual image provides the update direction
- χ^2 is an optimal estimator provided the model for the data fundamentally separates signal from noise

Fitting individual pixels will result into over-fitting

Scale-less deconvolution:

• Scale (correlation length) fundamentally separates the signal from the noise.

•
$$I^{M} = \sum_{k} A_{k} \delta(x - x_{k})$$

The image is decomposed into delta functions at discrete pixel locations (quantized). A_k is the only parameter.

- Clean Iterations: $I_i^M = I_{i-1}^M + \alpha Max(I_i^R)$
- Each pixel is an independent DOF
 - Dimensionality of the search space: No. of pixels in the Box
 - •Minimize along the axis of maximum derivative

Scale-less deconvolution:

- Regularization:
 - Box (limit the search space)
 - Maximum number of components (limit over-fitting)
- MEM: Constrained minimization: $\chi^2 + \lambda$ Entropy
- Example: Clean (50K components)

Diagonal approximation: Hessian: H ~ H_{ii}

Adaptive Scale Pixel (ASP) Model:

- Interferometric PSF has widespread side lobes
 - Diagonal or band-diagonal approximation
 of the Hessian is not sufficient
- Decompose the image into a scale sensitive basis (Aspen).

True PSF

- Minor cycle:
 - Find a set of 'active' Aspen {A}
 - Solve for the best-fit set $\{A + New Asp at Max: I^R\} = \{A_i\}$
 - Compute: $I^{R}=I^{D} B^{*}\{A_{i}\}$
- Major cycle:

Compute: $V_i^R = V^O - FI_i^M$ and $I_i^R = FV_i^R$

Asp deconvolution: Example

- Minimizes the number of DOFs used
- Iterations are not independent

The reconsturcted image

The Asp model image

The Clean reconstructed image

500 Asp reconstruction

Slower: Step size computation needs convolution

Asp deconvolution: Features

- Sensitive to the local scale and SNR
 - Detects overlapping and well separated scales equally well
 - Uses a continuous range of scales and positions

Asp deconvolution: ...Features

• Uses continuous range of scales and positions

- Uses least DOFs: An order of magnitude less compared to Clean/MSClean (50000/8000 vs. 600)
- Not very sensitive to boxing

Optimization: Ageing of Aspen

• Not all Aspen remain significant/active

...Optimization: Dimensionality reduction

• Adaptively determine the set of 'active' Aspen

• Merger of Aspen

...Optimization...

- Use approx. PSF to determine the set of active Asp Approximate PSF = $\sum_{b} P(p_{b})$
- Product and convolution of Aspen is another Asp. Approximate H_{ij} can be analytically computed $H_{ij} \approx 2 \sum \left[\sum_{b} P(p_b) \right] * [f(p_j) P(p_j)] [f(p_k) P(p_k)]$

Asp decomposition of the PSF

Work in progress:

• Limits on inner and outer scales

- Non-symmetric pixel model with tighter support
- Full Hessian to determine the set of active Aspen
- Include other constraints (e.g. flux at each pixel>0)
- Integrate the code with AIPS++