Wide Bandwidth Imaging

Thirteenth Synthesis Imaging Workshop 29 May – 5 June 2012

Urvashi Rau

National Radio Astronomy Observatory.

Universities, Inc.

Outline

(1) What is wide-band imaging ?

- Bandwidth and sensitivity
- Frequency-dependent Instrument and Sky
- Bandwidth smearing
- Multi-frequency synthesis

(2) Imaging Algorithms

- Recap. of image-reconstruction methods
- Cube vs Continuum imaging (intensity and spectrum)
- (3) Examples of various effects/corrections/errors
- (4) Example of wide-band imaging trials on JVLA observations of a Galactic super-nova-remnant between 1-2 GHz.

Wide-band Imaging + Sensitivity

	L-Band	C-Band	X-Band				
	(1–2 GHz)	(4 –8 GHz)	(8 –12 GHz)				
Bandwidth : $v_{max} - v_{min}$	1 GHz	4 GHz *	4 GHz *				
Bandwidth Ratio : v_{max} : v_{min}	2:1	2:1	1.5 : 1				
Fractional Bandwidth : $(v_{max} - v_{min})/v_{mic}$	d 66%	66%	40%				
* : Currently the max bandwidth is 2 GHz; it will increase with 3-bit samplers.							

(1) Broad-band receivers increase 'instantaneous' sensitivity

Continuum sensitivity :
$$\sigma_{cont} \propto \frac{SEFD}{\sqrt{N_{ant}(N_{ant}-1)} \ \delta \tau \delta \nu}$$

(at field-center)
VLA \rightarrow JVLA 50 MHz \rightarrow 2 GHz Sensitivity improvement : $\sqrt{\frac{2 GHz}{50 MHz}} \approx 6$ times.

In practice, effective bandwidth for imaging depends on bandpass shape, data weights, and regions of the spectrum flagged due to RFI.

(2) Imaging must account for the frequency-dependence of the sky and instrument.

UV-coverage (imaging properties), sky-brightness (EM-spectrum), primary-beam (field-of-view)

Fractional bandwidth controls the magnitude of frequency-dependent effects within the band.

Thirteenth Synthesis Imaging Workshop

Frequency-dependent UV-coverage and PSFs

Thirteenth Synthesis Imaging Workshop

New Mexico CONSORTIUM

The University of New Mexico

Bandwidth smearing (chromatic aberration)

In the early days of continuum-observing, only one visibility was computed across the entire bandwidth of the receiver, and attributed to the reference (or middle) frequency v_0 . Delay-tracking was also done only at v_0 .

The visibility
$$V(u_v)$$
 is mistakenly mapped to $u_0 = \frac{bv_0}{c} = \frac{v_0}{v}u_v$

Similarity theorem of Fourier-transforms :

$$V\left(\frac{\nu_0}{\nu}u_{\nu},\frac{\nu_0}{\nu}v_{\nu}\right) \longrightarrow \left(\frac{\nu}{\nu_0}\right)^2 I\left(\frac{\nu}{\nu_0}l,\frac{\nu}{\nu_0}m\right)$$

The shape of the smearing is controlled by the bandshape (See Chapter 18 by Bridle & Schwab)

The measured visibility can be written as a weighted average along a radius in the UV-plane, where the weightspectrum" is given by the bandpass shape and delay-tracking error. This is further written as a product of the visibility function and a "delay function", which, in the image-domain becomes a position-dependent convolution with a radial 'distortion function'.

Note : Excessive channel-averaging during post-processing has a similar effect.

Bandwidth smearing (chromatic aberration)

An (exaggerated) example of bandwidth-smearing with a 1-2 GHz signal.....

(1) If the bandpass shape is known, it is possible to recover (partially) from bandwidth-smearing, but it is always best to avoid the problem altogether.

(2) Construct visibilities for multiple narrow-band channels, each with its own delay-tracking.

Bandwidth Smearing Limit (maximum channel-width): $\delta v < v_0 \frac{D}{b_{max}}$

=> Place $V(u_v)$ at the correct location on the UV-plane.

=> UV-range spanned by δv is smaller than a uv-grid cell (1/f-o-v)

For example, at 1.4 GHz, 33 MHz (D-config), 10 MHz (C-config), 3 MHz (B-config), 1 MHz (A-config)

New Mexico

CONSORTIUM

The University of New Mexico

Thirteenth Synthesis Imaging Workshop

Thirteenth Synthesis Imaging Workshop

Point Spread Functions : Single vs Multi Frequency

JVLA D-config, 6 hour synthesis : Robust-weighted PSFs.

For a flat-spectrum sky-brightness, channels contain multiple measurements of the same visibility function

$$V(u_{\nu},v_{\nu}) = \int \int I(l,m) e^{2\pi i (u_{\nu}l+v_{\nu}m)} dl dm$$

=> Standard Imaging and Deconvolution applies

Thirteenth Synthesis Imaging Workshop

Frequency-dependent Sky Brightness

When the source intensity varies with frequency, different channels measure the visibility function of different sky-brightness distributions

$$V(u_{\nu},v_{\nu}) = \int \int I(l,m,\nu) e^{2\pi i (u_{\nu}l+v_{\nu}m)} dl dm$$

(1) Each point on the source has an intrinsic spectrum :

- The radio synchrotron spectrum is often a power law with varying spectral-index (spectral curvature)

$$I_{\nu} = I_{\nu_0} \left(\frac{\nu}{\nu_0}\right)^{\alpha + \beta \log(\nu/\nu_0)}$$

=> Cannot apply standard imaging techniques To the combined visibilities.

(2) Frequency probes source structure :

- Spectrum traces velocity structure (doppler-shifted line emission)
- Frequency probes depth in a 3D volume (solar flares/loops)

Thirteenth Synthesis Imaging Workshop

Frequency Dependent Antenna response (Primary-Beam)

Primary-beam scales with frequency

 $HPBW_{v} = \frac{\lambda}{D} = \frac{c}{v D}$

Bandpass calibration does not correct for offaxis gains or their frequency-dependence.

The average effect in the image-domain is a multiplication by an artificial PB-spectrum

=> Away from the pointing center, the Primary Beam introduces an artificial 'spectral index' on the measured sky : $\alpha_{observed} = \alpha_{sky} + \alpha_{PB}$

> About -0.4 at the PB=0.8 (6 arcmin from the center at L-Band) (15 arcmin from the center at L-Band) About -1.4 at the HPBW

Wide-field sensitivity depends on frequency.

Continuum sensitivity to a source with with a non-flat spectrum $\propto \frac{\sum_{v} w_{v} \cdot P_{v} \cdot I_{v}}{\sum I}$

The University of New Mexico

EVLA Primary Beams

New Mexico

CONSORTIUM

- Use broad-band receivers to increase instantaneous continuum sensitivity
- -- Measure visibilities in many narrow-band channels to avoid bandwidth-smearing
- -- Use multi-frequency-synthesis

--- to increase the uv-coverage used in deconvolution and image-fidelity --- to make images at the angular-resolution allowed by the highest frequency

- Account for the sky spectrum
 - --- by modeling and reconstructing the spectrum as well as the intensity
 - --- by flattening it out (bandpass self-calibration)
- Account for the frequency-dependent off-axis gains of the antennas
 - --- by including the PB-spectrum in the sky-spectrum model
 - --- by applying wide-field imaging techniques to eliminate the effect during imaging.

Outline

(1) What is wide-band imaging ?

- Bandwidth and sensitivity
- Frequency-dependent Instrument and Sky
- Bandwidth smearing
- Multi-frequency synthesis

(2) Imaging Algorithms

- Recap. of image-reconstruction methods
- Cube vs Continuum imaging (intensity and spectrum)
- (3) Examples of various effects/corrections/errors
- (4) Example of wide-band imaging trials on JVLA observations of a Galactic super-nova-remnant between 1-2 GHz.

New Mexico

The University of New Mexic

Basic Imaging and Deconvolution (recap.)

Image Reconstruction : Iteratively fit a sky-model to the observed visibilities.

Measurement Equation : $[A]I^m = V^{obs}$

- The operator [A] = [S][F] includes the UV-coverage, Instrumental-gains, data-weights. - The vector I^m is the sky model (e.g. image-pixels, Gaussian set)

Fit the parameters of I^m via a weighted least-squares optimization :

- Minimize
$$\chi^2 = [V^{obs} - AI^m]^T W[V^{obs} - AI^m] = \frac{\delta \chi^2}{\delta I^m} = 0$$

Thirteenth Synthesis Imaging Workshop

20/50

CONSORTIUN

The University of New Mexic

Basic Imaging and Deconvolution (recap.)

Image Reconstruction : Iteratively fit a sky-model to the observed visibilities.

Normal Equations :
$$[A^T W A]I^m = [A^T W]V^{obs}$$

- This describes an image-domain convolution $I^{psf} * I^m = I^{dirty}$

Deconvolution Algorithms (recap)

Clean (Hogbom, Clark, Cotton-Schwab) :
$$I^{sky} = \sum_{x} a_x \, \delta(x)$$
 Chapters 7 and 8
Maximum Entropy : $I^{sky} = \sum_{x} a_x \, \delta(x)$ with a smoothness constraint
- Minimizing χ^2 is the same as maximizing likelihood $e^{-\frac{1}{2}\chi^2}$ (Bayesian idea)
Multi-Scale Clean : $I^{sky} = \sum_{s} [I_s^{shp} * I_s]$ Solve for components of different sizes Cornwell, 2008
Greisen, 2008
Adaptive-Scale-Pixel Clean : $I^{sky} = \sum_{c} a_x e^{-\frac{(x-x_c)^2}{c^2}}$ Solve for parameters of a Gaussian set
Bhatnagar, Cornwell 2004
Multi-Frequency Clean : $I^{sky} = \sum_{c} a_x e^{-\frac{(x-x_c)^2}{c^2}}$ Solve for parameters of a Gaussian set
Bhatnagar, Cornwell 2004
Multi-Frequency Clean : $I^{sky} = \sum_{c} a_x e^{-\frac{(x-x_c)^2}{c^2}}$ Solve for Taylor-coefficient images.
Multi-Scale Multi-Frequency Clean : $I^{sky} = \sum_{i} I_i \left(\frac{\nu - \nu_0}{\nu_0} \right)^t$ where $I_t = \sum_{s} [I_s^{shp} * I_{s,t}]$
Rau, Cornwell, 2011
Nulti-Scale Multi-Frequency Clean : $I^{sky} = \sum_{i} I_i \left(\frac{\nu - \nu_0}{\nu_0} \right)^t$ where $I_t = \sum_{s} [I_s^{shp} * I_{s,t}]$
Rau, Cornwell, 2011
Nulti-Scale Multi-Frequency Clean : $I^{sky} = \sum_{i} I_i \left(\frac{\nu - \nu_0}{\nu_0} \right)^t$ where $I_t = \sum_{s} [I_s^{shp} * I_{s,t}]$
Rau, Cornwell, 2011
Nulti-Scale Multi-Frequency Clean : $I^{sky} = \sum_{i} I_i \left(\frac{\nu - \nu_0}{\nu_0} \right)^t$ where $I_t = \sum_{s} [I_s^{shp} * I_{s,t}]$
Rau, Cornwell, 2011

The University of New Mexico

Cube (Spectral-Line) Imaging (See D.Meier's lecture)

(1) Image and deconvolve each channel separately (add them to form a continuum image). – Pre-average channels up to the bandwidth-smearing limit to reduce data size.

(2) During image-restoration, convolve model images from all channels with a common 'restoring beam' derived from the angular-resolution allowed by the lowest-frequency. Smooth residual images to match the same target resolution.

(3) Source spectra can be derived from the smoothed restored images (at low angular resolution)

(4) Imaging-fidelity is limited to the single-frequency UV-coverage

- Reconstructions may not be consistent across frequency

(5) Imaging sensitivity is limited to the single-channel sensitivity $\sigma_{chan} = \sigma_{continuum} \sqrt{(N_{chan})}$

- Will not deconvolve sources that are below σ_{chan} but above $\sigma_{continuum}$

Cube (Spectral-Line) Imaging is the simplest form of wide-band imaging, and good for a quick-look to assess data-quality. It can handle arbitrary spectra and has no spectral-model dependence. For telescopes like JVLA and ALMA, it may suffice for many science-goals.

..... but you can often do better.

Continuum Imaging : multi-scale multi-frequency-synthesis

 I_{v}^{sky}

2011A&A...532A..71R, arXiv:1106.2745)

Sky Model : Collection of multi-scale flux components whose amplitudes follow a polynomial in frequency

$$= \sum_{t} I_{t} \left(\frac{\nu - \nu_{0}}{\nu_{0}} \right)^{t} \quad \text{where } I_{t} = \sum_{s} [I_{s}^{shp} * I_{s}]^{t}$$

Instrument Response to a Taylor-polynomial spectrum : $I_t^{psf} = \sum_{\nu} \left(\frac{\nu - \nu_0}{\nu_0} \right)^t I_{\nu}^{psf}$

Algorithm : Linear least squares + deconvolution

Data Products : Taylor-Coefficient images $I_0^m I_1^m I_2^m$... that rep

that represent the sky spectrum

- Interpret in terms of a power-law (spectral index and curvature) $I_{\nu} = I_{\nu_0} \left(\frac{\nu}{\nu_0}\right)^{\alpha + \beta}$

$$I_0^m = I_{\nu_0} \qquad I_1^m = I_{\nu_0} \alpha \qquad I_2^m = I_{\nu_0} \left(\frac{\alpha (\alpha - 1)}{2} + \beta \right)$$

- PB-correction : Model the average PB-spectrum with a Tayor-polynomial, and do a post-deconvolution Polynomial-Division

$$\frac{(I_{0,}^{m}I_{1,}^{m}I_{2,}^{m}...)}{(P_{0,}P_{1,}P_{2,}...)} = (I_{0,}^{sky}I_{1,}^{sky}I_{2}^{sky}...)$$

New algorithms..... Still learning usage patterns and errors

24/50

Thirteenth Synthesis Imaging Workshop

Outline

(1) What is wide-band imaging ?

- Bandwidth and sensitivity
- Frequency-dependent Instrument and Sky
- Bandwidth smearing
- Multi-frequency synthesis

(2) Imaging Algorithms

- Recap. of image-reconstruction methods
- Cube vs Continuum imaging (intensity and spectrum)

(3) Examples of various effects/corrections/errors

(4) Example of wide-band imaging trials on JVLA observations of a Galactic super-nova-remnant between 1-2 GHz.

25/50

The University of New Mexic

Dynamic-range with MS-MFS : 3C286 example : Nt=1,2,3,4

Errors vs Nterms, BWR (for high signal-to-noise data)

Accuracy of the spectral-fit increases with larger bandwidth-ratio (basic polynomial fitting)

Source	Peak Flux	SNR	L alpha	C alpha	LC alpha	True	
Bottom right Bottom left Mid Top	100 иЈу 100 иЈу 75 иЈу 50 иЈу	20 20 15 10	-0.89 +0.11 -0.86 -1.1	-1.18 +0.06 -1.48 0	-0.75 +0.34 -0.75 -0.82	-0.7 +0.3 -0.7 -0.7	RMS 5 uJy

=> To trust spectral-index values, need SNR > 50 (within one band -2:1) For SNR < 50 need larger bandwidth-ratio.

Thirteenth Synthesis Imaging Workshop

(Not tested !)

New Mexico CONSORTIUM

The University of New Mexico

Example of wideband-imaging on extended-emission

For extended emission - spectral-index error is dominated by 'division between noisy images'
 a multi-scale model gives better spectral index and curvature maps

Thirteenth Synthesis Imaging Workshop

Extended emission – SNR example (a realistic expectation)

Results of a pilot survey (EVLA RSRO AB1345). These examples used nterms=2, and about 5 scales.

=> Within L-band and C-band, can tell-apart regions by their spectral-index (+/- 0.2) if SNR>100. => These images have a dynamic-range limit of few x 1000

Thirteenth Synthesis Imaging Workshop

New Mexico

CONSORTIUM

The University of New Mexico

Reconstruction ambiguity : Single-SPW imaging (vs) MS-MFS

Data : 20 VLA snapshots at 9 frequencies across L-band + wide-band self-calibration

=> It helps to use the combined uv-coverage

C.Carilli et al, Ap.J. 1991.

Thirteenth Synthesis Imaging Workshop

The University of New Mexico

Spectral Curvature

=> Need SNR > 100 to fit spectral index variation ~ 0.2 (at the 1-sigma level ...) => Be very careful about interpreting β

Thirteenth Synthesis Imaging Workshop

Moderately Resolved Sources + High SNR

Can reconstruct the spectrum at the angular resolution of the highest frequency (only high SNR)

Very large spatial scales – Unconstrained spectrum

The spectrum at the largest spatial scales is NOT constrained by the data

NRA

Very large spatial scales – Need additional information

External short-spacing constraints help (visibility data, or starting image model)

Non power-law spectra : Polynomial Spectral Fit

Example of Imaging with wide-band PB (artificial spectrum)

Post-deconvolution polynomial-division of the model spectrum by the PB-spectrum

Verified spectral-indices by pointing directly at one background source.

Obtained $\delta \alpha = 0.05$ to 0.1 for SNR or 1000 to 20

Without PB Correction .21 -0.5 **J2000 Declination** Spectral 32 - Index 28 $\alpha = -0.47$ 20-2 30°1€ 13^h32^m20^a 00° 31^m40^s 00^a 30^m40^a -2.5 J2000 Right Ascension With PB Correction during imaging -0.65 $\alpha \equiv$ -0.5 36 J2000 Declination Spectral Index 32' 28 $\alpha = -0.47$ 20 -2 30°16 13^h32^m20^a 00° 31^m40^s 00^a 30^m40^a -2.5J2000 Right Ascension

The University of New Mexico

New Mexico

CONSORTIUM

37/50

Thirteenth Synthesis Imaging Workshop

Continuum (MS-MFS) vs Cube Imaging (with PB-correction)

Thirteenth Synthesis Imaging Workshop

New Mexico

CONSORTIUM

The University of New Mexico

Other wide-field issues (primary-beam, w-term, mosaicing)

Wide-Band Imaging often requires Wide-field imaging techniques.

"Primary Beam" : The antenna-primary beam introduces a timevarying spectrum in the data.

Any algorithm that works only with "time-averaged" beams will not suffice for high dynamic-range imaging (S.Bhatnagar's talk will describe techniques to deal with this)

"W-term" : Also a frequency-dependent instrumental effect.

Narrow-band w-projection algorithm worka for wide-band.

(S.Bhatnagar's talk will explain what this is)

"Mosaicing" : Make observations with multiple pointing and delay-tracking centers. Combine the data during (or after) image-reconstruction.

New Mexico

ONSORTIUN

39/50

Single-pointing wide-band-imaging ideas will work for mosaics too.

(J.Ott's talk will describe mosaicing)

Thirteenth Synthesis Imaging Workshop

Using Wide-Band Models : Self-Calibration, Continuum-subtraction

WideBand Model : $I_{0}^{m}I_{1}^{m}I_{2}^{m}\dots$

Evaluate spectrum

$$I_{\nu}^{sky} = \sum_{t} I_{t} \left(\frac{\nu - \nu_{0}}{\nu_{0}} \right)^{t}$$

(1) Wide-Band Self-Calibration

- Can be used on target source, after initial calibration per spw.
- Can use it on the calibrator itself to bootstrap the model.

(2) Continuum Subtraction

- -- De-select frequency channels in which your spectral-lines exist.
- Make a wide-band image model of the continuum intensity and spectra
- Predict model-visibilities over **all** channels
- -- Subtract these model visibilities from the data

So far, we have focused on imaging the Stokes I = RR + LL and its frequency-dependence. Stokes Q, U, V can also be imaged (cube or continuum).

Q = RR + ILL, U = RR - ILL, V = RR - LL

Q,U,V also change with frequency,

- Their spectra usually do not follow a power-law.
- Spectra may not even be smooth (i.e. cannot use a Taylor-polynomial) => Make a Cube

Faraday Rotation-Measure Synthesis

Brentjens, 2008

41/50

Make images of $F(\phi)$, the polarized surface-brightness at various Faraday-depths.

- -P = Q + IU : Make spectral cubes for Q and U separately, and calculate P
- For each pixel in the P-cube, solve $P(\lambda^2) = \int F(\phi) e^{2\pi i \phi \chi^2} d\phi$ for $F(\phi)$

This calculation is currently done post-deconvolution, but it could be folded into the major/minor cycle framework.

Outline

(1) What is wide-band imaging ?

- Bandwidth and sensitivity
- Frequency-dependent Instrument and Sky
- Bandwidth smearing
- Multi-frequency synthesis

(2) Imaging Algorithms

- Recap. of image-reconstruction methods
- Cube vs Continuum imaging (intensity and spectrum)

(3) Examples of various effects/corrections/errors

(4) Example of wide-band imaging trials on JVLA observations of a Galactic super-nova-remnant between 1-2 GHz.

MS-MFS + **W-Projection**

18^m

17^m

19^m

21°00'

30'

30'

15'

45' 19^h26^m Max sampled spatial scale : 19 arcmin (L-band, D-config) Angular size of G55.7+3.4 : 24 arcmin

MS-Clean was able to reconstruct total-flux of 1.0 Jy MS-MFS large-scale spectral fit is unconstrained.

20^m

21^m

22^m 23^m

24^m

G55.7+3.4 : Supernova-Remnant + Pulsar

Example of wide-field sensitivity, because of wide-bandwidths

G55.7+3.4 : Galactic supernova remnant : 4 x 4 degree field-of-view from one EVLA pointing

Summary

Broad-Band Receivers

Cube-Imaging (or per SPW) will suffice for a quick-look.

Multi-Frequency-Synthesis for better sensitivity

Reconstruct Intensity and Spectrum during Imaging

Pay attention to the **many** sources of error in the model-fitting process.

Image from Frazer Owen : Intensity-weighted Spectral Index of Abell 2256

If this is done correctly, you could get increased imaging sensitivity (over wide fields), high-fidelity high dynamic-range reconstructions of both spatial and spectral structure, all from a single wideband observation.

Radio Frequency Interference and Flagging

Fraction of RFI-affected data vs Frequency

At L-Band, with the JVLA, you can use ~500 MHz with very rough flagging, ~800 MHz if done carefully.

Flagging RFI-affected data : Manual flagging, Automatic flagging (several algorithms in use at (Loss of Data) different observatories)

Subtracting RFI from data : Model the measurement-process of RFI. Fit this model from the data, and subtract it out.

(Recovery of RFI-affected data)

Thirteenth Synthesis Imaging Workshop

New Mexico

CONSORTIUM

The University of New Mexico

Automatic RFI identification and flagging

TFCrop : Detect outliers on the 2D time-freq plane, (based on visibility amplitudes)

- Average visibility amplitudes along one dimension
- Fit a piece-wise polynomial to the base of RFI spikes
 - -- calculate 'sigma' of data fit.
- Flag points deviating from the fit by > N-sigma
- Repeat along the second dimension.

Can operate on un-calibrated data + one pass through MS 'testautoflag' in CASA 3.3. 'tflagdata, mode=tfcrop' in CASA 3.4

RFLAG : Detect outliers using a sliding-window statistics in time and frequency (real/imag)

- For each channel, calculate rms of real and imag parts of visibilities across a sliding time window.
- Calculate the mean-rms, and deviations of these rmss from the mean.
- Search for outliers
 (local rms > N x (median-rms + median-deviation)

Needs calibrated data + two passes through data. "RFLAG"in AIPS. 'tflagdata, mode=rflag' in CASA 3.4

Thirteenth Synthesis Imaging Workshop