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Radio and Optical  Interferometry

Literature : 

– Most discussions focus on the measurement process and differences therein
– Pearson & Readhead 1984 : Self-calibration and hybrid mapping (estimating phases)
– Recent work by the Event Horizon Telescope : Tests with OI methods + new algorithms
– Thiebaut & Young, 2009/2017 : Imaging algorithms in both radio and optical fields

This talk : 
 
   – Modern radio interferometric calibration and imaging
        
   – Possible topics of synergy and shared R&D with Optical/IR

            – Sky models and solvers (direct modeling / imaging)
            
            – Handling narrow-field and wide-field instrumental effects (+ self-calibration)
            
            – Flexible algorithm frameworks, joint reconstructions, intelligent automation 

[Other related topics :  Speckle imaging, Aperture masking … ] 

[Please see paper for references]
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Image Reconstruction
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Iterative Image Reconstruction  +   Self-Calibration
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Calibration – Direction Independent effects
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(1) Observe a known source

                            is known

(2) Use data from all correlation pairs  ij
      Solve for complex gains 

(3) Apply corrections
      to target data : 

gi

⟨ Ei E j
∗
⟩

Typically, solutions are done in a sequence, with averaging to increase SNR for the solutions.  

    E.g.   Average in time and solve for average stable bandpass 
             Apply bandpass solutions, average in frequency, solve for time-variable gains.

Baseline based calibration : Possible, but to be used with caution. 

( Equivalence between solving for antenna-based terms and satisfying closure relations )



 

Direction Dependent Corrections – Using known models
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Models of DD instrumental effects can be used to correct the data
Antenna Beams, Ionospheric Phase screen, Non-coplanar Baselines, Sky curvature

For each visibility, apply
(1) Use         as the convolution function 
                     during gridding 

(2) Divide out                              from the 
image (in stages).
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– If         is invariant, an image-domain correction can be done instead (flat-fielding)

– Phase gradients across          can fix known pointing offsets ( tip-tilt ) and make mosaics

–           is often only approximate  => Convergence depends on an accurate forward model



 

Applying DD corrections (       ) during gridding

Standard Imaging : 
Prolate Spheroidal

W-Projection : 
FT of a Fresnel kernel 

Convolution in UV-domain (per vis)

 => Handle wide-field imaging effects
        before averaging in time/baseline

 ( De-Gridding  :  Calculate Forward Model )

Gridding = Convolutional Resampling of visibilities to a regular grid

A-Projection : Baseline aperture illumination functions
                       + phase gradients for pointing offsets
                        + ionospheric refraction models

A ij
T



 

Examples of wide-field instrumental corrections

Antenna Beam 
rotation with 
parallactic angle

Sky curvature, 
non-coplanarity
 ( W-term )

Antenna-based, 
time-variable  
pointing offsets



 

Unknown instrumental models : DD Self-Calibration
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(1) Solve for parameters of instrument-specific models in a self-calibration loop

  E.g.  Pointing Self-Cal : Solve for antenna-based phase gradients across  
                                       each aperture illumination function   ( Adaptive Optics ! )

                 => Correction : Apply opposite phase gradient during gridding

(2)  Perform direction-independent (DI) calibrations for multiple directions on the sky

  E.g.  DD-Facets : Define regions around all bright sources.

          Solve V =                       to get N complex gains for each selected direction
 

                  => Correction : Image each region using different DI gain solutions.



 

Sky models and solvers ( image reconstruction )

For Point Sources : 

 –   Hogbom CLEAN
 –   Clark CLEAN

For Point/Extended Sources : 

 – Multi-Scale-CLEAN
 
For Wide-band Sky models

 – Multi-Term Multi-Frequency Synthesis
    ( with or without Multi-Scale / Time variability )

Others :  Any non-linear image-domain solver  (many compressed sensing formulations ) 

  Gaussians (ASP), Wavelets and other Atoms with Sparsity (SARA / PURIFY / MORESANE),  
  Bayesian forms (MEM, RESOLVE), wide-band non-parametric models, etc.. 



 

Algorithm Comparison

Algorithm choice depends on sky structure, data quality, target science. 

Each algorithm needs (different) tuning for best results.

Output 
Image

Residual 
Image

    CLEAN              MEM              MS-CLEAN            ASP

Image Quality Metrics : 

 Noise RMS, 

 Peak residual, 

 Dynamic Range

Easier to compare algorithms within a common software framework.... 



 

Joint Reconstructions : Wide-Band (multi-spectral) Solvers

I ν

sky
=∑t

I t
m(

ν−ν0
ν0 )

t

Model the spectrum per ‘atom’ as a smooth polynomial 

MT-MFS :  Multi-term linear least squares + CLEAN-based 
                greedy algorithm in a transformed (sparse) space. 

Intensity and Spectral Index

Improve
 
Angular 
Resolution
    &
Imaging
Fidelity
    & 
Dynamic 
Range

 [ Owen et al, 2014 ]



 

Joint Reconstructions : Wide-Band+ Wide-Field

1.0 GHz

1.5 GHz

2.0 GHz

Antenna Power Patterns scale with observing frequency 

=> Artificial spectral structure for all sources away from center

(1)  Include PB spectrum in Sky Model.  Remove post-reconstruction.

(2)  Eliminate as an instrumental correction before modeling sky 



 

Joint Reconstructions : Adding single-dish (low resolution) data 

Missing Short Spacings

=> Negative Bowls
=> Unconstrained Spectra

Use Low-Resolution information 
from single dish maps.

Methods :  

(1) Joint Reconstructions  (better!)

  Add another data regularization 
  term to any existing solver

   E.g. Joint PSFs and Residuals

(2) Feathering
 
 Weighted UV-domain average of 
 INT-only and SD-only images

 Intensity  Spectral Index 

INT only

INT+SD



 

Joint Reconstructions : Mosaics + Wide-Band + Wide-Field + Single Dish

Interferometer 
joint mosaic 
intensity

(used phase 
gradients across 
aperture functions 
during gridding)

Wide-Field  
Spectral Index 

(with corrections 
for PB spectrum)

Interferometer
 + Single dish 

(intensity only)

Joint mosaic 
primary 
beam from 
106 VLA 
pointings 

An example of the current state-of-the-art …



 

Automated Data Analysis  : Science Ready Data Products

Our current end-to-end pipelines are the result of hand-optimized manual tuning by a team 
of scientists, validated on ~100 datasets, for a few standard imaging modes. 

No Intervention Intervention
Tweaked Sent to Manual

Cycle 2

Cycle 3

Cycle 4

ALMA Calibration Pipeline

Ongoing R&D  :  Automate the quality checks
                           Automate the decision tree
                           Automate algorithm and parameter choices (+ more robust imaging algorithms)



 

                           Radio vs Optical    ( & radio VLBI , Infrared )

Radio Optical 

Frequency Range 10 MHz to 1 THz 430 – 770 THz

Detectors Heterodyne systems Intensity detectors

Measurables Visibility Amplitude & Phase Vis amplitude, Closure phase

UV-coverage Dense. Easy to add more data for sensitivity. 
Large compute cost

Sparse. Expensive to add more 
telescopes. 

Calibration External and Self-calibration
Instrument models for wide-field effects

Adaptive Optics in real-time

Imaging L2 regularization with a variety of non-linear 
sky models and solvers. 
Joint reconstructions + self-calibration.

Variety of models and solvers (mostly 
direct modeling solvers)

Current R&D - High dynamic range imaging
- Detailed instrumental calibration (DI/DD)
- Improving imaging fidelity
- High Performance Computing   
-  Automated pipelines

- High fidelity imaging from very 
sparse data
- Joint reconstructions
- Calibration ideas
( - others ? )



 

Similarities in image reconstruction algorithms

Estimating True Vis Amp/Phase  :      Radio (VLBI) :  Hybrid methods      Optical : WISARD

PHASE from 
MODEL VIS

AMP info 
from data

CLOSURE 
PHASE info 
from data

Direct Modeling Approaches : 

Optical  :  BSMEM, IRBis, MACIM, MiRA, SQUEEZE, SPARCO, PAINTER, MiRA-3D,...
Radio    :  ASP, MEM, RESOLVE, Fast-RESOLVE, SARA / PURIFY, MORESANE,.. VLBI : CHIRP,EHT

    Practical adaptation in radio (non-VLBI) largely depends on ability to fit into standard framework

Radio (shorter baselines)

=> Complex Visibilities
  & Self-calibration (DI/DD) 
using antenna-based terms

Most algorithms follow the 
framework of L2 major 
cycles and non-linear minor 
cycles

Matching pursuit ( image domain ) :   Radio : CLEAN and variants     Optical  : Building Block



 

Areas of possible synergy

Sky Models and Solvers :

–  Algorithms with more efficient convergence and robustness to imperfect calibration
–  Producing uncertainty estimates
–  Joint reconstructions are generally better  

Self-Calibration : 

– Using direct model solvers (and hybrid methods) for radio interferometric data with 
unstable or missing phase information.  [ E.g. Event Horizon Telescope, closure amp/phase, full-pol ]
– If/when vis phases are available, all DI and DD calibration algorithms from radio may apply

Software Frameworks :  Standard data formats + shared core software 
                                      Flexible analysis frameworks with plug’n’play options are helpful
                                      Incorporate instrumental corrections within imaging framework

Automation :  Many algorithms/options exist. Automation required (R&D ongoing in radio). 

                                             ( For all references : Please see paper )


