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1 Introduction
This project involves measuring the performance of an Operating System (OS) based on hardware architecture. It discusses a set of metrics that can be used to evaluate the performance of certain features of an Operating System.
Measurements were made on two Operating Systems, RedHat Linux 8.0 and Windows XP 5.1. The measurements for each operating system have been evaluated and compared between the two operating systems. Observations have been discussed and conclusions have been made with respect to each type of measurement.
2 Project Overview

The goal of the project has been to evaluate the performance of two different operating systems on the same hardware. The metrics chosen fall into the categories of memory access, disk access, processes and arithmetic operations. 
Architecture 

Hardware – Dell Inspiron 2650
Processor – Intel(R) Pentium(R) 4 CPU 1.70 GHz

Cache Size – 512 KB

RAM Size – 256 MB

Hard Disk – 30 GB
Operating Systems 

(i) Redhat Linux Version 8.0 

(ii) Microsoft Windows XP Version 5.1.2600 Service Pack 1.0 


- Cygwin 1.3.20-1 (UNIX environment for Windows)
Compiler 

 gcc3.2 – C compiler (on Linux and Cygwin)
Benchmarking and performance measurements correspond to sampling a multidimensional space spanned by non-orthogonal axes. Measurements are often not completely isolated from the effects of related factors. Wherever possible, we have attempted to design our metrics to minimize this interference, and to emphasize/isolate trends corresponding to the aspect being measured. In other places we have attempted analyses that take into account major factors affecting the quantity being measured.

We have measured performance parameters and have tried to verify our results with documented features of the OS (for example – kernel buffer sizes) to see if these OS specifications are actually 'visible' from the application level. 

More than to get absolute numbers, out tests attempt to highlight the way the OS manipulates the hardware, when different code implementations are used. These observations can be analysed in terms of efficient software design, to use algorithms that use the behaviour of the OS to its advantage, or equivalently, that take measures to avoid common pitfalls. 
We have done all our tests with compiler optimization (O3). Wherever we observed anomalies, we re-ran the tests without this optimization to check if the anomalies were due to it. Our idea behind this is that we wanted to measure these performance numbers based on the best possible performance (i.e. with optimization). We are aware of the fact that the effects of compiler optimization will be different for our test code and any application that may be designed keeping our results in mind, and we have tried to reduce this effect by measuring relative performance. We made absolute measurements only for computations like memory / disk accesses and atomic arithmetic operations which were performed with compiler optimization to get figures for best possible performance.
For all tests, the same code was used on Linux and Windows. The “Cygwin” interface was used to translate the Unix kernel calls into equivalent (nearly) functionality on Windows.  This does not guarantee an exact functional emulation of the Linux test codes, but is the closest we could get. 
Note: In the rest of the report, the terms ‘Linux’ and ‘Windows’ correspond to the specifications mentioned above. 

3 Memory
The following measurements were taken to evaluate the effect of memory access rates, on both Linux and Windows XP.

3.1 Cache Vs RAM Vs Swap Disk
3.1.1 Metric Description
This test was performed to measure the relative memory bandwidth between the cache, RAM and swap disk.
In each run of this experiment a block of memory was allocated and looped over in a Write-Read-Write sequence. The first set of Writes ensures a warm-cache. The subsequent Read and Write loops were then timed to measure memory access times.  

	N= 1000;  
si=kbsize*1024/sizeof(int);

data = (int*)malloc(kbsize*1024);


	/* sequential write */

GetTime(1);

for(i=0;i<N;i++)

 for(j=0;j<si;j++) data[j] = j+i ;

writetime1 = GetTime(2);


	/* sequential read */
GetTime(1);

for(i=0;i<N;i++)

 for(j=0;j<si;j++) sum = data[j];

 readtime = GetTime(2);

free(data);


Figure 1 : Code Segment for Memory Access
Loops for each type of access (write, read and write) were executed several times (1000) for chunks of memory ranging in size from 1KB to 512 MB in steps of powers of 2. The expected result was that there would be a drop in bandwidth when the memory size exceeds the cache (512KB) and a further drop beyond the RAM size (256MB). 

3.1.2 Results and Analysis

The following graphs were obtained from runs on Linux and Windows. 
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Figure 2 : Graphs for Memory Access

These graphs clearly show a bandwidth drop at the cache and RAM boundaries. The RAM bandwidth is approximately 4 times less than the cache bandwidth for memory writes, and 3 times less than the cache for memory reads. These ratios are consistent between Linux and Windows.
The average memory bandwidths for the cache, RAM, and Swap Disk were calculated as follows:

Bandwidth (MB/sec) = (Memory Chunk Size)/ (Iteration Time over this chunk)

	Operating System
	Cache
	RAM
	Swap Disk

	
	   Write
	Read
	    Write
	Read
	     Write
	Read

	Linux
	2035.709
	2888.2118
	527.997
	1264.58296
	7.455528
	12.0370933

	Windows
	2132.011
	2749.24728
	563.9692
	1323.843481
	2.670522
	13.10448265


Memory bandwidths in MB/seconds were estimated as follows:
The page fault latency between the cache-RAM and RAM-Swap disk can be estimated from these numbers.
Cache–RAM Page Fault Latency = Average RAM Access Time – Average Cache Access Time

RAM–Swap Page  Fault Latency  = Average Swap Disk Access Time – Average RAM Access Time

Page Fault Latencies in seconds were estimated as follows using ‘read’ times:
	Operating System 
	Cache-RAM
	RAM-Swap Disk

	Linux
	3.088e-6 - 1.352e-6 = 1.736e-6

	324.57e-6 – 3.088e-6 = 321.482e-6

	Windows
	2.950e-6 – 1.420e-6 = 1.53e-6
	298.06e-6 - 2.950e-6 = 295.11e-6



3.2 Code/Memory Optimizations
3.2.1 Metric Description
This test was done to estimate the size of the code being executed. This was done from observations of memory access times as a function of increasing memory chunk (data) size allocated and looped over by the code. The data size beyond which the memory bandwidth dropped drastically would indicate the point at which the code plus data size exceeds cache size.  Since the size of the cache and the size of data allocated are known, this would give an approximation of the amount of cache being used by all current code (plus other cache resident code/buffers). 
In this section, the same code as in 3.1 was used with data sizes ranging from 4KB -1020 KB in steps of 8KB.  Fine sampling was done near the cache size.  The expected result is a drop in bandwidth when the code plus data size exceeds the cache.  This was expected to change with different levels of compiler optimization, as the code would become tighter. The code was run at different level of optimizations (no opt., O1- O5) to observe this effect.  

Approximate Size of Code = Cache Size – Memory allocated at the point the bandwidth drops

This “code” size is only an estimate as it will include the test code as well as any other cache-resident code. The allocated chunks of memory were therefore looped over 1000 times, to ensure (as much as possible) that the code and data corresponding only to the test process was resident in the cache. 

3.2.2 Results and Analysis
The following graphs were obtained from runs on Linux and Windows with compiler optimization level O4. 

These plots show a large drop in bandwidth between chunk sizes of 400KB to 550KB. This would mean that beyond 400 the resident code and the allocated memory contend for the cache.
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Figure 3 : Graph for Memory Access for Code plus Data
The approximate size of the code resident in cache is calculated as follows:
	Operating System
	Approximate Code Size

	Linux
	512 – 436 = 76 KB

	Windows
	512 – 476 = 36 KB


The plots for runs at lower levels of optimizations showed noisier behavior within the cache size as compared to higher levels of complier optimization. The graphs for the runs with different levels of optimizations are shown in the Section 7 with further analysis. 
3.3 Looping and Sub-Looping

3.3.1 Metric Description
In this experiment we compared the write execution times of repeated looping over a large chunk of memory (8MB and 32MB) to the times observed by splitting the chunk into numerous equal pieces and repeatedly looping over them separately. 

This measurement was an attempt to estimate an optimal piece size at which the execution time is the least. We expected that at some piece size, the two contending factors of speed due to in-cache looping and overhead due to a large number of such pieces, would balance out, giving minimum execution time.
Piece sizes ranged from 1KB to 8MB (and 32MB).The execution times while sub-looping were compared to that for which the piece size was equal to the total chunk size (Number of pieces =1).This approach could be used to structure loops efficiently. 

	/*** Looping and Sub-looping ***/

N = 1000;

M = 8192;



si=kbsize*1024/sizeof(int);

data = (int *)malloc(M*1024);

/* multiple loops - sequential write */

temp = (int) (M/kbsize);

GetTime(1);
	for(p=0;p<temp;p++)

{


tp = p*si;


for(i=0;i<N;i++)


for(j=0;j<si;j++)data[tp+j] = j+i ;

}


multiloop = GetTime(2);

free(data);


Figure 4 : Code Segment for Looping and Sub-Looping
3.3.2 Results and Analysis

The following graphs show the results for Linux and Windows. 
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Figure 5 : Graphs for Sub-Looping with 8192KB on Linux
From these graphs we can see that an optimal piece size would be around 64KB.  Below 64KB the looping takes longer, even though the chunks are entirely in the cache. This could be due to a possible overhead of breaking up the memory chunk into a large number of small pieces. For pieces larger than the cache size, the write time is approximately 3 times higher.

This test was done for memory chunk sizes of 8MB and 32MB, to see if changing the total size of the problem would show different trends. No such difference was observed, which leads us to conclude that this method of determining the optimal piece size scales properly with overall problem size.
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Figure 6: Graphs for Sub-Looping with 8192KB on Windows
An algorithm that performs a large number of repetitive operations on large chunks of data, can use this way of probing system characteristics to dynamically structure its loop structures to optimize for performance. This is applicable both to computations that involve repetitive operations on large data sets, as well as complex algorithms that can be broken up into several algorithmically simpler sub-problems. Such algorithms can be classified as ‘Cache Oblivious Algorithms’ (Ref: [4]) The FFTW and such adaptive algorithms first probe a system to obtain information about its memory architecture, and then record these measurements. Any subsequent run of the algorithm uses this system information to dynamically restructure the block sizes/shapes in a block decomposed implementation.

4 Disk IO
The following measurements were taken to evaluate disk I/O performance on both Linux and Windows XP.

4.1 Disk access (read-write-read)

This measurement was performed to evaluate average disk access times for the system being tested, and to examine the relative disk access times between reading (from the disk) and writing (to a file on this disk).

Three sets of measurements were made on a 512MB data file (RAM = 256MB), using 'fread-fwrite' ,'read-write', and 'mmap-munmap', to compare their relative speeds, given the different buffering schemes used in these functions/system calls.

The data was accessed from the file in chunks of sizes varying from 1KB to the size of the file. This was to expose any effects that the chunk size or the number of such chunk accesses, may have on the disk I/O performance.
For each run sequential reads through this 512MB file, ensures that reads are always from the disk. This is because of the LRU page replacement strategy of the OS. Writes are left to perform depending on the buffering scheme used.
 The algorithm involves reading the contents of a 512MB file piece by piece, changing the data in the memory and writing it back to the file in pieces, and then reading them again from the file. The two reads were expected to show slight differences in timings because of the locality that would inevitably be created by the earlier reads and writes having transferred the file pages into main memory (either as clean or dirty pages). Asynchronous and Synchronous access was controlled as described below.

4.1.1 fopen-fclose-fread-fwrite

4.1.1.1 Metric Description
Stream IO functions were used to test the 'usual' mode of file IO. 'fread' is always synchronous ( upto the page read-ahead ) but fwrite uses a stream buffer ( default size 8KB ). The 'setvbuf' function was used to control the size of this stream buffer, to turn it on and off. 
	/*** DISK - fread ***/

n = NN; // size in KB of target file

nbuff = n/kbsize;

buf = atoi(argv[2]); // 1:with buffering


data = (char*)malloc(kbsize*1024);

/* read the file */

fp = fopen("scratchfile","r");

if(buf == 1) setvbuf(fp,NULL,_IONBF,0);

GetTime(1);

for(i=0;i<nbuff;i++)
fread(data,sizeof(char),kbsize*1024,fp);

readtime1 = GetTime(2);

fclose(fp);

for(i=0;i<kbsize*1024;i++)
 data[i]= i % 250;


	/* write the file */

fp = fopen("scratchfile","r");

if(buf == 1)setvbuf(fp,NULL,_IONBF,0);

GetTime(1);

for(i=0;i<nbuff;i++)
fwrite(data,sizeof(char),kbsize*1024,fp);

writetime = GetTime(2);

fclose(fp);

/* read the file */

fp = fopen("scratchfile","r");

if(buf == 1)setvbuf(fp,NULL,_IONBF,0);

GetTime(1);

for(i=0;i<nbuff;i++)
fread(data,sizeof(char),kbsize*1024,fp);

readtime2 = GetTime(2);

fclose(fp);

free(data);




Figure 7 : Code Segment for Disk Access using 'fread' and 'fwrite'
4.1.1.2 Results and Analysis
Data sets were recorded with and without (default) stream buffering. The results are as follows.
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Figure 8 : Graphs for Disk Read And Write Access on Linux
The average disk access time per KB for Linux is 45.142e-6 seconds and for Windows 36.558e-6 seconds. (1/ Average Read Bandwidth)

For Linux, the performance of ‘fread’ appeared to be constant with and without stream buffering up to a user buffer size equal to the RAM size. This could be because the default stream buffer size is only 8 KB. The drop beyond the RAM is expected, since at this size, the data is repeatedly swapped to disk.
The ‘fwrite’ performance increases as a function of the user buffer size up to the size of the RAM. The writes without buffering are only slightly slower. 
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Figure 9 : Graphs for Disk Read And Write Access on Windows
On Windows, there is a drastic difference for ‘fread’ with and without stream buffering. Only a small sample has been taken on Windows without stream buffering because each run was taking approximately 27 minutes. 
4.1.2 open-close-read-write

4.1.2.1 Metric Description
System calls to manipulate files via file descriptors were used to test file IO without the overhead of stream buffering, and with the option of forcing synchronous writes (via the O_SYNC flag in 'open'). These forced synchronous writes are to ensure that the file pages are cleaned and written to disk.
Data sets were recorded with and without the O_SYNC flag, corresponding to synchronous and asynchronous IO respectively. 
	/******** READ-WRITE *****/

n = NN; // size in KB of target file

nbuff = n/kbsize;

data = (char*)malloc(kbsize*1024);

/* read the file */

if(buf == 1)fd = open("scratchfile",O_RDWR|O_SYNC);

else fd = open("scratchfile",O_RDWR);

GetTime(1);

for(i=0;i<nbuff;i++)


read(fd,data,kbsize*1024);

readtime1 = GetTime(2);

close(fd);

for(i=0;i<kbsize*1024;i++) data[i]= i % 250;


	/* write the file */

if(buf == 1)fd = open("scratchfile",O_RDWR|O_SYNC);

else fd = open("scratchfile",O_RDWR);

GetTime(1);

for(i=0;i<nbuff;i++)
write(fd,data,kbsize*1024);

writetime = GetTime(2);

close(fd);

/* read the file */

if(buf == 1)fd = open("scratchfile",O_RDWR|O_SYNC);

else fd = open("scratchfile",O_RDWR);

GetTime(1);

for(i=0;i<nbuff;i++)
read(fd,data,kbsize*1024);

readtime2 = GetTime(2);

close(fd);

free(data);


Figure 10 : Code Segment for Disk Access using 'open' and 'close'
4.1.2.2 Results and Analysis
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Figure 11 : Graphs for Disk Read And Write Access on Linux
For Linux, Synchronous reads (Read 1 and Read 2) show similar trends as reads are always from the disk. In the case of asynchronous reads the first read (Read 1) is from the disk and hence follows the curve for synchronous reads. The second read (Read 2), appears much slower. This could be explained due to the fact that the asynchronous writes do not always write to the disk, thus filling up the RAM with dirty pages. The writes will be written to disk only when the dirty pages exceed the size of the RAM. A subsequent read, will then have to first clean the pages in the RAM by writing them to disk and then read in fresh data from the disk (which had been written to disk during the write - LRU). 

Synchronous writes show a lower bandwidth compared to asynchronous writes since the synchronous writes ensures that the data is written to disk and not stored in the RAM as dirty pages. 

The corresponding measurements for Windows show no such differences between synchronous and asynchronous disk access. This could be due to the fact that the ‘cygwin’ environment on Windows may not be able to correctly translate the O_SYNC flag used in the read and write system calls. The reads on Windows however show a drop in throughput at the cache size.
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Figure 12 : Graphs for Disk Read And Write Access on Windows
4.1.3 mmap-msync-mmap

4.1.3.1 Metric Description
Kernel calls that manipulate virtual memory were used to measure disk access times (without the data copying overhead of fread and read which copy from system buffers into user buffers). Mapping chunks of memory does not load file pages. Accessing them by dereferencing, triggers loads from the disk into the physical memory. 'msync' and 'munmap' were used to ensure that the data written to the mapped areas are synchronously written to the disk.
	/****** MMAP *******/

/* read the file */

fd = open("scratchfile",O_RDWR);

GetTime(1);

for(i=0;i<nbuff;i++)

{

startaddress=mmap(0,kbsize*1024,PROT_READ|
PROT_WRITE,MAP_SHARED,fd,0);

for(j=0;j<kbsize*1024;j++)data[j]=*((char*)(startaddress)+j);

err = munmap(startaddress,kbsize*1024);

lseek(fd,kbsize*1024,SEEK_CUR);

}

readtime1 = GetTime(2);

close(fd);

for(i=0;i<kbsize*1024;i++) data[i]= i % 250;

/* write the file */

fd = open("scratchfile",O_RDWR);

GetTime(1);

for(i=0;i<nbuff;i++)

{

startaddress = mmap(0,kbsize*1024,PROT_READ|
PROT_WRITE,MAP_SHARED,fd,0);


	for(j=0;j<kbsize*1024;j++)  *((char*)startaddress + j) = data[j];

err = munmap(startaddress,kbsize*1024);

lseek(fd,kbsize*1024,SEEK_CUR);

}

writetime = GetTime(2);

close(fd);

/* read the file */

fd = open("scratchfile",O_RDWR);

GetTime(1);

for(i=0;i<nbuff;i++)

{

startaddress=mmap(0,kbsize*1024,PROT_READ|

PROT_WRITE,MAP_SHARED,fd,0);

for(j=0;j<kbsize*1024;j++) data[j]= *((char*)startaddress + j);

err = munmap(startaddress,kbsize*1024);

lseek(fd,kbsize*1024,SEEK_CUR);


}

readtime2 = GetTime(2);

close(fd);

free(data);




Figure 13 : Code Segment for Disk Access using 'mmap' and 'munmap'
4.1.2.2 Results and Analysis
The average disk access time per KB is approximately 2.579e-6 seconds.
Both reads and writes using ‘mmap/munmap’ always access the disk when dereferencing the data. This is why the read and write curves show similar trends. There is a performance peak when the chunk sizes are just below the size of the cache (512 KB). This could be due to the fact that the size of the user buffers into which the data is being read is small enough to fit in the cache and large enough to amortize the overhead of having to read a larger number of smaller chunks. 
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Figure 14 : Graph for Disk Access using 'mmap' and 'munmap'
There is rise in performance at chunk sizes just larger than the cache and this dips slightly as the data size approaches the RAM size. This could be due to a similar effect as the hump observed just before the cache size, which would indicate a balance point between user buffer size approaching that of the RAM, and the advantage of keeping it entirely in the RAM.
These three measurements demonstrate the differences in cost incurred with the use of different file access mechanisms. Depending on the application being designed, if file IO is a dominant feature, the choice of an appropriate file access mechanism would give substantial benefit.
Note : On WinXP we could only perform the tests with 'fopen-fclose-fread-fwrite' and ‘open-close-read-write’. ‘mmap’ did not work - not possible to support it via cygwin.
4.2 Sequential Vs Random Reads

4.2.1 Chunk Sizes in powers of 2
4.2.1.1 Metric Description
This test was performed to compare times for sequential and random disk access (read), keeping in mind factors like page read-ahead and physical proximity on the disk.
	/*******SEQ_RAN *******/

/* read the file = random */

GetTime(1);

for(i=0;i<nbuff;i++)

{

off = (int)((double)abs(rand())/RAND_MAX*(nb-1)*kbsize*1024);

}

rant = GetTime(2);

/* random seeks are NOT to page boundaries.. */

fd = open("scratchfile",O_RDWR|O_SYNC);

GetTime(1);

for(i=0;i<nbuff;i++)

{

off = (int)((double)abs(rand())/RAND_MAX*(nb-1)*kbsize*1024);

lseek(fd,off,SEEK_SET);

read(fd,data,kbsize*1024);
}

	rantime = GetTime(2) - rant;

close(fd);

/* read the file - sequential */

fd = open("scratchfile",O_RDWR|O_SYNC);

off=0;

GetTime(1);

for(i=0;i<nbuff;i++)

{


lseek(fd,0,SEEK_CUR);


read(fd,data,kbsize*1024);

}

seqtime = GetTime(2);

close(fd);

free(data);




Figure 15 : Code Segment for Sequential and Random Disk Access
The fixed size 512MB data file was used and the data was read in different sized chunks as before (1KB to the file size). This was to attempt to bring out the effects of chunk size versus the number of such chunks read, on sequential and random access patterns. The number of such chunks depended on the size of each chunk, each sequential run reading through the entire 512MB data file. The same number of random chunk accesses were timed. (This makes is a pseudo-random access pattern, since although the beginning of the blocks are chosen at random, the data in each chunk is read sequentially. The same number of such chunks were read sequentially and randomly.

4.2.1.2 Results and Analysis
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Figure 16 : Graphs for Sequential and Random Disk Access on Linux and Windows
As expected the overall trends showed better performance for sequential access compared to random access. 

At chunk sizes smaller than the cache (512KB), both type of accesses loop within the cache and the dominant reason for the difference in performance would be the overhead for random disk access. However, the performance seems to decrease with increasing chunk size, something not observed in the other file access tests which did not sample the curve finely.
However for chunk sizes around the size of the cache (256KB – 1MB), the sequential and random accesses show similar performance. The minimum distance between the two curves occurs at the cache size of 512KB. This could the result of the two interacting factors of “Cache Vs RAM memory access” and “Sequential Vs Random” disk access. The sequential access shows an expected performance drop at the file cache size. One point to note is that at larger chunk sizes, the number of chunks being read decreases, and this decreases the degree of randomness.
For chunk sizes beyond the size of the cache, the difference is mainly because of the two varying access patterns. They do not differ as much as below the cache size, since this degree of randomness has also decreased. (Note: All timings were for reading a fixed total amount of data from the disk – 512MB.)
This can also be understood from the fact that Somehow this results in similar performance of both

Similar trends are observed for Windows too. We have not yet been able to devise a plausible explanation for this trend.
4.2.2 Page Read Ahead 
4.2.2.1 Metric Description
We ran another test, using chunk sizes ranging from 1KB to 128KB. This was an attempt to see at what chunk size the trend changes, indicating the limit of the advantages of the page read-ahead.
4.2.2.2 Results and Analysis

For Linux, the sequential access performance is an order of magnitude higher than that for random access. Also the random access bandwidths are noisier than sequential because of different access patterns. Both however show a drop in bandwidth between chunk sizes of 60 – 65 KB.
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Figure 17 : Graphs for Sequential and Random Disk Access on Linux to determine Page Read Ahead Size
Below the cache size, the performance of sequential access is an order of magnitude higher than random, but beyond approximately 64KB, the bandwidths for both sequential and random are at the same order of magnitude (except for the noise due to the random access pattern). This suggests that no more performance gains are visible due to the page read-ahead, and both sequential and random disk access have comparable performance. 
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Figure 18 : Graph for Sequential and Random Disk Access on Windows to determine Page Read Ahead Size
This could give an estimate of the page read ahead employed by the operating system. For a page size of 4 KB , this would correspond to a read ahead of 16 pages (64/4) on Linux. This would be the combined effects of  page read-ahead buffering at different levels.
We saw no such trends for Windows except for the fact that the sequential access was an order of magnitude better than random access and less noisy.
4.3 Read Vs mmap
4.3.1 Metric Description
This test was done to compare the collective operation of file access ( read the file in chunks ‘read’, change data in each chunk ’loop’ and write it back to disk synchronously ‘write’ ) using 'read-write' and 'mmap-munmap'. In both cases timings were obtained for the 'read', 'loop' and 'write' phases and compared.
	/**** READ Vs MMAP ****/

/* Get timing for GetTime !!! */

tread=0;tloop=0;twrite=0;

gtime = GetTime(3);

for(i=0;i<nbuff;i++)

{


GetTime(1);


tread += GetTime(2);


GetTime(1);


tloop += GetTime(2);


GetTime(1);


twrite += GetTime(2);

}

gtime = GetTime(3) - gtime;

printf("bufsize= %d KB   nbuff= %d   timers= %10.9lf" ,kbsize,nbuff,gtime);

/* Read and Write the File using mmap,munmap */

tread=0;tloop=0;twrite=0;

fd = open("scratchfile",O_RDWR|O_SYNC);

mmaptime = GetTime(3);

for(i=0;i<nbuff;i++)

{

GetTime(1);

startaddress =mmap(0,kbsize*1024,PROT_READ| PROT_WRITE,MAP_SHARED,fd,0);

tread += GetTime(2);

GetTime(1);

for(j=0;j<kbsize*1024;j++) *((char*)(startaddress)+j) = 
((*((char*)(startaddress)+j))+5)%250;

tloop += GetTime(2);


	GetTime(1);

err = munmap(startaddress,kbsize*1024);

lseek(fd,kbsize*1024,SEEK_CUR);

twrite += GetTime(2);

}

mmaptime = GetTime(3) - mmaptime;

close(fd);

printf("mmaptotal= %10.9lf   mprd= %10.9lf  mlp= %10.9lf  mwr= %10.9lf   ",mmaptime,tread,tloop,twrite);

/* Read and Write the File using read,write */

tread=0;tloop=0;twrite=0;

fd = open("scratchfile",O_RDWR|O_SYNC);

off=0;

readtime = GetTime(3);

for(i=0;i<nbuff;i++)

{


GetTime(1);


read(fd,data,kbsize*1024);


tread += GetTime(2);


GetTime(1);


for(j=0;j<kbsize*1024;j++) data[j]=(data[j]+5)%250;


tloop += GetTime(2);


GetTime(1);


lseek(fd,-1*kbsize*1024,SEEK_CUR);


write(fd,data,kbsize*1024);


twrite += GetTime(2);

}

readtime = GetTime(3)-readtime;

close(fd);

free(data);




Figure 19 : Code Segment for 'read' Vs 'mmap'
4.3.2 Results and Analysis
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Figure 20 : Graphs for Disk Access using 'read' and 'mmap'

As seen from these graphs, synchronous file access using mmap is much faster than when using ‘read’ and ‘write’ system calls. This is due the overhead of copying data into user buffers while using ‘read’ and ‘write’.
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Figure 21 : Individual graphs for 'mmap' and normal ' read-write'
The above plots show the break-up of the read, loop, and write phases for the two access methods.
Note : The two plots have different scales, so for clarity, we have included the numbers in a table below.
The following analysis compares the ‘read’, ’loop’, and ‘write’ phases of the two implementations.

The reading using 'read' is slower because of the extra copy into the user buffer. The reading using 'mmap' is much faster since only page table entries are modified to include the new mapped region of virtual memory - no pages are loaded from the disk. ‘read’ timings for chunk sizes smaller than the cache, is much less than for larger chunk sizes.
The looping using 'read' is faster because the array being looped over is already in the memory. The looping using 'mmap' is much slower because this is when the pages get loaded into the physical memory, read and modified. (mmap loads pages only when the corresponding addresses are dereferenced.)

The writing using 'write' is slower because it copies from the user buffer to the system buffer and then to disk ( forced synchronous – O_SYNC). The writing using 'munmap' is faster because the dirty pages are written to disk without any extra buffer copies.
	Buffer Size (KB) 
	MMAP Total (sec)
	MMAP Read (sec)
	MMAP Loop (sec)
	MMAP Write (sec)
	RW Total (sec)
	Read(sec)
	 Loop(sec)
	Write(sec)

	1
	26.487
	1.340
	21.289
	2.257
	519.436
	2.429
	9.949
	504.905

	2
	23.216
	0.682
	20.569
	1.138
	280.510
	1.241
	9.690
	268.498

	4
	20.890
	0.359
	19.559
	0.567
	95.227
	1.030
	9.676
	83.976

	8
	20.080
	0.180
	19.397
	0.291
	77.656
	0.912
	9.645
	66.823

	16
	19.713
	0.091
	19.360
	0.148
	67.543
	0.853
	9.671
	56.871

	32
	19.543
	0.042
	19.352
	0.089
	65.375
	0.893
	9.672
	54.735

	64
	19.466
	0.022
	19.362
	0.047
	65.755
	0.971
	9.609
	55.134

	128
	19.447
	0.013
	19.380
	0.030
	90.765
	1.288
	9.720
	79.725

	256
	19.604
	0.009
	19.561
	0.026
	77.520
	1.802
	9.763
	65.935

	512
	19.992
	0.011
	19.928
	0.048
	67.992
	2.339
	9.626
	56.015

	1024
	20.086
	0.007
	20.012
	0.064
	57.188
	30.655
	9.849
	16.678

	2048
	20.147
	0.004
	20.063
	0.078
	63.309
	31.656
	9.780
	21.870

	4096
	20.255
	0.002
	20.175
	0.076
	59.698
	25.563
	9.776
	24.357

	8192
	20.787
	0.394
	20.325
	0.066
	60.346
	24.324
	9.771
	26.251

	16384
	20.554
	0.008
	20.481
	0.065
	62.089
	23.913
	9.763
	28.412

	32768
	21.191
	0.404
	20.723
	0.064
	61.896
	23.766
	9.833
	28.297

	65536
	21.322
	0.000
	21.253
	0.069
	60.677
	22.124
	9.775
	28.778


Figure 22 : Table for read and mmap timings
4.4 Remote File Access

4.4.1 Metric Description
This test was done to get an estimate of the overhead involved in accessing a file on a remote disk (nfs mount), as compared to accessing a file on a locally mounted disk (/tmp). This test was performed only on Linux, and on a different machine connected to a network with remotely mounted disks.
A file was created by performing write operations in different sized chunks. Different test runs were performed with this file being created on a local disk (/tmp) and on a remotely mounted disk.  These writes use the ‘write’ system call with the O_SYNC flag set to force synchronous writes for each instance of the user buffer.
	/*******SEQ_RAN *******/

/* read the file = random */

GetTime(1);

for(i=0;i<nbuff;i++)

{

off = (int)((double)abs(rand())/RAND_MAX*
(nb-1)*kbsize*1024);

}

rant = GetTime(2);

/* random seeks are NOT to page boundaries.. */

fd = open("scratchfile",O_RDWR|O_SYNC);

GetTime(1);

for(i=0;i<nbuff;i++)

{

off = (int)((double)abs(rand())/RAND_MAX*
(nb-1)*kbsize*1024);

lseek(fd,off,SEEK_SET);

read(fd,data,kbsize*1024);
}

	rantime = GetTime(2) - rant;

close(fd);

/* read the file - sequential */

fd = open("scratchfile",O_RDWR|O_SYNC);

off=0;

GetTime(1);

for(i=0;i<nbuff;i++)

{


lseek(fd,0,SEEK_CUR);


read(fd,data,kbsize*1024);

}

seqtime = GetTime(2);

close(fd);

free(data);




Figure 23 : Code Segment for Local and Remote Disk Access
4.4.2 Results and Analysis
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Figure 24: Graphs for Local and Remote Disk Access
The overall file access bandwidth for the remote disk is two orders of magnitude lower than that for the local disk. 
This is due to the network overhead. 

Also – the bandwidth in both cases increases exponentially with chunk size, which is an indication of lesser number of packets being transferred. (these writes are synchronous)
Data transfer rates plus timings for file creation using a chunk size of 64 bytes is estimated from the remote access time, as 63.52 milliseconds. 
Data transfer rate calculated from ‘ping’ statistics, which includes the overhead due to the network protocol layers is observed to be 0.207 milliseconds. These measurements were done over a 100Mbps Ethernet link.

5 Processes
The following tests were run on Linux and Windows to measure the absolute times to perform system calls, as well as the relative costs incurred between executing a function in different contexts (within the same process vs forking a new process).
5.1 System Calls 
5.1.1 Metric Description
The following functions were called repeatedly and the number of possible calls per second was calculated. This gives an approximate absolute value of the overhead of performing these functions. These timings including looping overhead required to perform several repetitions.
'getpid()' being the simplest available kernel call, was used to give an approximate overhead of a kernel function call.
'malloc-free' were used to allocate/deallocate 4 bytes of memory repeatedly to calculate approximate overhead of memory allocation.
'file open-close' were used to measure the time overhead involved in the process of opening and closing an existing file.
'file create-delete' overhead was measured by performing the test of file open-close, but always creating a new file and deleting it after closing.
'fork' was used to give an approximate overhead of procedure invocation.
/*** Process - getpid - openclose...malloc... ***/
	/* Call getpid() */

GetTime(1);

for(i=0;i<N/100;i++) getpid();

difftime = GetTime(2);

/* File Open Close - fopen-fclose */

fp=fopen("temp","w");

fclose(fp);

GetTime(1);

for(i=0;i<N/100;i++)

{


fp=fopen("temp","w");


fclose(fp);

}

difftime = GetTime(2);

/* File Open Close - open-close */

GetTime(1);


	for(i=0;i<N/100;i++)

{

fd=open("temp",O_RDWR
|O_SYNC|O_CREAT);


close(fd);

}

difftime = GetTime(2);

/* File Create Delete */

GetTime(1);

for(i=0;i<N/100;i++)

{

fd=open("temp",O_RDWR|O_SYNC|O_CREAT);


close(fd);


unlink("temp");

}

difftime = GetTime(2);


	/* mem malloc free */

GetTime(1);

for(i=0;i<N/10;i++)

{

data=(int*)malloc(4);

free(data);

}

difftime = GetTime(2);

/* forking */

GetTime(1);

for(i=0;i<N/1000;i++)

{


ferr=fork();


if(ferr==0)exit(0);


else wait(&stat);

}

difftime = GetTime(2);




Figure 25 : Code Segment for System Calls
5.1.2 Results
	
	Linux
	Windows

	
	With Optimizations

(Million Calls/sec)
	Without Optimizations

(Million Calls/sec)
	Without Optimizations

(Million Calls/sec)
	Without Optimizations

(Million Calls/sec)

	Call
	Getpid
	1.486661667
	1.466027333
	125
	42.65089633

	File
	Open-Close-fopen-fclose
	0.094614333
	0.073689667
	0.004799
	0.057701

	File
	Open-Close-open-close
	0.389528
	0.387609
	0.007438
	0.261525

	File
	Create- Delete
	0.055121333
	0.04593
	0.002204
	0.034418444

	Malloc
	Free
	11.692463
	9.627664667
	1.297353
	7.539160222

	Process
	Fork
	0.003328667
	0.00332
	0.000101
	0.002249889


Figure 26 : Table of performance of system calls
5.2 Function performance with different implementation styles.
5.2.1 Metric Description
This test involved timing different implementations of functionally identical code. The code consists of an inner and outer ‘for’ loop, which has been implemented as inline code, repeated function calls, recursion, and forking child processes that executed the inner loop. The different implementations were proved to be functionally identical, by calculating a sum as a by-product of the nested looping, and making sure that all implementations returned identical sums.
We tried to ensure that the compiler optimization does not override our attempts to measure the time differences, by ensuring reuse of variables that get changed inside the loops. Our goal here was not to time the actual function invocation or forking times, but to measure the relative execution times for different implementations of the same functionality.

(i) Inline

 There were a simple pair of nested loops in the main(), with sums being calculated within the inner loop and accumulated in the outer loop. (The malloc is redundant in all these tests since the malloc-free operations are always performed within the same scope)
(ii) Function Call

 The outer loop was in the main() while the rest of the computation was performed as a function call. The overhead incurred here is the cost of 'ntimes' function calls.

(iii) Recursion

 The outer loop corresponds to stepping down through the recursion, and the inner loop was implemented on the unwinding. This corresponds to a recursion that was 'ntimes' levels deep.

(iv) Forking

 The outer loop was in the main() while the inner loop computation was done in a child process. The child process would only perform the inner loop computation, send a return value (partial sum) to the parent process by writing an integer into a system pipe and terminate using exit(0).The parent would wait for the child to terminate, and after executing 'wait(&stat)' it would read the integer from the pipe and continue the outer loop. The 'wait()' was required to ensure that the process table entries for the child processes were deleted and did not remain as zombie processes.

	/*** Process - inline vs fn vs recursion vs fork ***/

/* Inline */

GetTime(1);

for(i=0;i<ntimes;i++)

{

sum=0;

data = (int*)malloc(sizeof(int)*size);

for(j=0;j<size;j++) data[j] = j;

 for(j=0;j<size;j++) 

  {

   data[j] = data[j] + i+j;

   sum += data[j];

 }

free(data); sum += sum;

} inlinetime=GetTime(2);

/* Function calls */

tsum=0;sum=0;

GetTime(1);

for(i=0;i<ntimes;i++) tsum += testfn(i);

fntime=GetTime(2);

int testfn(int i)

{

int sum=0,j;

int *data=NULL;

sum=0;

data = (int*)malloc(sizeof(int)*size);

for(j=0;j<size;j++) data[j] = j;

for(j=0;j<size;j++) 

{


data[j] = data[j] + i+j;


sum += data[j];

}

free(data);return(sum);

}
	/* Recursive Calls */

tsum=0;sum=0;

GetTime(1);

tsum = testrec(ntimes-1);

rectime=GetTime(2);

int testrec(int i)

{

int *data=NULL;

int j,tsum=0,sum=0;

if(i>0) tsum = testrec(i-1);

data = (int*)malloc(sizeof(int)*size);

for(j=0;j<size;j++) data[j] = j;

sum=0;

for(j=0;j<size;j++) 

{


data[j] = data[j] + i+j;


sum += data[j];

}

free(data);

tsum += sum;

return(tsum);

}


	/* Forking ! */

err = pipe(fildes);


tsum=0;sum=0;

GetTime(1);

for(i=0;i<ntimes;i++)

{

   ferr=fork();   
   if(ferr<0) printf("err = %d  \n",ferr);  
   if(ferr==0)

   {

   sum=0; 
   data=(int*)malloc(sizeof(int)*size);

   for(j=0;j<size;j++) data[j] = j;  
   for(j=0;j<size;j++) 


{


data[j] = data[j] + i+j;


sum += data[j];


}

    free(data);

    write(fildes[1],&sum,sizeof(int));

    exit(0);

   }

 else

 {

  wait(&stat);

  read(fildes[0],&sum,sizeof(int)); 
  tsum += sum;

 }

}

forktime=GetTime(2);




Figure 27 : Code Segment for different call types
3.3.2 Results and Analysis

The following graphs shows the results for Linux and Windows
These plots show the execution times for the different implementations as a function of the number of iterations/fn calls/recursion levels/processes forked. 
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Figure 28 : Graphs for Inline Vs Function Vs Recursion calls on Linux
All three implementation schemes scale linearly with the number of repetitions. The larger slope of the line for recursion indicates it does not scale as well as the inline and function implementations. 

An interesting observation is that without compiler optimization the inline implementation was faster than function calls. But with compiler optimization (O3) the function call implementation ran faster than the optimized inline code!
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Figure 29 : Graph for Inline Vs Function Vs Recursion on Windows

No such linear trends were observed for the different implementations on Windows beyond a certain number of repetitions. This could be attributed to the ‘cygwin’ environment on which the tests were run.  
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Figure 30 : Graphs for Forks
For Linux, the fork implementation showed no difference with and without optimization. For Linux and Windows, the performance scales linearly. 
6 Arithmetic Operations
This test measures the number of integer or float operations that can be done in a second. Another test compares the execution time of integer operations with and without optimizations. 

6.1 Integer and Float Operations

6.1.1 Metric Description
Integer and float arithmetic operations of addition, subtraction, multiplication and division were tested in this experiment.

Each operation was executed in a “for” loop with the operation being performed once per iteration. N iterations of these loops were timed. These timings include the looping overhead (mainly an increment and a compare operation), which is common to all the tests, and hence can be ignored if only a pure comparison is being made. O4 compiler optimization was used to ensure that while the iterations executed, all values stayed in the registers. This would isolate the test from the overheads of memory accesses.
The loops were structured as shown below, with all variables declared as integers (or floats). N is always declared as an integer. Several runs were taken and the average execution time was used to calculate the approximate number of iterations executed per second. 
	/*** Sample Arithmetic Operation Test. ***/


N=100000000;


/* Integer Addition */


GetTime(1);


for(i=0;i<N;i++)



acc = i + inc;


difftime = GetTime(2);


printf("Int Add     %lf MOps/sec\n",N/(difftime*1e+6));




Figure 31 : Code Segment for Arithmetic Operations
6.1.2 Results and Analysis
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Figure 32 : Graphs for Arithmetic Operations
These numbers show us that overall, integer operations are faster than float operations. Operations speed up with compiler optimization, with the exception of integer division. Windows and Linux gave comparable numbers for all these tests.

7 Linux Vs Windows

In this section, the performance of Linux and Windows are compared for the same measurements of memory access, disk access and processes. Please note that Windows measurements were done on ‘cygwin’ environment which might attribute to some unexpected results. The same compiler was used for compiling the programs for the test. One thing that can be noted for memory and disk performance is that Windows seems to use the cache more effectively than Linux. 
7.1 Memory

Memory – Cache Vs RAM Vs Swap Disk
As excepted there is a considerable drop in bandwidth for both memory read and write for both Linux and Windows when the size of the allocated memory is nearly the same as the cache size. In both cases of read and write the bandwidths of Windows drops much earlier than Linux. 
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Figure 33 :  Graphs comparing Linux and Windows memory access bandwidths
Code Plus Data – Different Levels of Optimizations

Effects of Code Optimization on Cache Vs RAM memory access times

In our test for comparing memory access times between the cache, RAM and the disk, and for estimating the cache-resident code size, different levels of compiler optimization showed different trends. This is shown in the following plots.
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Figure 34 : Graphs for Code plus data with different levels of optimization on Linux
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Figure 35 : Graphs for Code plus data with different levels of optimization on Windows

From these plots it can be seen that without compiler optimization, there is no apparent difference in performance between the cache and the RAM. With any level of optimization, this divide is apparent. At lower levels of optimization, the performance curves are noisier than those for higher levels of optimizations. This is an indication of the fact that the code gets more compact with higher levels of optimization, thus resulting in less contention between the cache and the RAM and hence smoother trends. 
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Figure 36 : Graphs comparing Linux and Windows with O3 optimization level

The same compiler was used on both Linux and Windows and a rather consistent feature observed is that the Windows curves were smoother at the cache size and did not start decreasing much before the cache size, as was observed for Linux.
Looping and Sub-Looping
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Figure 37 : Graphs comparing the Sub-Looping between Linux and Windows

These graphs show that performance of Linux and Windows are comparable for this experiment. The main difference is that the performance of Linux degrades before the chunk size is equal to the size of the cache. This could be due to the presence of other resident code in the Linux cache.   
7.2 Disk IO

open-close-read-write
The performance of synchronous and asynchronous reads are different for Linux and Windows. 

In the case of synchronous reads, Linux performs better than Windows. The bandwidth of Linux drops way beyond the size of the cache while there is drop in bandwidth for Windows at this point. 

Windows performs better than Linux for asynchronous reads. The bandwidth for Linux drops considerably before the size of the cache, while Windows bandwidth drops around this point. 
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Figure 38 : Graphs comparing disk read bandwidths for Linux and Windows

The reads using synchronous I/O definitely show better performance. 
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Figure 39 : Graphs comparing disk write bandwidths for Linux and Windows
The performance for synchronous and asynchronous writes are comparable for Linux and Windows. 

The bandwidth for synchronous writes drops for Windows at the cache size while that for Linux drops before the cache size. Windows performs better than Linux for synchronous writes at any size. Beyond the size of the cache, the performance of Windows continues to prove while that of Linux goes down. 
The performance of asynchronous writes for Linux and Windows are comparable except when there is a drop in bandwidth for Windows at the cache size. 
Sequential Vs Random

The performance of Sequential access for Linux is better than Windows for chunk sizes less than 64 KB. Beyond this size the sequential access bandwidths for both Linux and Windows are comparable. 

The random access is similar for both Linux and Windows for all chunk sizes. For chunk sizes less than 64 KB, Linux performs better than Windows and vice versa for chunk sizes greater than 64KB. 
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Figure 40 : Graphs comparing Sequential and Random disk access between Linux and Windows
Sequential and Random For Page Read Ahead

The break for page-read ahead is observed only for Linux and not on Windows. This could be an indication that the page-read ahead limit is a feature of each operating system.
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Figure 41 : Graphs for comparing the disk accesses for Page Read Ahead between Linux and Windows
7.3 Process

Inline Vs Function Vs Recursion
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Figure 42 : Graphs comparing the times for different call types on Linux and Windows
For the different call types, Linux performs better than Windows.  This can be attributed partly to the ‘cygwin’ environment on which it is know that the fork implementations are not optimal. 
8 Conclusion

This project has been an exercise in designing metrics to test certain features of an operating system. We have probed into some of the mechanisms that control memory access, disk I/O, and process management and have tried to interpret our observations based on what we know about the corresponding operating system algorithms. We have also seen differences in behaviour while comparing performances with and without compiler optimization and have shown that in some cases, a careful choice of compiler optimization, can result in better performance. All these tests have been at the user level and we have tried to correlate our observations with documented details of the operating system, to see how much they are actually visible to a user program.
Appendix 1
While working on this project we came across a few interesting/surprising things that we did not know about earlier.

· Inline implementations of code run faster than implementation by function call, without compiler optimization. With compiler optimization however, sometimes function call implementations can perform better than inline implementations.

· In simple ‘for’ loops with integer loop indices, the data type of the limiting variable is a significant factor in the performance of the loop. Also sometimes, higher levels of compiler optimization are not as reliable as one would expect – we saw this while trying to use a global variable and a high level of compiler optimization, and although the global variable was getting updated in the code, it did not get updated in the memory and gave numerically wrong results.

· RedHat Linux version 8.0 does not have an explicit file cache. It uses the RAM as a file cache, and stores data as dirty pages – writing to disk only periodically, or when a process requests more memory than is currently available as clean pages in the RAM.

· On Linux, a cron job runs that triggers ‘updatadb’ every few hours. This is a version of ‘locate’ which organized file metadata and rearranges files on disk to maximize file access speeds and minimize fragmentation on disk.

· If a process does repeated I/O – large number of repeated disk I/O system calls without any buffering (reading byte by byte), the process can get trapped in the kernel mode where it is just waiting for hardware I/O. This sends the process into a ‘disk sleep’ state. This could be related to the ‘standby spindown timeout’ setting via ‘hdparm’ which could send the process into this disk sleep mode. If a process went into this state – it took extremely long to get out of it. Even a small amount of buffering was enough to get around this.

· Zombie processes are created if forked children processes are explicitly terminated and not ‘waited’ for by the parent. We ran into this when we accidently forked processes and after terminating them explicitly, did not have a ‘wait’ in the parent. This showed us that the maximum number of processes that can be forked is approximately 1200.

· Working with the Cygwin UNIX Environment on Windows is the first time we have probed the system issues of a virtual machine implementation. From the documentation on the Cygwin web-site, we learnt the basic ideas behind how Cygwin emulates a UNIX shell on top of Windows, and what features of Linux have been ported efficiently and what not. Cygwin emulates a kernel by creating a shared address space for all its processes and this maintaining file and process information the way Linux does. Process creation meant the usage of part of this shared space with metadata stored to emulate the file system. Forking is expensive and uses a non copy-on-write policy, with a large number of explicit parent-child context switches. Regarding performance – processes are said to perform slower on Cygwin than on Linux, but it is not sure whether this can be attributed to the inefficiencies of Cygwin or the difference in the Unix and Windows Operating Systems.

Some additional performance tests that we could think of but have not implemented are as follows.

· A test to compare context switch times and process execution times, with sets of processes having different controlled priorities. This could have been implemented by forking processes and forcing them to multiplex by performing blocking communication between each other via a pipe, and then observing what happens when their priorities are changed and controlled using kernel calls like ‘nice’.

· A test that uses shared memory with multiple process accessing overlapping regions. This if designed properly, could be used to probe the system and observe the effect of how shared memory is handled via locks and monitors.

· Multithreaded implementations of a process could have been compared to other implementation schemes. This could have been a part of the comparison between inline, function call, recursive and forked implementations of a simple nested computation.

· A test to measure or observe the effects of interrupts.
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