Radio Interferometry - Imaging

Urvashi Rau

National Radio Astronomy Observatory, Socorro, NM, USA

Image Formation

An interferometer is an indirect imaging device

Young's double slit experiment

2D Fourier transform :

Image = sum of cosine 'fringes'.

Each antenna-pair measures the parameters of one 'fringe'.

Measured Fringe Parameters :

Amplitude, Phase

Orientation, Wavelength

Measurements

Measure the spatial correlation of the E-field incident at each pair of antennas

$$\langle E_i E_j^* \rangle \propto V_{ij}(u,v) = \iint I^{sky}(l,m) e^{2\pi i (ul+vm)} dl dm$$

Measurements

Measure the spatial correlation of the E-field incident at each pair of antennas

$$\left\langle E_{i}E_{j}^{*}\right\rangle \propto V_{ij}(u,v) = \iint I^{sky}\left(l,m\right)e^{2\pi i(ul+vm)}dldm$$

Parameters of a Fringe :

Amplitude, Phase :

 $\langle E_i E_j^* \rangle$ is a complex number.

Orientation, Wavelength :

 $ec{u}$, $ec{v}$, $ec{b}$ (geometry)

Measurements

Measure the spatial correlation of the E-field incident at each pair of antennas

$$\langle E_i E_j^* \rangle \propto V_{ij}(u,v) = \iint I^{sky}(l,m)e^{2\pi i(ul+vm)}dldm$$

UV plane : Spatial Frequency Domain

Combine measurements from multiple 'baselines' (antenna pairs) on a UV grid.

Take the inverse Fourier Transform to construct an image.

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} R(h, \theta) \end{bmatrix} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \end{bmatrix}$$

Image of the sky using 11 antennas

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} R(h, \theta) \end{bmatrix} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \end{bmatrix}$$

Image of the sky using 27 antennas

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} R(h, \theta) \\ \delta y \\ \delta z \end{bmatrix} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \end{bmatrix}$$

Image of the sky using 27 antennas over 2 hours 'Earth Rotation Synthesis'

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} R(h, \theta) \\ \delta y \\ \delta z \end{bmatrix} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \end{bmatrix}$$

Image of the sky using 27 antennas over 4 hours 'Earth Rotation Synthesis'

Image of the sky using 27 antennas over 4 hours, 2 freqs 'Multi-Frequency Synthesis'

Image of the sky using 27 antennas over 4 hours, 3 freqs 'Multi-Frequency Synthesis'

Image Reconstruction

Basic Imaging :

Narrow-frequency range, Small region of the sky

=> The 2D Fourier Transform relations hold
=> Convolution and deconvolution

Wide-Band Imaging :

=> Sky and instrument change across frequency range

Wide-Field Imaging

=> The 2D Fourier Transform relation breaks

Mosaic Imaging

=> Image an area larger than what each antenna can see.

Image formed by an interferometer : Convolution Equation

$I^{obs}(l,m) = I^{PSF}(l,m) * I^{sky}(l,m)$

19^h59^m45^s 35^s 30^s 25^s 20^s 15^s J2000 Right Ascension

19^h59^m45^s 35^s 30^s 25^s 20^s 15^s J2000 Right Ascension

You have measured the Convolution of the True Sky with the instrumental PSF.

PSF = Point Spread Function

Inverse Fourier transform of the UV-coverage

S(u,v)

Recovering True Sky = DE-convolution

" Model Fitting "

- Parameterize the sky structure
- Iteratively build a "model" of the structure by minimizing Chi-square

Data = Incomplete set of samples of the true signal

Image Reconstruction = Fit a model (of the sky) to the data

 $\langle E_i E_j^* \rangle$, \vec{u} , \vec{v}

Deconvolution – Hogbom CLEAN

Sky Model : List of delta-functions

- (1) Construct the observed (dirty) image and PSF
- (2) Search for the location of peak amplitude.
- (3) Add a delta-function of this peak/location to the model
- (4) Subtract the contribution of this component from the dirty image - a scaled/shifted copy of the PSF

Repeat steps (2), (3), (4) until a stopping criterion is reached.

(5) Restore : Smooth the model with a 'clean beam' and add residuals

The CLEAN algorithm can be formally derived as a model-fitting problem

- model parameters : locations and amplitudes of delta functions
- solution process : χ^2 minimization via an iterative steepest-descent algorithm (method of successive approximation)

Deconvolution – Comparison of Algorithms

CLEAN

MEM

Point source model

Point source model with a smoothness constraint

Multi-Scale model with a fixed set of scale sizes

MS-CLEAN

ASP

Multi-Scale model with adaptive best-fit scale per component

 I^m

Deconvolution – Comparison of Algorithms

CLEAN

MEM

Point source model

Point source model with a smoothness constraint Multi-Scale model with a fixed set of scale sizes

MS-CLEAN

ASP

Multi-Scale model with adaptive best-fit scale per component

Basic Imaging :

Narrow-frequency range, Small region of the sky

=> The 2D Fourier Transform relations hold
=> Convolution and deconvolution

Wide-Band Imaging :

=> Sky and instrument change across frequency range

Wide-Field Imaging

=> The 2D Fourier Transform relation breaks

Mosaic Imaging

=> Image an area larger than what each antenna can see.

Wide-band Imaging – Sensitivity and Multi-Frequency Synthesis

Frequency Range :	(1–2 GHz)	(4 – 8 GHz)	(8 – 12 GHz)
Bandwidth : $v_{max} - v_{min}$	1 GHz	4 GHz	4 GHz
Bandwidth Ratio : v_{max} : v_{min}	2:1	2:1	1.5 : 1
Fractional Bandwidth : $(v_{max} - v_{min})/v_{mid}$	66%	66%	40%

UV-coverage / imaging properties change with frequency

Sky Brightness can also change with frequency \rightarrow model intensity and spectrum

Spectral Cube (vs) MFS imaging

3 flat-spectrum sources + 1 steep-spectrum source (1-2 GHz VLA observation)

Images made at different frequencies (limited to narrow-band sensitivity)

35" 30" 25" 20" 15" J2000 Right Ascension

^h59^m45^s 35^s 30^s 25^s 20^s 15^s J2000 Right Ascension

J2000 Right Ascension

² GHz

J2000 Right Ascension

Add all single-frequency images (after smoothing to a low resolution)

Use wideband UV-coverage, but ignore spectrum (MFS, nterms=1)

Use wideband UV-coverage + Model and fit for spectra too (MT-MFS, nterms > 1)

Output : Intensity and Spectral-Index

Wide-Field Imaging – W-term

$$V^{obs}(u,v) = S(u,v) \iint I(l,m)e^{2\pi i(ul+vm)} dldm$$

$$V^{obs}(u,v) = S(u,v) \iiint I(l,m)e^{2\pi i \left(ul+vm+\frac{w(n-1)}{w}\right)} dl dm dn$$

The 'w' of a baseline can be large, away from the image phase center

The 'n' for a source can be large, away from the image phase center

Wide-Field Imaging – W-term

$$V^{obs}(u,v) = S(u,v) \iint I(l,m) e^{2\pi i (ul+vm)} dl dm$$

$$V^{obs}(u,v) = S(u,v) \iiint I(l,m)e^{2\pi i \left(ul+vm+\frac{w(n-1)}{w}\right)} dl dm dn$$

The 'w' of a baseline can be large, away from the image phase center

The 'n' for a source can be large, away from the image phase center

2D Imaging

Facet Imaging

W-Projection

Wide-Field Imaging – Primary Beams

Each antenna has a limited field of view => Primary Beam (gain) pattern

=> Sky is (approx) multiplied by PB, before being sampled by the interferometer

 $I^{obs}(l,m) \approx I^{PSF}(l,m) \ast \left[P^{sky}(l,m) \cdot I^{sky}(l,m)\right]$

The antenna field of view : D = antenna diameter λ/D

Compare with angular resolution of the interferometer : λ/b_{max}

But, in reality, P changes with time, freq, pol and antenna....

=> Ignoring such effects limits dynamic range to 10⁴=> More-accurate method to account for this : A-Projection

Wide-field Imaging -- Mosaics

Combine data from multiple pointings to form one large image.

Combine pointings either before or after deconvolution.

Stitched mosaic :

- -- Deconvolve each pointing separately
- -- Divide each image by PB
- -- Combine as a weighted avg

Joint mosaic :

- Combine observed images as a weighted average
 (or)
 Grid all data onto one UV-grid,
 and then iFFT
- -- Deconvolve as one large image

One Pointing sees only part of the source

Wide-field Imaging -- Mosaics

Combine data from multiple pointings to form one large image.

Combine pointings either before or after deconvolution.

Stitched mosaic :

- -- Deconvolve each pointing separately
- -- Divide each image by PB
- -- Combine as a weighted avg

Joint mosaic :

Combine observed images as a weighted average
 (or)
 Grid all data onto one UV-grid,
 and then iFFT

-- Deconvolve as one large image

Two Pointings see more.....

Wide-field Imaging -- Mosaics

Combine data from multiple pointings to form one large image.

Combine pointings either before or after deconvolution.

Stitched mosaic :

- -- Deconvolve each pointing separately
- -- Divide each image by PB
- -- Combine as a weighted avg

Joint mosaic :

- Combine observed images as a weighted average
 (or)
 Grid all data onto one UV-grid,
 and then iFFT
- -- Deconvolve as one large image

Use many pointings to cover the source with approximately uniform sensitivity

The measured $\langle E_i E_j^* \rangle$ values are imperfect and incomplete

The measured $\langle E_i E_j^* \rangle$ values are imperfect and incomplete

The measured $\langle E_i E_i^* \rangle$ values are imperfect and incomplete

Flagging

Problem : Radio Frequency Interference (RFI)

Solution : Identify and discard corrupted data samples.

The measured $\langle E_i E_i^* \rangle$ values are imperfect and incomplete

Flagging

Problem : Radio Frequency Interference (RFI)

Solution : Identify and discard corrupted data samples.

Calibration

Problem : Antenna electronics introduce complex gains g_i

Solution : Numerically solve for antenna gains g_i and apply corrections

- Observe a source where $\langle E_i E_j^* \rangle$ is known
- Use information from all ij to solve for $\,g_i\,$
- Divide out $g_i g_j^*$ from target data

The measured $\langle E_i E_i^* \rangle$ values are imperfect and incomplete

Flagging

Problem : Radio Frequency Interference (RFI)

Solution : Identify and discard corrupted data samples.

Calibration

Problem : Antenna electronics introduce complex gains g_i

Solution : Numerically solve for antenna gains g_i and apply corrections

Imaging

Problem : Sampling of the 2D Fourier Transform is incomplete (only N(N-1)/2 measurements per timestep and frequency channel)

Solution : Fit a model of the sky brightness to the measured data.

Data Analysis - Pipelines

Build your own Interferometer !

Build Your Own Interferometer !

Array configuration

Spiral	×	•
32 antennas	×	-

Observatory Latitude

				-0-		
-90	-60	-30	0	30	60	90

Observation Hour-Angle Range

Observation Bandwidth

ARRAY CONFIGURATION

Expand or shrink the array layout

SPATIAL FREQUENCY COVERAGE

Density Weighting

OBSERVED IMAGE

Object to observe

Natural

 \bigcirc One Point Source \bigcirc Few Points \bigcirc Multi-Scale

https://github.com/urvashirau/ImagingSimulator)

Build Your Own Interferometer !

Change relative orientation How does the antenna of the array and the object layout and count affect Effect of aperture Synthesis - Projection effects – UV-coverage Change time-ranges Point Spread Function Change bandwidth Array configuration Source Declination **Observation Hour-Angle Range** Spiral × v -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 × Ŧ 32 antennas Observatory Latitude Observation Bandwidth 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 ARRAY CONFIGURATION SPATIAL FREQUENCY COVERAGE OBSERVED IMAGE 1000 <u>a</u> 150-100 $-1000 \\ -1000$ -500 500 1000 20 40 60 100 200 X Position (m Spatial frequency : U (pixels) Right Ascension (pixels) Expand or shrink the array layout Density Weighting Object to observe ○ One Point Source ● Few Points ○ Multi-Scale More Compac More Extended Uniform Natura Point sources versus Effect of a compact versus extended emission Different weighting schemes spread-out configuration - Spatial scales What features can be Angular resolution - Point Spread Function emphasized?

Questions ?

Some points to remember ...

How does an interferometer form an image ?

Each antenna pair measures one 2D fringe.
 Many antenna pairs => Fourier series

How do you make a raw image from interferometer data?

- Bin (or resample) the visibility data onto a 2D grid, take a Fourier transform

What does the raw observed image represent ?

- Observed Sky is the convolution of the true sky and the PSF

How do you get a model of the sky?

- Solve the convolution equation via model-fitting algorithms like Clean

Some points to remember ...

What is calibration ?

- Use calibrator data to solve for antenna gains, apply them to target data

How does wide-band data affect the imaging process ?

- Increased sensitivity, but the imaging properties and sky change with frequency

What is an antenna primary beam and what is its effect on an image ?

- Antenna power pattern. It multiplies with the sky, before convolution with the PSF

What is the w-term problem ?

- 2D Fourier transform approximations are invalid far away from the image center