
Benchmarking in AIPS++

Sanjay Bhatnagar

NRAO, Socorro



Approach to benchmarking

● Develop easy-to-run tools

        Populate the AIPS++ Benchmark module 

        Make same and repeatable measurements

● Develop conceptual understanding of the compute, I/O and other 
major costs of the algorithms

● Reduce (eliminate) extraneous parameters

● Understand performance curves (and not spot measurements) as 
a function of the problem size

● Start from the simplest, but realistic problem size



Work so far...
● Image re-gridder optimization

– Low level optimization (Brouw)

– Achieved a factor of ~10 improvement. Real-time image re-gridding 
possible

● Interferometric imaging and calibration: Study of the 
algorithms and the associated  I/O costs

● Equivalent scripts for other popular packages (AIPS, 
Miriad)

● Profiling: Very useful and in progress using standard GNU 
tools

● Regular profiling builds of AIPS++ 

● Dedicated computer for benchmarking

– Need isolation and controlled environment



Work so far...
● Developed benchmark.g

    Control on algorithms, problem size, 
data size, Table system parameters, 
memory model...

● ALMA data size tests 
– First cut at ALMA TI filler 

(Rusk)

– Iramcalibrater compared  with 
CLIC.   

● Well known bottle-necks 
being  optimized

● Profiling and optimization 
in progress



Results: General

● AIPS performance curves were taken as the 'baseline'  
(Miriad is 2x faster than AIPS though!)

● AIPS++ default settings too conservative

– Memory/CPU usage monitoring indicated memory model too conservative 
for present day computers

– Default settings can be (should be?) made computer-resource-aware

● Burnt-in assumptions for memory model in some critical 
parts of the code

● Redundant (expensive) operations

● Profiling ultimately dug out a few real & 'dormant bugs'



Results: Well-known mistakes
● Tiling in the construction of Tables is an important 

parameter
● Array access pattern: can be expensive if done the wrong 

way

● Inadvertent use of copy vs. reference semantics is expensive

● Results into excessive memory copies

● Use of objcopy() should be minimized

● Table creation may be expensive

● Used by ArrayLattice in tiling mode

● Minimize Table creation inside tight loops

● Strictly use only OSInfo() class for memory model 



Results: ALMA Tests
● Performance studied as a 

function of data-rate

   (Rusk)
● Imaging appears to scale 

well
● Hardware/compilers factor 

in as significant parameters
● Understand the scaling as a 

function of various 
parameters

● More work needed to 
understand the differences 
in these curves



Results:IRAM Calibrater Tests
● First cut at iramcalibrater benchmarking 
(Rusk/Lucas/Golap)

     No. of antennas: 64
     Calib. cycle          AIPS++      AIPS++          CLIC
                                                     (no plots)
                                     (sec)           (sec)              (sec)
         RF                       2646           1818             2187
         Phase                   1404            804               942
         Amp                    2502           2076              708

●  AIPS++ overheads insignificant
●  AIPS++ code not yet fully optimized
●  RF & Phase solvers use the same engine in AIPS++    and 
CLIC: runtime within 10-20% of each other

●  Amp: same solver, but AIPS++ includes apply()



Results: Imager
● Clark-CLEAN algorithm 

(one of the many in 
AIPS++)

● Recognize 'minor' /subtle 
differences in the 
implementation

– AIPS uses Cotton-Schwab 
variant

● FFTW: optimize data 
locality and in-memory 
copies

● Threaded FFT: useful on 
ubiquitous multi-CPU 
machines



Results: Calibrater

● Gain and band-pass 
calibration was not optimal 
(fixed)

● Slot hunting algorithm was 
non-optimal (fixed)

● Profile dominated by lower 
level calls

● More work needed once 
these major bottlenecks are 
removed

Gain and polarization leakage 
calibration comparable to AIPS 
till ~200 solution intervals.



Results: I/O test (not well understood)

● Measure I/O costs as 
seen by the AIPS++ 
'algorithm layer'

● Table system's cache-hit 
rate was >99%

● Need more work 



Lessons learned

● Benchmarks are a measure in a multi-dimentional space 

● Requires careful analysis and understanding of the software and the 
hardware platform

● Various axis are not often orthogonal

● Benchmarking and optimization is better done closer to      
code development than much later. 

● Profiling is the single most useful tool.

● No fundamental hot-spots (IMHO!)



...continued

● AIPS++ framework is highly configurable

● Memory model is user configurable

● Table I/O is configurable (need to bring it to the user level?)

● Smarter automatic (computer resource-aware) settings is an 
   enticing possibility  

● Better Technical documentation

● Cost analysis for developers

● Do's and Don't 's for developers


