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Abstract

Flagging RFI affected data from recorded radio astronomy data sets is an
inevitable first step in the process of data analysis. Routine manual examina-
tion of increasingly large data sets is no longer feasible. This report describes
the design and implementation of an automatic RFI identification and flagging
algorithm for radio interferometric data sets. RFI affected antennas,channels
and timestamps are identified from the autocorrelation data recorded at each
antenna, and all visibilities obtained from corrupted data in either antenna of
the corresponding baseline pair are flagged. The current version of the program
is in use at the GMRT.

1 Introduction

At low radio frequencies, stray electromagnetic transmissions often interfere with the
incoming radiation from a source, thus corrupting the data being recorded. Sources
of Radio Frequency Interference (RFI) may be external (satellite and aircraft radar,
wireless network and TV/radio transmissions) as well as internal (antenna cross-talk,
imperfect Faraday cages). Flagging involves the identification and masking of RFI
affected data points, and is an inevitable step in standard data analysis.

RFI identification and removal, is usually done manually, by visual inspection of the
data. This is a time-consuming and highly subjective process. Also as data volumes
grow, it is not practical for an observer to examine all the data and manually find and
mask corrupted data points.

This work involves the design, implementation and testing of an algorithm that par-
tially automates this process of RFI identification and flagging for GMRT data.
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2 Framework and Assumptions

The total power M(ν, t), recorded at each antenna, can be modeled as follows.

M(ν, t) = [Psky(ν, t)Gant(ν, t) + RFI(ν, t)Gant(ν, t) + Prec(ν, t)] ∗ Grec(ν, t) (1)

where Psky is the source power, RFI(ν, t) is the RFI and Prec is a measure of the Trec.
Gant and Grec are complex gain factors due to the antenna and receiver electronics.

This gives

M(ν, t) = [Psky(ν, t)Gant(ν, t)Grec(ν, t) + Prec(ν, t)Grec(ν, t)]+RFI(ν, t)Gant(ν, t)Grec(ν, t)
(2)

Assuming broadband noise, the power at the output of the baseband system is

M(ν, t) = P (ν, t) + (RFI(ν, t) ∗ g(ν, t)) (3)

where
P (ν, t) = Psky(ν, t)Gant(ν, t)Grec(ν, t) + Prec(ν, t)Grec(ν, t) (4)

and g(ν, t) = Gant(ν, t)Grec(ν, t)

In interferometry, each RFI source can either be local to a particular antenna, or may
affect a group of (or all) antennas.

The effects of RFI are most clearly seen in the autocorrelated visibilities of individual
antennas. In cross correlated visibilities, the main effect is an increased effective Tsys.
(If the RFI affects only one of the antennas in the baseline pair, this is the only way
the RFI is visible in the cross correlations).

When both antennas in a baseline pair are affected by RFI, the effect of source fringe
correction results in RFI fringing at rates proportional to the projected baseline length.
In long projected baselines where the integration time length spans several cycles of
the RFI fringes, there is no net increase in mean flux and there is only an increased
noise. In short projected baselines, where the integration time may not span multiple
RFI fringe cycles, there can be a net increase in mean integrated flux.

This algorithm focuses on flagging visibilities for all baselines of an antenna, based on
the RFI detected in the autocorrelations of that antenna. A direct flagging scheme
will involve detecting antenna based RFI from autocorrelation data, and flagging all
cross correlated visibilities formed from antenna pairs where either one or both are RFI
affected.

This algorithm has been implemented in Octave(Matlab) and ’C’. It is adapted to the
GMRT database formats, and produces a text flag file,in a format readable by AIPS.
It has also been partially implemented as a glish client in AIPS++ and thus can be
applied to data stored as a measurement set in AIPS++.
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3 Algorithm for Automatic RFI Identification and

Flagging

The algorithm operates on the self correlations of each antenna over all scans. The
analysis works on two dimensional data sets, comprising of self correlation amplitudes
as a function of channel number (128 channels) and timestamps (across the time range
of a scan).

The RFI is assumed to be narrow-band, and localized in frequency. The source flux per
channel is assumed to not vary erratically over the time-range of an observation scan.
Any flags already present in the system will be taken into account while examining the
data, but not modified.

The following is a description of the various steps and heuristics that have been adopted,
to detect and flag RFI affected data points.
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Figure 1: Mean Amplitude of all Antennas

3.1 Identification of live antennas

The mean of the entire two dimensional data set, is first calculated to identify if a
particular antenna is ’dead’ or not. If the mean value is below a user defined threshold,
the antenna is assumed to be dead, and above it, to be good.

A plot of the Mean amplitudes for all antennas, as well as the spread of individual
data points, for each antenna across the time-range of an observation scan, is shown
in Figure 1.
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3.2 RFI identification in time (per channel)

Data for each channel is then examined separately, over the entire time-range of the
scan, and sharp peaks corresponding to sudden erratic disturbances are flagged.

This is based on the assumption that the data in a particular channel, does not change
significantly during the scan time interval. Any variation that may happen, is due to
a change in antenna gains, which is gradual, and will contribute to a general slope in
the data values. Hence, a linear fit to the data, will suffice to model this slope.

For a particular channel, a one dimensional data set is obtained with values varying
with time. A straight line is fitted to this data set and deviant points are identified
with respect to this fitted straight line. The measure of ’goodness’ of a data point,is
the magnitude of the difference between itself, and the value of the fitted line at that
point, in comparison to the standard deviation of the one dimensional data set.

A user specified tolerance level, given as a multiple or fraction of the standard deviation,
with respect to the linear fit, is used to decide which data points are to be flagged.

This process of fitting a straight line to the data, and flagging data points with respect
to it, is repeated until the standard deviation stops changing significantly. In each
iteration, the linear fit is calculated after discarding the data points that were flagged
in the previous iteration.

This operation, performed on all channels separately, identifies erratic RFI, present for
only short time ranges within the scan.

For RFI that is present over more than half the duration of the scan, the fitted line, is
itself biased, and does not provide a good reference to detect any RFI. Hence this first
stage will detect only intermittent or erratic RFI, affecting only short time ranges in
the scan.

3.3 Bandpass RFI identification (per time-stamp)

In order to identify sustained RFI in any channel, data has to be examined, as a function
of frequency. Data remaining after the flagging of the previous step, is averaged over
time, for each channel, resulting in a one dimensional data set corresponding to an
effective bandpass of that antenna, for that scan. This can be compared to looking
at the bandshapes of the data, at the output of the baseband system (as seen by the
correlator).

This corresponds to removing the time dependence of the variation of the data left.
Channels with sustained RFI across the duration of the scan, will show up as peaks
in M(ν), a one dimensional data set obtained by averaging the data per channel, over
the time-range of the scan.

Therefore from Eq. 3
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M(ν) = P (ν) + RFI(ν) ∗ g(ν) (5)

where RFI(ν) is sustained RFI as a function of frequency.

This formulation requires the following simplifying assumptions.

The system noise and all other noise, except for RFI, is taken to be broadband, and the
signal from the sky, including the RFI is assumed to correspond to far-field radiation.
The data is examined at the output of the baseband system, without considering the
systematics of the specific parts of the system affecting the data, before and up to the
baseband system.

In equation 5 if P (ν) is known a priori, then from the observed M(ν) (data averaged
over time, for each channel), and P (ν) one could identify RFI(ν) and flag it. However,
since P (ν) is not known, it can only be estimated from the observed M(ν). This can
be done by an iterative scheme, that identifies sharp variations in M(ν) and smooths
over the base of the RFI peaks, in the estimation of P (ν).

The algorithm used to estimate P (ν) can be outlined as follows..

A piecewise polynomial is fitted to M(ν), smoothly interpolating across the bases of
any sharp peaks. This, if accurate, can be thought to represent P (ν).

The first step is to identify sharp peaks in M(ν), assuming that RFI is usually narrow-
band, and has a signature localized in frequency. Also since the bandpass is supposed
to be inherently smooth, any large sharp deviations, would most probably correspond
to RFI.

The polynomial fitting, incorporates the identification of sharp peaks, and it is based
on the following heuristics.

1. P (ν) can be thought to vary smoothly, and hence piecewise polynomials of the
order 3 or 4 should suffice. These lower order polynomials, will not fit any sharp
high peaks, and this approximation, over several iterations, would discard the
high peaks, and smoothly interpolate over their bases.

2. Each ’piece’ of the data set, over which each polynomial is fitted, represents
approximately 15 to 20 frequency channels. This has been chosen, because any
larger data sets per polynomial, would require higher order polynomials for an
accurate fit, which might result in sharp peaks being fitted too.

3. The initial piecewise fit is linear, and largely discrepant points are discarded. In
the next iteration, third order piecewise polynomials are fitted, and smaller sharp
peaks are identified. These iterations proceed a few times, as the high peaks are
identified and discarded from the data set.

4. Due to the sinc2 response to RFI, in the frequency domain, it is expected that
for channels with very high RFI, adjacent channels may also be affected by the
sidelobes of the main high RFI peak. This is accounted for, by replacing values
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Figure 2: Raw Mean Bandshape and Polynomial fit(left)W03 and (right)C06

of P (ν) in channels adjacent to those containing high RFI peaks, by interpolated
values. This is done by comparing the height of the main peak, and the expected
height of its sidelobes, with the standard deviation. Depending on whether the
heights of the expected sidelobes are above or below the standard deviation,
adjacent channels are suppressed and interpolated over.

Two examples of the polynomial fits are shown in Figure 2.

The actual values M(ν, t) for each time-stamp are now compared to this estimate of
P (ν) and sustained RFI signatures are identified and flagged from the entire data set.

This is done, by dividing out P (ν) from one dimensional data sets obtained as a function
of frequency, for each time-stamp t from M(ν, t). This corresponds to looking almost
directly at the RFI itself,above a constant mean, and the RFI can easily be detected.

For each time-stamp,

H(ν, t) =
M(ν, t)

P (ν)
= 1 +

RFI(ν, t) ∗ g(ν, t)

P (ν)
(6)

where g(ν, t) = Gant(ν, t) ∗ Grec(ν, t) and P (ν) is given by Eq. 4

H(ν, t) ≈ 1 +
RFI(ν, t)

[

Psky(ν, t) + Prec(ν,t)
Gant(ν,t)

] (7)

It can be stated that H(ν, t) has the characteristics, of the RFI itself, affected mainly
by a constant additive offset.This is depicted in Figure 3. The denominator of Eq. 7
only scales the deviant RFI affected points, and will not affect the overall RFI pattern
across frequency and time.

H(ν) is now examined, for each time stamp, and data is flagged according to deviations,
from a constant mean, compared to the standard deviation of the values of H(ν). A
user specified tolerance level, given as a multiple or fraction of the standard deviation,
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Figure 3: Raw Bandpass with Polynomial Fit divided out - (left)M(ν) and P (ν) and(right)
H(ν)

with respect to a now constant mean, is used to decide which data points are to be
flagged. This is also done iteratively, until the calculated standard deviation converges.
Each time, flagged data points are ignored in the calculation of the mean and standard
deviation.

3.4 Flag Heuristics

The result of the above two operations, is a two dimensional flag table (a mask), of
the same dimensions as the time-frequency data. Ones correspond to unflagged data
points, and zeros correspond to flagged data points.

A few heuristics are now applied to this flag table, and are a part of user defined
options. This depends on some known characteristics of the data and comprises of
several levels of flagging.

1. The flagged points, are spread out in time by one time-stamp, in an attempt to
ensure that any sidelobe of high discrepant points, is also removed.

2. If a channel has more than 60% flagged points, the channel is flagged for the
entire time range.

3. The first two and last two channels are flagged, for all antennas, for the entire
time-range. This corresponds to making all entries of the first two and last two
columns of the flag table, equal to zero. In addition, if any channel is flagged for
the entire time-range of the scan, the two adjacent channels are also flagged.

The two dimensional flag table is then scanned and a list of flags is prepared, which
can then be converted to any format. Currently, the mechanism has been implemented
to create text flag files, with entries corresponding to each stretch of bad data, to be
flagged.
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3.5 Summary Output

A Summary of the flagging process is generated, and contains details of the mean
and rms of the data before and after flagging.In addition, a table is created, with
information about the fraction of good data remaining, after flagging, in each channel,
per antenna. This can be used to identify inherently good or bad antennas, as well
as good or bad channels, which is useful, in later calibration stages, when deciding a
reference antenna and channel.

Gray scale plots of the time-frequency data for the E02 antenna, are shown in figures
4 and 5. Figure 4 is a gray scale plot of the raw time-frequency data for E02. Figure
5 is a gray scale plot of the detected flags applied to the raw data.

Figure 4: Gray Scale plots for E02 - Raw Data

Figure 5: Gray Scale plots for E02 - Flags applied to Raw Data
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4 Implementation Details

A test version of the ltaflag algorithm was implemented in Octave(MATLAB). The
main application has been written in C along with the Numerical Recipes library.

The C + + offline software user interface library was used to generate the input user
interface. The graphical user interface was provided by Kudale Sanjay, based on the
tax gui in use at the GMRT. The shmflag application uses software contributed by
Jayaram Chengalur to read the incoming data from the shared memory.

It has also been packaged as a stand-alone library, with a suitable programmable in-
terface to any application programmer, who would like to use these routines as part of
an integrated system. The genflag application can be used with time-frequency data
in any format, by converting it to the generic input data format.

The main control flow in the algorithm, has been depicted in the following flow-chart
(Figures 6 and 7).

A detailed description of the User Interface of the three programs is given in the
Appendix.

5 Method of Testing

The performance of the algorithm, has been tested in the following ways.

1. Bandpass plots before and after flagging were examined to make sure that only
discrepant channels were detected during the piecewise polynomial fitting.

2. Gray scale plots of the data for each antenna per scan, have been looked at both
before and after flagging. Any discrepant data points which would normally be
attributed to RFI, were found to have been detected by the algorithm.

3. The text flag file that gets generated, was taken into AIPS and the data was
examined using the task ’SPFLAG’ , to check the time-stamp numbering con-
ventions and whether the list of flags has been correctly set.

4. The flags applied to the cross correlations (based on the RFI detected in the
autocorrelations) were examined from within AIPS and verified visually.
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6 Current Status and Further directions

6.1 Current Status

1. This algorithm does not work on cross correlation data. It will only flag data
points based on what it finds in the self correlation data. At present, this method
will be able to detect RFI stronger than a few multiples of Tsys. Low level RFI
will not be detected by this algorithm. Any spurious lines that appear only in
the cross correlations, due to the electronics in the system, are not detected and
it is assumed that flags for this corrupted data have already been set.

2. The technique described here is useful mainly for continuum mapping, where any
sharp peaks in the spectrum can be deleted with no serious loss of information.
For spectral line analysis, if the radio line of interest, lies near some RFI, the
astronomer may be reluctant to blindly flag all the RFI, and a different strategy
may have to be undertaken. One way to still make use of this program, is
to provide lenient flagging cut-offs, so that only large RFI spikes, are detected
and flagged. Also to prevent automatic flagging in certain channels, the user
can provide a region in the band which should be excluded by the RFI removal
algorithm.

3. Broadband RFI can often appear like a feature of the actual bandpass, and
hence will not be detected by this scheme. The user can however look at the
bandpasses and the corresponding polynomial fits, and judge why a particular
part has been flagged or not. The polynomial fitting routines can handle most
kinds of bandpasses, but when they are exceptionally bad, the fitted polynomials
are not very accurate. But the hope is that if the bandpasses are that bad, then
that data may itself not be too reliable.

4. This implementation currently uses the offline software package ”xtract” to read
specific data from the LTA file. ”xtract” is being invoked via a pipe from within
the ltaflag application. The entire data that xtract sends to its output is currently
being stored in the pipe buffer, and is read only in chunks by ltaflag. Hence if all
scans have been chosen, all the data is sent to this pipe buffer until ltaflag reads
it chunk by chunk. This causes the ’Loading Data’ routines to run sub optimally.
This can be rectified, by directly using the lta access routines from one of the
available libraries.

5. There is a limit on the number of lines that the AIPS task ’UVFLG’ can accept.
If the text flag file grows beyond a certain number of lines, ’UVFLG’ displays an
error message and ignores the rest of the flags. One way to get around this is to
split the text flag file into smaller files and load them in sequence into ’UVFLG’,
or to run ”ltaflag”, operating on less than 5 scans at a time.
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6.2 Work in Progress (as of September 2003)

1. The ’AutoFlag’ tool within AIPS++ has been explored. As of July 2003, the
status of this tool is as follows. It uses a server-agent framework each flagging
algorithm is a separate ’agent’. The user can choose one or more flagging agents
to be run simultaneously on the data. The data is then traversed in a strict
time-stamp by time-stamp loop, and the chosen algorithms are run, each one
filling a different bit in an output flag word. At the end, this flag word is writ-
ten to the measurement set. The various algorithms available at present are
’TimeMedian’,’FreqMedian’,’Sprej’ (a Spectral Rejection filter that is similar to
the ltaflag algorithm, though it works on single timestamps, on smaller chan-
nel ranges, and requires user input on the degree of the polynomial to be used
in the fit). Additional flagging options in AIPS++ are available in the display
module using gui-based local statistics. This visual module is currently disjoint
from the autoflag tool. Currently, no-one maintains the autoflag module, and
the lack of technical documentation has so far prevented anyone from completely
understanding the implementation design. Some users have tested it, but have
reported that they ’are not sure’ if it is flagging what they think. The tool has
been scheduled for scrutiny.

2. The ltaflag algorithm has been partially implemented into the autoflag frame-
work. It has been demonstrated to work and is usable as a glish client. It has
however not been formally integrated completely into the autoflag tool as an
agent.

3. The poly-fit routine is being changed to be more robust to varied band-shapes.
This routine was re-written while incorporating this algorithm into the AIPS++
autoflag tool.

4. An option of using polynomial fits in time is being added.

5. The ’xtract-bash-C’ pipeline currently in place for data input from lta files, is
being replaced with routines that directly access the LTA file. This will result
in faster ’data loading time’ as well as efficient memory management (unlike the
current implementation, where the ’xtract-bash-C’ pipeline forces all the data to
be stored in buffers long before they are actually processed). Larger data sets
can then be processed without a visible drop in efficiency.

6. In addition to the output AIPS flag file, an output LTA file with its flag bits
set will be an option. This way, programs that create fits files can incorporate
these flags into a flag table within AIPS, which can be used or replaced by the
user. This will eliminate the need for extremely large output text files which
are bulky and sometimes subject to file size limits set in AIPS. Such a filter will
also be necessary for it to be used as an element of an automatic data processing
pipeline.
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7. A few additions to the current options are being implemented. The flag more

options are being made list-based and non cumulative. An additional option is
being provided to flag all channels for a particular timestamp if RFI is present
in any of the channels. This will be useful for spectral line flagging (request by
Nissim Kanekar). Also for spectral line users, flagging an RFI affected channel
from the entire data set (all baselines) for that particular timestamp will be
necessary (to maintain the same UV coverage for all channels). An additional
keyword ’sideband’ has been added (after a request from Dharam) to distinguish
between USB and LSB data.

6.3 Future directions

1. The existing code structure is generic enough to allow other programs like ’gvfits’
to add in a flagging module. The advantage of this is is that ’gvfits’ can then
create a FITS file which includes an optional binary flag table that AIPS can
recognize.

2. An alternative to (1) would be to modify the standard program that converts
LTA files to the FITS format to recognize the flag bits of the LTA file, creating
an AIPS readable optional flag table in the FITS file. ltaflag can be then used
as a pipeline module which creates an LTA file with the flag bits appropriately
set.

3. If (1) or (2) are not done and if the use of an output AIPS text flag file is
to continue, the text flag file generation must be optimized, using compression
heuristics to the list of flags that the program generates. This can be done either
within the ltaflag code structure, by manipulating the linked list of structures that
stores the list of flags for all the scans, before writing it out as the AIPS readable
flag file, or by running a shell/awk script on the output text flag file, to optimize
its list of flags and reduce its size. One heuristic that already exists in the current
implementation is to group together flags contiguous in time. An improvement on
this would require a heuristic to identify and represent two dimensional clusters
in the time-frequency plane.

4. Currently, cross correlation data is directly flagged based on the autocorrelations.
An additional feature can incorporate a scheme where ’possibly corrupted’ cross
correlation data, identified as before from the autocorrelations, is not immediately
flagged but subject to further examination. Data points with abnormally high
amplitude can directly be flagged as this corresponds to RFI on shorter baselines,
where the RFI fringes have not averaged out during the integration time length.
Data points with just higher noise levels with respect to nearby points could
correspond to RFI effects on long baselines, where the integration time is long
enough to average out the RFI fringes and there is no mean increase in amplitude.
The weights of these data points can be reduced instead of flagging them. This
may help prevent over-flagging (Perley,2002).
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5. A pipelined version of ltaflag (Input and Output LTA files) can be used for online
flagging of data in real-time. This can be used as the first stage of an online data
analysis package.

6. The AIPS++ autoflag tool has some direct algorithms based on time and fre-
quency median filters which could be useful for additional flagging by examining
data from all cross correlations. These algorithms can be incorporated into the
ltaflag application as additional options.

7. Alternatively, if the ltaflag algorithm is incorporated into the AIPS++ autoflag
tool with its data formats, it can be used on generic data sets. It is trivial to make
the current ltaflag program a Glish client. This uses only the Glish interface of
AIPS++ which has standard routines for consistent and stable data I/O, and
standard visualization tools. This will eliminate the use of ’xtract’ or any other
non-standard routines for data I/O, and the algorithm can be used to process
data stored as FITS files and measurement sets.

8. A user-involved systematic testing procedure must be used, during which the use-
fulness of the program in routine data analysis can be assessed and documented.

Acknowledgements

I thank Kudale Sanjay for his contribution of the complete graphical user interface for
the software that was developed, Jayaram Chengalur for his shared memory related
software and Sanjay Bhatnagar for his help with the GMRT/NCRA offline software
system, the usage of the related libraries, and some design features of AIPS++.

I thank Dharam Vir Lal for his efforts and time spent in running and testing ltaflag,
providing operational support to external users, giving valuable suggestions regarding
improvements to be made to the basic algorithm, and now co-ordinating the formal
induction of the application into the offline software system at the GMRT/NCRA. I
would also like to thank Nissim Kanekar, Subhashis Roy, Poonam Chandra, Neeraj
Gupta and Nimisha G. Kantharia for useful points regarding the algorithms devel-
oped, and for testing the programs and reporting bugs. I would also like to thank
Rajiv K. Singh and Rajaram Nityananda for their advice on the algorithm and the
implementation.

At the NRAO, I thank David King, for his time and ongoing effort in understanding the
autoflag framework of AIPS++ and his suggestions about the implementation of the
ltaflag algorithm into it. I also thank Athol Kemball for his guidance in implementing
the ltaflag algorithm in AIPS++ and George Moellenbrock, Joe McMullin, and Kumar
Golap for their advice and pointers on the same.

All of this work was done on computers running the GNU/Linux OS.

15



References

1. Bhatnagar, Sanjay, Xtract : a flexible data extraction program for GMRT visi-
bility, 1997, Jan., NCRA Technical Report #R00171

2. Bhatnagar, Sanjay, User interface for off-line applications,
1997, March, NCRA Technical Report #R00173

3. Bhatnagar, Sanjay, Tips for programming with GMRT off-line software, 1997,March,
NCRA Technical Report #R00189

4. Autoflag Tool, AIPS++ User Reference Manual,
”http://aips2.nrao.edu/docs/user/Refman/Refman.html”

5. AIPS++ Programming and System Manual,
”http://aips2.nrao.edu/docs/programmer/programmer.html”

6. Perley, Rick.,”Attenuation of Radio Frequency Interference by Interferometric
Fringe Rotation”,November 2002,EVLA Memo #49.

16



A Appendix - User/Programmer Interface

A.1 Ltaflag

There are several keywords provided to the user, which when appropriately set, can
control the functioning of the application. This application to read data from an lta
file and produce an output flag file readable with the AIPS task ’UVFLG’ goes by the
name of ”ltaflag”.

The keywords for ”ltaflag” and their functions are described below.

1. ‘in‘ (default=stdin)

To specify the source of data in the lta format
in = file.lta

To read from streamed lta data
in = < cat file.lta
in = < nshmdata ...

2. ‘mode out‘ (default=0)

Output modes
0 : No output files
1 : Create a text Flag file for the AIPS task ’UVFLG’
2 : Create a text Summary file
3 : Create both Flag and Summary files

For display and visual analysis of the data and RFI, mode ’0’ would be ideal.
The information that is recorded in the Summary file, can appear at run-time,
by setting the keyword ’print’ to 1.

3. ‘out‘ (default=myoutfile.flag)

This is the output text flag file, readable by the AIPS task, UVFLG.
***This is a hidden keyword to change the output filename ***

4. ‘summary‘ (default=mysummary.txt)

This is a summary file that is created. It contains statistical information about
the self correlated data, before and after flagging.

It contains details of the flagging process in the following form
(1) A table for all 30 antennas (RR/LL) with fields:
- Antenna number / name
- Mean amplitude of the self correlation data for that scan
- Mean and RMS of the data set after dividing out the estimate of the bandpass,
and BEFORE flagging.
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- Mean and RMS of the data set after dividing out the estimate of the bandpass,
AFTER flagging.
- The fraction of good data left in that antenna
(2) A table of antenna number Vs channel number The values in the table is the
Fraction of good data left in each channel/antenna, after flagging.
***This is a hidden keyword to change the filename ***

5. tt ‘scans‘ (default=0)

Scan numbers of the scans to be read from the lta file. These numbers are the
same that appear for each scan in the output of ’ltainfo’.
scans = 0,1 => scan numbers 0 and 1
scans = => all scans in the lta file.

6. ‘channels‘ (default=1,127)

Channel range and increment of the data to be analysed.
channels = 1,127,2 means Channel nos 1,3,5,...127
It is preferable to start the channel range from ’1’ instead of zero1 .

7. ‘sideband‘ (default=USB)

Sideband of the data to be analysed

sideband = LSB (or) sideband = USB

If ’USB’, this keyword internally forms the string ”A.+-USB-.+” which is passed
as the ’baseline’ parameter to ’xtract’.

8. ‘ant cutoff‘ (default=0)

Threshold by which to identify a ’dead’ antenna
It is the value to which the mean of the time-channel data points for each antenna
for one scan is compared. If the mean is less than this threshold, it indicates a
dead antenna which is then completely flagged.

9. ‘time tol‘ (default=3)

Specifies the threshold against which data is flagged while flagging across time
for each channel.
During this first flagging pass, a line is fitted to the one dimensional data set
of values for EACH channel across the timerange of the scan. Points deviating
from this line by more than ’time tol’ * sigma, are flagged. Sigma is the standard
deviation of the data set, calculated with respect to the line fit.
The level of flagging can be controlled by the user, by changing this parameter.

1The channels are numbered from 1 - 127 and this corresponds to channels 2 - 128 inside AIPS.
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10. ‘freq tol‘ (default=2.5)

Specifies the threshold against which data is flagged while flagging across channel
for each timestamp.
In this second pass, a piecewise polynomial is fitted to the time average of the
raw bandpasses. This polynomial is smooth and interpolates across the base of
any sharp peaks.
Raw bandpasses at each timestamp are now divided by this smooth estimate of
the bandpass, and points deviant from mean of the resultant data set are flagged.
The threshold for deciding the points to be flagged, is ’freq tol’ * sigma, where
sigma is the standard deviation of the data set with respect to the mean.
The level of flagging can be controlled by the user, by changing this parameter.

11. ‘plot‘ (default=0)

Turns the interactive display GUI on and off.
If plot = 1 , a window similar to ’tax’ appears and plots of bandshapes before
and after smoothing, can be obtained.
In addition, gray scale plots of time-frequency data can also be displayed on ’ds9’.

’ds9’ must run in the background, before running ’ltaflag’.
Failure to do this will signal a broken pipe and the application will exit.
$ ds9 &

$ ltaflag

Moving the cursor around on the gray plots in ’ds9’ - will cause ’de9’ to display
the actual data value in the information panel. This is the actual value of the
data point being pointed at, by the cursor2.
The first channel has not been considered in the analysis and this channel number
1 is by default flagged for all antennas.
The analysis begins from channel number 2 (AIPS)

12. ‘print‘ (default=0)

Turns the interactive TEXT information display on and off.

If print = 1 , a summary of the data quality is displayed for each antenna (RR/LL)
one scan at a time.

The fields of the tabular display are as follows...

(1) Antenna number / name
(2) Mean amplitude of the self correlation data for that scan

2The CHANNEL numbers on the ds9 gray scale plots will appear as 1 - 127. This corresponds to
the actual channel numbers as in AIPS - to channels 2 - 128.
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(3) Mean and RMS of the data set after dividing out the estimate of the band-
pass, and BEFORE flagging.
(4) Mean and RMS of the data set after dividing out the estimate of the band-
pass, AFTER flagging.
(5) The fraction of good data left in that antenna

A gray-scale PLOT of the FRACTION of GOOD data remaining in the data,
after flagging, appears on ’ds9’.

The x-axis is channel number - 2 to 128
The y-axis is antenna number+stokes

Eg. The rows (y) go from bottom to top - 1 - 60 where
1 : C00[RR]
2 : C00[LL]
3 : C01[RR]
4 : C01[LL]
... and so on.

Information about the quality of data present in each antenna across channels,
as well as in each channel for different antennas - can be visually obtained from
this plot. The dark regions signify flagged data and the gray scales vary from
black : completely flagged ant/chan to white : unflagged data.
Moving the cursor around on the gray plot - will cause ’ds9’ to display the actual
fractional value in the information panel.
In addition to this, the following menu is also displayed.
Flag Query
Set Threshold [1]
Antenna - Bad Channels [2]
Channel - Bad Antennas [3]
Bad Antennas/Channels [4]
Good Antennas/Channels [5]
Quit [0]
Enter your choice :

This is to optionally query the flag summary, to identify ’bad’ antennas/channels.

The following numbers correspond to the flag query options listed above.

0 quit from this menu and move onto the next scan.

1 to specify a number between 0 and 1, signifying the fraction of flagged data.
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All later displays within this menu, will report antennas and channels with
more than THIS fraction of data flagged.

Default = 0.9 i.e. queries [2],[3],[4] will report antennas/channels with more
than 90% bad data.

2 Specify an antenna NUMBER (1 to 30) and the display will be a list of
CHANNELS in THAT antenna, which have more than 90% data flagged.

3 Specify a channel NUMBER (2 to 128) and the display will be a list of
ANTENNAS for which THAT channel has more than 90% bad data.

4 Prints out a list of bad antennas and channels (IF ANY) depending on the
specified threshold.
Eg. It prints a list of antennas with more than 90bad data, considering all
channels, and a list of all channels that are bad on the whole - for more than
90% of the antennas.

5 Prints out a list of good antennas and channels (IF ANY) depending on the
specified threshold.

These results also include the fraction of good data present in the chosen an-
tenna/channel.

13. ‘flag more‘ (default=1)

To control the level of flagging. These levels are cumulative.

Eg. flag more = 3 will include levels 0,1,2 and 3.

0 : Flag ONLY what is detected by the algorithm

1 : Spread all flags in time, by one timestamp on either side.

2 : If a channel has flags for more than 60% of the time range of the scan,
then flag that channel for the entire timerange of that scan.

3 : Flag the first two and last two channels being analysed. For channels
flagged for the entire timetrange of the scan, flag adjacent channels

4 : For channels that are bad for more than 60% of the antennas, flag that
channel for all antennas.

14. ‘flag ants‘ (default=¡blank¿ )

If any antennas are known to be ’bad’ or ’dead’, list them here and they will be
flagged by default.

Eg. flag ants=1,2,24
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will flag antennas 1, 2 and 24 completely for the scans specified for the program
run.

***This is a hidden keyword ***

15. ‘flag chans‘ (default=¡blank¿)

If any channels are known to be bad, they can be specified in a list and will be
flagged for the entire timerange of the specified scans.

Eg. flag chans-1,2,45,66

***This is a hidden keyword ***

16. ‘comments‘ (default=No Comments...)

This is to type in text comments that the user may want, to identify the output
files. Any text typed in at this keyword will appear in the beginning of the output
Flag file and Summary file.

A single line of text can be typed directly at the keyword
OR
The name of a TEXT file can be specified at this keyword. The program will
then transfer the textual content of that specified file into the output text files -
for later reference.
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A.2 Other programs

There are two other modes in which this program works.

1. One mode can directly read from the shared memory, and flag chunks of data in
real time. This program uses the acqtest offline libraries, to access the shared
memory, and extracts the self correlation data. It works on data chunks of sizes
as mentioned with the ’ntimes’ keyword in the application ”shmflag”. A descrip-
tion of these keywords and usage, can be obtained from the online documentation.

2. There is a generic data format that one can use to pipe data into the program,
in the generic data mode. This will allow one to run the same algorithms on
any other kind of data. This mode is incorporated in a symbolic link called
”genflag”.
This generic data format is as follows...
#CHANS <number of channels>

#TIMES <number of timestamps>

<timestamp1> <data values for all channels>

<timestamp2> <data values for all channels>

....
The algorithm works on chunks of data that comprise of the number of times-
tamps, as mentioned in the second line of the data.

A description of these keywords and usage, can be obtained from the online
documentation.

3. There is another program that can be run on the data recording machine, to look
at gray-scale plots of the data, and average bandpasses, in real time. This goes
by the name ”ondisp” and can be used to monitor RFI in real time. The gray
scale display is incremental and scrolls after a maximum limit of 100 timestamps
is reached. Integration times can be set, for each timestamp that appears in the
gray-scale plots.

4. A generic library of easy to use routines and functions has been provided for any-
one to use some of these generic routines in related applications. These routines
require the Numerical Recipes library, for the polynomial fitting routines, and
are otherwise stand-alone routines.
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