Synergy between Radio and Optical Interferometry

Image Reconstruction, Calibration and Data Analysis

Urvashi Rau National Radio Astronomy Observatory, Socorro, NM, USA

SPIE Optical and Infrared Interferometry and Imaging 13 June 2018, Austin, TX

Radio and Optical Interferometry

Literature :

- Most discussions focus on the measurement process and differences therein
- Pearson & Readhead 1984 : Self-calibration and hybrid mapping (estimating phases)
- Recent work by the Event Horizon Telescope : Tests with OI methods + new algorithms
- Thiebaut & Young, 2009/2017 : Imaging algorithms in both radio and optical fields

[Other related topics : Speckle imaging, Aperture masking ...]

This talk :

- Modern radio interferometric calibration and imaging
- Possible topics of synergy and shared R&D with Optical/IR
 - Sky models and solvers (direct modeling / imaging)
 - Handling narrow-field and wide-field instrumental effects (+ self-calibration)
 - Flexible algorithm frameworks, joint reconstructions, intelligent automation

$$V_{ij}^{obs}(\mathbf{v},t) \approx \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} \int I(l,m) e^{2\pi i(ul+vm)} dl dm$$

$$V_{ij}^{obs}(\mathbf{v},t) = \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} S_{ij}(\mathbf{v},t) \iiint \frac{M_{ij}^{s}(l,m,v,t)}{M_{ij}^{s}(l,m,v,t)} I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$$

Direction Independent Gains

- feed gains, delays,bandpass

$$V_{ij}^{obs}(\mathbf{v},t) \approx M_{ij}(\mathbf{v},t) S_{ij}(\mathbf{v},t) \iint I(l,m) e^{2\pi i (ul+vm)} dl dm$$

$$V_{ij}^{obs}(\mathbf{v},t) = \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} S_{ij}(\mathbf{v},t) \iiint \frac{M_{ij}^{s}(l,m,v,t)}{M_{ij}^{s}(l,m,v,t)} I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$$

Direction Independent Gains

feed gains,
 delays,bandpass

Antenna primary beam

- Power pattern varies with time, frequency and baseline

- Ionospheric refraction

Direction Dependent Instrumental Effects => Multiplicative effect in the image domain => Convolutions in the visibility domain

W-Term

baselines

-Non-coplanar

-Sky curvature

$$V_{ij}^{obs}(\mathbf{v},t) \approx \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} \int I(l,m) e^{2\pi i (ul+vm)} dl dm$$

 $V_{ij}^{obs}(\mathbf{v},t) = \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} \int \int \frac{M_{ij}^{s}(l,m,v,t)}{M_{ij}^{s}(l,m,v,t)} I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$

Direction Independent Gains

feed gains,
 delays,bandpass

Antenna primary beam

- Power pattern varies with time, frequency and baseline

- Ionospheric refraction

Sky-brightness varies with frequency (time)

- Include source spectra and time variability into the sky model and/or the regularization process. W-Term

-Non-coplanar baselines

-Sky curvature

Direction Dependent Instrumental Effects => Multiplicative effect in the image domain => Convolutions in the visibility domain

$$V_{ij}^{obs}(\mathbf{v},t) \approx M_{ij}(\mathbf{v},t) S_{ij}(\mathbf{v},t) \iint I(l,m) e^{2\pi i (ul+vm)} dl dm$$

$$V_{ij}^{obs}(\mathbf{v},t) = \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} S_{ij}(\mathbf{v},t) \iiint \frac{M_{ij}^{s}(l,m,v,t)}{M_{ij}^{s}(l,m,v,t)} I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$$

Iterative Image Reconstruction

L2 data regularization + Non-linear sky model and solver/constraints. $[A]I^{m} = V^{obs} \qquad \frac{\delta \chi^{2}}{\delta I^{m}} = 0$ **Normal Equations** (convolution eqn) $[A^T W A] I^m = [A^T W] V^{obs}$ Sky model solver $I_{i+1}^{m} = I_{i}^{m} + g[A^{T}WA]^{+}R$ $\mathbf{R} = \left(A^T W \left(V^{obs} - A I_i^m \right) \right)$ Calculate Forward Model & Residual Image

Iterative Image Reconstruction + External calibration

Iterative Image Reconstruction + External calibration

Iterative Image Reconstruction + Self-Calibration

Calibration – Direction Independent effects

 $\left< {E_i E_j^*}
ight>$ is known

(2) Use data from all correlation pairs ij Solve for complex gains g_i

(3) Apply corrections to target data :

Typically, solutions are done in a sequence, with averaging to increase SNR for the solutions.

E.g. Average in time and solve for average stable bandpass Apply bandpass solutions, average in frequency, solve for time-variable gains.

Baseline based calibration : Possible, but to be used with caution.

(Equivalence between solving for antenna-based terms and satisfying closure relations)

Direction Dependent Corrections – Using known models

Models of DD instrumental effects can be used to correct the data

Antenna Beams, Ionospheric Phase screen, Non-coplanar Baselines, Sky curvature

$$I^{obs} = \sum_{ij} I^{psf}_{ij} * \left[P_{ij} \cdot I^{sky} \right] \checkmark V^{obs}_{ij} = S_{ij} \cdot \left[A_{ij} * V^{sky} \right]$$

For each visibility, apply
$$A_{ij}^{-1} \approx \frac{A_{ij}^T}{A_{ij}^T * A_{ij}}$$

(1) Use A_{ij}^{T} as the convolution function during gridding

(2) Divide out $FT\left[\sum_{ij} A_{ij}^T * A_{ij}\right]$ from the image (in stages).

- If P_{ij} is invariant, an image-domain correction can be done instead (flat-fielding) - Phase gradients across A_{ij}^{T} can fix known pointing offsets (tip-tilt) and make mosaics

- A_{ij}^{-1} is often only approximate => Convergence depends on an accurate forward model

Gridding = Convolutional Resampling of visibilities to a regular grid

W-Projection : FT of a Fresnel kernel

A-Projection : Baseline aperture illumination functions + phase gradients for pointing offsets + ionospheric refraction models

Convolution in UV-domain (per vis)

=> Handle wide-field imaging effects before averaging in time/baseline

(**De-Gridding** : Calculate Forward Model)

Applying DD corrections (A_{ii}^T) during gridding

Standard Imaging :

Prolate Spheroidal

Examples of wide-field instrumental corrections

Antenna Beam rotation with parallactic angle

Antenna-based, time-variable pointing offsets

(1) Solve for parameters of instrument-specific models in a self-calibration loop

E.g. Pointing Self-Cal : Solve for antenna-based phase gradients across each aperture illumination function (Adaptive Optics !)

=> Correction : Apply opposite phase gradient during gridding

(2) Perform direction-independent (DI) calibrations for multiple directions on the sky

E.g. DD-Facets : Define regions around all bright sources.

Solve V = $g_i g_j^* \langle E_i E_j^* \rangle$ to get N complex gains for each selected direction

=> Correction : Image each region using different DI gain solutions.

Sky models and solvers (image reconstruction)

Convolution Equation ==> Deconvolution

Others : Any non-linear image-domain solver (many compressed sensing formulations)

Gaussians (ASP), Wavelets and other Atoms with Sparsity (SARA / PURIFY / MORESANE), Bayesian forms (MEM, RESOLVE), wide-band non-parametric models, etc..

Algorithm Comparison

Algorithm choice depends on sky structure, data quality, target science.

Each algorithm needs (different) tuning for best results.

Easier to compare algorithms within a common software framework....

Joint Reconstructions : Wide-Band (multi-spectral) Solvers

Model the spectrum per 'atom' as a smooth polynomial

MT-MFS : Multi-term linear least squares + CLEAN-based greedy algorithm in a transformed (sparse) space.

Intensity and Spectral Index

Joint Reconstructions : Wide-Band+ Wide-Field

20^h04^m 02^m 00^m 19^h58^m 56^m 54 J2000 Right Ascension Antenna Power Patterns scale with observing frequency

- => Artificial spectral structure for all sources away from center
- (1) Include PB spectrum in Sky Model. Remove post-reconstruction.
- (2) Eliminate as an instrumental correction before modeling sky

Joint Reconstructions : Adding single-dish (low resolution) data

Missing Short Spacings

=> Negative Bowls
=> Unconstrained Spectra

Use Low-Resolution information from single dish maps.

Methods :

```
(1) Joint Reconstructions (better!)
```

Add another data regularization term to any existing solver

E.g. Joint PSFs and Residuals

(2) Feathering

Weighted UV-domain average of INT-only and SD-only images

0.5

-0.5

-1.5

-0.5

-1.5

57^m

57

Joint Reconstructions : Mosaics + Wide-Band + Wide-Field + Single Dish

Interferometer joint mosaic intensity

(used phase gradients across aperture functions during gridding)

Wide-Field Spectral Index

(with corrections for PB spectrum)

Joint mosaic primary beam from 106 VLA pointings

Interferometer + Single dish (intensity only)

An example of the current state-of-the-art ...

Our current end-to-end pipelines are the result of hand-optimized manual tuning by a team of scientists, validated on \sim 100 datasets, for a few standard imaging modes.

Ongoing R&D : Automate the quality checks Automate the decision tree Automate algorithm and parameter choices (+ more robust imaging algorithms)

Radio vs Optical (& radio VLBI, Infrared)

	Radio	Optical
Frequency Range	10 MHz to 1 THz	430 – 770 THz
Detectors	Heterodyne systems	Intensity detectors
Measurables	Visibility Amplitude & Phase	Vis amplitude, Closure phase
UV-coverage	Dense. Easy to add more data for sensitivity. Large compute cost	Sparse. Expensive to add more telescopes.
Calibration	External and Self-calibration Instrument models for wide-field effects	Adaptive Optics in real-time
Imaging	L2 regularization with a variety of non-linear sky models and solvers. Joint reconstructions + self-calibration.	Variety of models and solvers (mostly direct modeling solvers)
Current R&D	 High dynamic range imaging Detailed instrumental calibration (DI/DD) Improving imaging fidelity High Performance Computing Automated pipelines 	 High fidelity imaging from very sparse data Joint reconstructions Calibration ideas (- others ?)

Similarities in image reconstruction algorithms

Optical : WISARD

Radio (shorter baselines)

=> Complex Visibilities
 & Self-calibration (DI/DD)
 using antenna-based terms

Most algorithms follow the framework of L2 major cycles and non-linear minor cycles

Matching pursuit (image domain): Radio: CLEAN and variants Optical: Building Block

Direct Modeling Approaches :

Optical : BSMEM, IRBis, MACIM, MiRA, SQUEEZE, SPARCO, PAINTER, MiRA-3D,... Radio : ASP, MEM, RESOLVE, Fast-RESOLVE, SARA / PURIFY, MORESANE,... VLBI : CHIRP, EHT

Practical adaptation in radio (non-VLBI) largely depends on ability to fit into standard framework

Sky Models and Solvers :

- Algorithms with more efficient convergence and robustness to imperfect calibration
- Producing uncertainty estimates
- Joint reconstructions are generally better

Self-Calibration :

 Using direct model solvers (and hybrid methods) for radio interferometric data with unstable or missing phase information. [E.g. Event Horizon Telescope, closure amp/phase, full-pol]
 If/when vis phases are available, all DI and DD calibration algorithms from radio may apply

Software Frameworks : Standard data formats + shared core software Flexible analysis frameworks with plug'n'play options are helpful Incorporate instrumental corrections within imaging framework

Automation : Many algorithms/options exist. Automation required (R&D ongoing in radio).

(For all references : Please see paper)