Benchmarking in AIPS+H+

Sanjay Bhatnhagar
NRAQO, Socorro

Approach to benchmarking

* Develop easy-to-run tools

Populate the AIPS++ Benchmark module

Make same and repeatable measurements

* Develop conceptual understanding of the compute, 1/0 and other
major costs of the algorithms

* Reduce (eliminate) extraneous parameters

e Understand performance curves (and not spot measurements) as
a function of the problem size

e Start from the ssimplest, but realistic problem size

Work so far...

e |magere-gridder optimization

- Low level optimization (Brouw)

- Achieved a factor of ~10 improvement. Real-time image re-gridding
possible

e Interferometric imaging and calibration: Study of the
algorithms and the associated 1/O costs

e Equivalent scripts for other popular packages (AlPS,
Miriad)

* Profiling: Very useful and in progress using standard GNU
tools

* Regular profiling builds of AlIPS++

* Dedicated computer for benchmarking

— Need isolation and controlled environment

Work sofar...

e Developed benchmark.g

Control on algorithms, problem size,

data size, Table system parameters,
memory model...

e AL MA data size tests

- First cut a&a ALMA TI filler
(Rusk)

- Iramcalibrater compared with
CLIC.

e Well known Dbottle-necks
being optimized

 Profiling and optimization
IN progress

Table 1.1381: Table for continuum VLA 1M rows dataset benchmark
Common part of the benchmark code: 'CC-SF-VLAC-UIM-SP1-’

Benchmark code Dataset Nspw Stokes | Wgt. Npixel Nchan Nclean
I-UN-512-C1-1000 vlacIM | 1 1| UN| 512 1| 1000
IQUV-UN-512-C1-1000 |vlacIM | 1 IQUV| UN| 512 1| 1000
I-UN-1024-C1-1000 vlacIM | 1 1| UN| 1024 1| 1000
IQUV-UN-1024-C1-1000 vlaciM | 1 IQUV | UN| 1024 1| 1000
|- UN-2048-C1-1000 viaciM | 1| I UN| 2048) 1| 1000
IQUV-UN-2048-C1-1000 vlaciM | 1 IQUV | UN| 2048 1| 1000
I-NA-512-C1-1000 vlacIM | 1 1| NA| 512 1| 1000
IQUV-NA-512-C1-1000 vlacIM | 1 IQUV | NA| 512 1| 1000
I-NA-1024-C1-1000 vlacIM | 1 1| NA| 1024 1| 1000
IQUV-NA-1024-C1-1000 | vlacIM | 1|IQUV | NA| 1024| 1] 1000
I-N A-2048-C'1-1000 vlacIM | 1 1| NA| 2048 1| 1000
IQUV-NA-2048-C1-1000 vlacIM | 1 IQUV | NA| 2048 1| 1000

Table 1.1384: Table for VLA calibrator benchmark (for "G’ and 'T)’" Jones).

Benchmark code Data |Compressed? |Jones | NAnt | SNR [NSollnt
CALVLAU-G-27-10-100 |calvlac27s10 fits Nope, G| 27 10 100
(CALVLAU-D-27-10-100 |calvlac27s10fits | Nope| D 27| 10 100

Table 1.1385: Table for FITS UV read benchmark (import visibility data into AIPS++
from FITS files). Common part of the code is ' FUV-RD-VLL'

Benchmark code Dataset Mode Nchans Compressed? | Data size
C-U125K-C1 vlac125kfits | Continuum 1 False 125K
C-UIM-C1 | vlaclm fits | Continuum | 1| False | M
L-U125K-C64 |vlal125K 64Chan fits | Line| 64| False| 125K

Results; General

Al PS performance curves were taken as the 'baseline
(Miriad is 2x faster than AlPSthough!)

Al PS++ default settings too conservative

- Memory/CPU usage monitoring indicated memory model too conservative
for present day computers

- Default settings can be (should be?) made computer-resource-aware

Burnt-in assumptions for memory model in some critical
parts of the code

Redundant (expensive) operations

Profiling ultimately dug out a few real & 'dormant bugs

Results; Wdl-known mistakes

* Tiling In the construction of Tables is an important
parameter

e Array access pattern: can be expensive if done the wrong
way

* | nadvertent use of copy vs. reference semanticsis expensive

e Resultsinto excessive memory copies

e Use of objcopy() should be minimized

e Table creation may be expensive

e Used by ArrayL atticein tiling mode

e Minimize Table creation inside tight loops

e Strictly use only OSInfo() class for memory model

Results; ALMA Tests

e Pearformance studied as a
function of data-rate

(Rusk)

* |maging appearsto scale
well

e Hardware/compilersfactor
In as significant parameters

 Understand the scaling asa
function of various
parameters

e Morework needed to
understand the differences
IN these curves

)
s
(8]
o
o
o

400.00
350.00
300.00
250.00
200.00
150.00
100.00
50.00
0.00

Elapsed Wallclock Time (s

Calibration Time (seconds)

P

e

0

10

20

30 40

50

60

70

Number of Antennas [1min integration, 120min obs, 32

channels]

-+ AMD 1.6GHz, 1GB RAM — P4 2.53GHz, 512MB RAM

512x512 Imaging Time (seconds)

N

L

._—:::’—ﬁ"/_-

0

10

Number of Antennas [1min integration, 120min obs, 32

20

30 40

channels]

50

60

70

-+ AMD 1.6GHz, 1GB RAM = P4 2.53GHz, 512MB RAM

Results:|RAM Calibrater Tests

 First cut at iramcalibrater benchmarking
(Rusk/L ucas/Gol ap)
No. of antennas. 64
Calib. cycle AIPS++ AIPSH+ CLIC

(no plots)
(sec) (sec) (sec)
RF 2646 1818 2187
Phase 1404 804 942
Amp 2502 2076 708

* AIPS++ overheadsinsignificant

e AIPS++ code not yet fully optimized

* RF & Phase solvers usethe same enginein AIPS++ and
CLIC: runtime within 10-20% of each other

e Amp: same solver, but Al PS++ includes apply()

Results. |mager
e Clark-CLEAN algorithm

350 |-

AIPS++ default

(one of themany in
Al PSt++)

e Recognize'minor' /subtle : | I

differencesin the //

Implementation e
- AIPS uses Cotton-Schwab e
variant
e FFTW: optimize data
locality and in-memory
copies
e Threaded FFT: useful on | =
ubiquitous multi-CPU

machines

Results, Calibrater

e Gain and band-pass

calibration was not optimal
(fixed) N

- 2300 | Default settings
)

e Slot hunting algorithmwas : |
non-optimal (fixed)

* PrOfi I e dOmi natm by | Ower i _h — T e— P xPrea\f/Q:SOIInt
level calls SR -

 Morework needed once
these major bottlenecks are
removed

Gain and polarization |eakage
calibration comparable to AIPS
till ~200 solution intervals.

Results: 1/0 test (not well under stood)

e Measurel/O costs as
seen by the Al PS++
‘algorithm layer

Runtime (sec)
.

e Table system's cache-hit
rate was >99%

10 F
AIPS
e Need morework lmee—r————
0 500 1000 1500 2000 2500 3000 3500 4000 4500
PSF s)

| essons lear ned

 Benchmarks are a measure in a multi-dimentional space

 Requires careful analysis and understanding of the software and the
hardware platform

« Various axis are not often orthogonal

* Benchmarking and optimization is better done closer to
code development than much later.

* Profiling isthe single most useful tool.

* No fundamental hot-spots (IMHQO!)

...continued

* AIPS+H+ framework is highly configurable

 Memory model isuser configurable

« Tablel/O isconfigurable (need to bring it to the user level?)

e Smarter automatic (computer resource-aware) settings is an
enticing possibility

e Better Technical documentation

 Cost analysisfor developers

e Do'sand Don't 'sfor developers

