# Combining single dish and interferometer data for joint wideband multi-term deconvolution



**Urvashi Rau** National Radio Astronomy Observatory

& **Nikhil Naik** IIT-Kharagpur, India ( 2017 NRAO summer intern who wrote the initial prototype )

> NRAO Wednesday Lunch Talk 11 July 2018





#### Goals

- Solve the short-spacing problem for wideband multi-term imaging
  - Reconstructions of large scale spectra are particularly error prone with INT-only data
- Prototype a generic algorithmic framework for joint SD+INT reconstructions
  - Retain the benefits of multiple existing algorithms
  - Ensure flexibility in algorithm and image-type choices
- Explore robustness to differing noise levels between SD and INT data/images
  - Is it possible to relax current constraints on required SD observing time ?
  - How much SD uv-coverage (and overlap with INT) is sufficient?



#### For which scales can we reconstruct the spectrum



NRA

NRAO Wednesday Lunch Talk

#### For which scales can we reconstruct the spectrum



NRAO Wednesday Lunch Talk

#### For which scales can we reconstruct the spectrum



## **Very large scales : Unconstrained Spectrum**

The spectrum at the largest spatial scales is NOT constrained by the data



U.Rau

NRAC



True sky has one steep spectrum point, and a flat-spectrum extended emission

Leave out shortest baselines

No short spacings to constrain the spectra

=> False steep spectrum reconstruction

# **Very large scales : Need additional information**

External short-spacing constraints (visibility data, or starting image model)



U.Rau





True sky has one steep spectrum point, and a flat-spectrum extended emission

Retain some short spacing information.

Correct reconstruction of a flat spectrum

=> So, how to add this information ?

NRAO Wednesday Lunch Talk

#### Wideband data : SD-only vs INT-only vs SD+INT



Degree of overlap between SD and INT depends on single dish diameter => Different algorithms apply ( post-reconstruction combination vs joint modeling )



# **Approaches for combining INT and SD data/images**

- [1/3] Feathering : Combine SD observed image and INT reconstructed image.
  - A weighted sum in the uv-domain
    - The FT of the SD beam is used as the weighting function
    - Scale factor chosen empirically (or as the ratio of beam areas)

( CASA, AIPS, OBIT, MIRIAD all have slightly different implementations. Several other efforts/ideas exist )

- It is usually used as a post-deconvolution combination
- The effect of the empirical scale factor is also burnt into the result
  ( => significant art involved in choosing proper relative weighting schemes)
- [2/3] StartModel : Use a deconvolved SD image as a starting model for the INT reconstruction
  - Effective when there is significant overlap between INT and SD uv-spacings



•

# Approaches for combining INT and SD data/images

• [3/3] Joint reconstructions : Build a sky model using SD+INT together

Method 1 : Combine SD and INT images **and PSFs** before deconvolution.

 Scale factors and empirical weight functions enter the reconstruction as a choice of data weighting (robust, uniform, etc)
 Stanimirovic et al, 1999 : Construct an image-domain weighted sum prior to one deconvolution cycle

Method 2 : Add image-domain constraints to non-linear solvers (e.g. MEM)

– MOSMEM (miriad) implements a narrow-band version MIRIAD task documentation : User-supplied scale factors + auto-matching of visibility levels.

Method 3 : Create artificial visibilities from single dish data

 Use a random visibility sampling function within the UV footprint of the SD telescope. Simulate a list of visibilities.

- Make up meta-data to match what an interferometer measures Koda et al 2011, 2017 : Implemented and demonstrated this approach for ALMA via 'tp2vis'.

 Our Approach : Feather SD and INT residual images and PSFs in-between standard major/minor cycle iterations.



# **Approaches for combining INT and SD data/images**

- Dealing with Interferometer Primary Beams (and mosaics)
  - INT observed image = ( sky . INT\_pb ) \* INT\_psf INT\_model = ( sky . INT\_pb )
  - SD observed image = (sky) \* SD\_pb
    SD\_model = (sky)

=> Manipulate either the SD or INT images (with INT PB) to match the other

- e.g. For Feathering, use (INT\_model / INT\_pb ) with SD\_model
- e.g. For Startmodel, use (SD\_model . INT\_pb) with the INT-only reconstruction with flat-noise normalization



e.g. Details for Joint algos depend on algorithm (and normalization)

# **Our Choice : Wideband SD+INT Multi-Term Imaging**





## SD and INT wideband simulations (VLA D-config + GBT)



#### Two extended Gaussian components

15 x 20 arcmin (largely unsampled by INT) 10 x 12 arcmin (partially sampled by INT)

Spectral index = 0.0

Three point sources

Spectral indices = -1.0, -1.0, 0.0

|   | Frequency        | 1.0 GHz     | 1.5 GHz     | 2.0 GHz     | Spacing |
|---|------------------|-------------|-------------|-------------|---------|
| • | INT (resolution) | 1.0 arcmin  | 0.67 arcmin | 0.5 arcmin  | ~ 1030m |
| • | INT (max scale)  | 30.0 arcmin | 19.6 arcmin | 14.7 arcmin | ~ 35m   |
| • | SD (resolution)  | 10.3 arcmin | 6.8 arcmin  | 5.1 arcmin  | ~ 100m  |
|   |                  |             |             |             |         |



#### **Cubes from INT-only and SD-only data**





# Wideband multi-term imaging : INT, SD, SD+INT



NRAO Wednesday Lunch Talk

NRAC

### **Comparison with Feathering & Startmodel**



NRAO Wednesday Lunch Talk

U.Rau

NRAC

#### **Noisy Data : INT-only and SD-only Cubes**





NRAO Wednesday Lunch Talk

# Wideband multi-term imaging : High SD noise



NRAO Wednesday Lunch Talk

NRAC

## Wideband multi-term imaging : High SD noise + weighting

SD-scale = 0.2 during the Feather step

- (For residual images and PSFs)
- => Data weighting scheme to match the noise levels

#### Results :

- Lower Residual noise
- Flux Correctness

U.Rau

- Accurate alpha ( with frequency-independent feathering functions )





NRAO Wednesday Lunch Talk

# Summary (so far...)

- Prototyped a generic algorithmic framework for joint SD+INT imaging
  - Spectral Cubes and Wideband Continuum
  - Supports deconvolution for INT-only, SD-only, INT+SD joint.
  - SD data can be handled either as images or SD MeasurementSets
  - Supports the use of custom feathering functions (if needed)
  - Framework allows full range of gridding/deconvolution algorithm choices
    - wide-field gridding (W-Proj/A-Proj), point source or multi-scale
- Demonstrated a solution to the wide-band short-spacing problem
- Promising results for using the implicit weighting scheme to manage SD data with noise levels much higher than INT data.
  - Implications on amount of observing time needed for short-spacing data
  - Paper (nearly) ready for submission (Rau & Naik)



## Next Steps.....

- A formal implementation within the ARDG code base
- Commissioning the algorithm on several real data sets
  - G55.7+3.4 SNR, CTB80 SNR, CHANG-ES Galaxy Halos
    - EVLA L-Band Single Pointings and Mosaics
    - GBT VEGAS L-Band Mosaics
  - ALMA M100 Band 3 reference/benchmark dataset
    - 7m ACA + 12m ALMA + 12m TP data
    - Evaluate against standard procedure (joint ACA+ALMA followed by feathering of TP data) and the 'tp2vis' approach.
- Integration into CASA for production release

#### G55.7+3.4 Supernova Remnant + Pulsar

#### 7 hour synthesis, L-Band, 8 spws x 64 chans x 2 MHz, 1sec integrations (used 4 spws)





Max sampled spatial scale : 19 arcmin (L-band, D-config) Angular size of G55.7+3.4 : 24 arcmin Primary beam at 1.5 GHZ : 30 arcmin

Clear example of wideband short-spacing problem (i.e. only for nterms=2)

Needs wide-field wide-band Primary Beam handling too

In 2016, we obtained GBT VEGAS wideband data.





NRAO Wednesday Lunch Talk

# CTB80 wideband mosaic : L-Band EVLA , GBT

J2000 Declination



#### Joint mosaic primary beam from 106 VLA pointings

imctb80.try6.weight.tt0-raster 36' 24' 12' 33° 48' 36' 24' 12' 19<sup>h</sup>59<sup>m</sup> 57<sup>m</sup> 51<sup>m</sup> 55<sup>m</sup> 56<sup>m</sup> 54<sup>m</sup> 53<sup>m</sup> 52<sup>m</sup> 50<sup>m</sup> J2000 Right Ascension



(INT only)





Interferometer + Single dish

( Only Intensity, Feathering )

