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Radio and Optical Interferometry

Literature :

- Most discussions focus on the measurement process and differences therein

- Pearson & Readhead 1984 : Self-calibration and hybrid mapping (estimating phases)

- Recent work by the Event Horizon Telescope : Tests with Ol methods + new algorithms
- Thiebaut & Young, 2009/2017 : Imaging algorithms in both radio and optical fields

[Other related topics : Speckle imaging, Aperture masking ... ]
This talk :
- Modern radio interferometric calibration and imaging
- Possible topics of synergy and shared R&D with Optical/IR
- Sky models and solvers (direct modeling / imaging)
- Handling narrow-field and wide-field instrumental effects (+ self-calibration)

- Flexible algorithm frameworks, joint reconstructions, intelligent automation

[Please see paper for references]
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Radio Interferometry — Measurement Equations
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Radio Interferometry — Measurement Equations
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Radio Interferometry — Measurement Equations
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Radio Interferometry — Measurement Equations
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Radio Interferometry — Measurement Equations
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Radio Interferometry — Measurement Equations
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Iterative Image Reconstruction
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lterative Image Reconstruction + External calibration
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lterative Image Reconstruction + External calibration
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lterative Image Reconstruction + Self-Calibration
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Calibration — Direction Independent effects

E. (1) Observe a known source

%j g (E;E) is known

. (2) Use data from all correlation pairs ij
E. —» g:9; (E,E}) Solve for complex gains {;

J
? (3) Apply corrections g.9;(E.E*
9, to target data : i (EiEj)

g:9;

Typically, solutions are done in a sequence, with averaging to increase SNR for the solutions.

E.g. Average in time and solve for average stable bandpass
Apply bandpass solutions, average in frequency, solve for time-variable gains.

Baseline based calibration : Possible, but to be used with caution.

( Equivalence between solving for antenna-based terms and satisfying closure relations )



Direction Dependent Corrections — Using known models

Models of DD instrumental effects can be used to correct the data
Antenna Beams, lonospheric Phase screen, Non-coplanar Baselines, Sky curvature

b k
1= I P 1Y < ViP=S, AV
» Al (1) Use A as the convolution function
For each visibility, apply A, = J " during gridding
TOAxA
ij ij L T
(2) Divide out FT|3. AjxA,| from the

image (in stages).

- If P is invariant, an image-domain correction can be done instead (flat-fielding)
- Phase gradients across Aii can fix known pointing offsets ( tip-tilt ) and make mosaics

-1 :
- Aij is often only approximate => Convergence depends on an accurate forward model



Applying DD corrections (Ag ) during gridding

Gridding = Convolutional Resampling of visibilities to a regular grid

v Standard Imaging : W-Projection :
A : : Prolate Spheroidal FT of a Fresnel kernel
T
B ©
//u 4 A-Projection : Baseline aperture illumination functions
R + phase gradients for pointing offsets

- + ionospheric refraction models

Convolution in UV-domain (per vis) —

=> Handle wide-field imaging effects
before averaging in time/baseline

( De-Gridding : Calculate Forward Model )



Examples of wide-field instrumental corrections

Antenna Beam Sky curvature, Antenna.—based,
rotation with non-coplanarity tme—yanable
parallactic angle ( W-term ) pointing offsets
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Unknown instrumental models : DD Self-Calibration

(1) Solve for parameters of instrument-specific models in a self-calibration loop

E.g. Pointing Self-Cal : Solve for antenna-based phase gradients across
each aperture illumination function ( Adaptive Optics!)

=> Correction : Apply opposite phase gradient during gridding
(2) Perform direction-independent (DI) calibrations for multiple directions on the sky

E.g. DD-Facets : Define regions around all bright sources.

Solve V = gig;'k <E1-E;'7> to get N complex gains for each selected direction

=> Correction : Image each region using different DI gain solutions.




Sky models and solvers ( image reconstruction )

Convolution Equation ==> Deconvolution

For Point Sources : -
- Hogbom CLEAN = x*

Multi-Term Convolution Equation
==> Joint Deconvolution

- Multi-Scale-CLEAN \ - . . .
For Wide-band Sky models ————— » _ .

Others : Any non-linear image-domain solver (many compressed sensing formulations )

For Point/Extended Sources :

- Multi-Term Multi-Frequency Synthesis
( with or without Multi-Scale / Time variability )

Gaussians (ASP), Wavelets and other Atoms with Sparsity (SARA / PURIFY / MORESANE),
Bayesian forms (MEM, RESOLVE), wide-band non-parametric models, etc..



Algorithm Comparison

Algorithm choice depends on sky structure, data quality, target science.

Each algorithm needs (different) tuning for best results.

CLEAN MS-CLEAN
Image Quality Metrics : Output
Image
Noise RMS,
Peak residual,
. Residual
Dynamic Range Image

Easier to compare algorithms within a common software framework....



Joint Reconstructions : Wide-Band (multi-spectral) Solvers

. Intensity and Spectral Index
Model the spectrum per ‘atom’ as a smooth polynomial L e—

L=2 17

MT-MFS : Multi-term linear least squares + CLEAN-based
greedy algorithm in a transformed (sparse) space.
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Joint Reconstructions : Wide-Band+ Wide-Field

Antenna Power Patterns scale with observing frequency

=> Artificial spectral structure for all sources away from center

J2000 Declination

(1) Include PB spectrum in Sky Model. Remove post-reconstruction.

(2) Eliminate as an instrumental correction before modeling sky

J2000 Declination

J2000 Declination
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Joint Reconstructions : Adding single-dish (low resolution) data

Missing Short Spacings

=> Negative Bowls
=> Unconstrained Spectra

Use Low-Resolution information
from single dish maps.

Methods :

(1) Joint Reconstructions

Add another data regularization
term to any existing solver

E.g. Joint PSFs and Residuals
(2) Feathering

Weighted UV-domain average of
INT-only and SD-only images
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Joint Reconstructions : Mosaics + Wide-Band + Wide-Field + Single Dish

imctb BO.try6. image.ttd—raster imctb80.tryé weight tt0—raster
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An example of the current state-of-the-art ...



Automated Data Analysis : Science Ready Data Products

Our current end-to-end pipelines are the result of hand-optimized manual tuning by a team
of scientists, validated on ~100 datasets, for a few standard imaging modes.

Observe ;
— Quality Assurance - . . . .
Data T . ALMA Calibration Pipeline
| Image Calibrator
Set Cal Model

Import data .
from Archive [ Check size

. Bandpass Cal B

""" > Export Data/Images

Online flags _ To Archive
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Auto-flag Cal Split target data
FluxCal & | .= > '
Calculate Tsys ‘ Autoflag target
Flag outliers

VB U Continuum Sub

Image Continuum
! Image Spectral

Time Cal

Flag low gains

Apply solutions
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Quality Assurance
"
Web-Logs of results, diagnostic plots, QA metrics |~ ‘ Ex&o;tnl:r:iigees B No Intervention | Intervention

m Tweaked H Sent to Manual

Ongoing R&D : Automate the quality checks
Automate the decision tree
Automate algorithm and parameter choices (+ more robust imaging algorithms)



Radio vs Optical (&radio VLBI, Infrared )

Radio Optical
Frequency Range 10 MHz to 1 THz 430 - 770 THz
Detectors Heterodyne systems Intensity detectors
Measurables Visibility Amplitude & Phase Vis amplitude, Closure phase
UV-coverage Dense. Easy to add more data for sensitivity. Sparse. Expensive to add more
Large compute cost telescopes.
Calibration External and Self-calibration Adaptive Optics in real-time
Instrument models for wide-field effects
Imaging L2 regularization with a variety of non-linear  Variety of models and solvers (mostly
sky models and solvers. direct modeling solvers)
Joint reconstructions + self-calibration.
Current R&D - High dynamic range imaging - High fidelity imaging from very
- Detailed instrumental calibration (DI/DD) sparse data
- Improving imaging fidelity - Joint reconstructions
- High Performance Computing - Calibration ideas

- Automated pipelines ( - others ?)



Similarities in image reconstruction algorithms

Estimating True Vis Amp/Phase :

Radio (VLBI) :

Hybrid methods

AMP info PHASE from vis VIS

CLOSURE

from data MODEL VIS B
= - ] ‘ -
A

vis

CALUD MODEL pegipuaL

GRIDDING

DE-GRIDDING

PHASE info
from data

Major

Cycile

RESIDUAL IMAGE

ot

MODEL IMAGE

Matching pursuit ( image domain ) :

Radio : CLEAN and variants

Optical : WISARD

Radio (shorter baselines)

=> Complex Visibilities
& Self-calibration (DI/DD)
using antenna-based terms

Most algorithms follow the
framework of L2 major
cycles and non-linear minor
cycles

Optical : Building Block

Direct Modeling Approaches :

Optical : BSMEM, IRBis, MACIM, MiRA, SQUEEZE, SPARCO, PAINTER, MiRA-3D,...
Radio : ASP, MEM, RESOLVE, Fast-RESOLVE, SARA / PURIFY, MORESANE,.. VLBI : CHIRP,EHT

Practical adaptation in radio (non-VLBI) largely depends on ability to fit into standard framework




Areas of possible synergy

Sky Models and Solvers :
- Algorithms with more efficient convergence and robustness to imperfect calibration
- Producing uncertainty estimates
- Joint reconstructions are generally better
Self-Calibration :
- Using direct model solvers (and hybrid methods) for radio interferometric data with
unstable or missing phase information. [ E.g. Event Horizon Telescope, closure amp/phase, full-pol ]
- Iffwhen vis phases are available, all DI and DD calibration algorithms from radio may apply
Software Frameworks : Standard data formats + shared core software
Flexible analysis frameworks with plug’n’play options are helpful
Incorporate instrumental corrections within imaging framework

Automation : Many algorithms/options exist. Automation required (R&D ongoing in radio).

( For all references : Please see paper)



