• Background

- Types of RFI (derived from A.Erickson's talk last week)
- Options at different stages in the signal chain
 - Pre-correlation voltage streams
 - Post-correlation high time resolution visibilities
 - Post-processing
- RFI mitigation approaches (auto-flagging, subtraction, use of meta-data)

• Questions to be addressed for the ngVLA

- (1) Techniques to (potentially) use at each stage.
 - Based on types of RFI, algorithms and computing resources
- (2) Hardware/software design features and resources to plan for.
- (3) Demonstrate technical readiness of each approach.

Test/development/analysis plan

Ways to derive answers for (1), (2) by Q3 2018 and for (3) by 2020.

Discussion topic

- Is this plan OK ?
- What to add or subtract ?

Time/Freq characteristics of RFI (approximate / work-in-progress)

U.Rau, 2 Feb 2018, ngVLA RFI mitigation study plan

RFI types and mitigation options at different stages

RFI types and mitigation options at different stages

(1) Test real-time RFI detection and database creation/use :

- A test observation with known short-duration RFI (DMEs), save visibilities at \sim 10ms.
- Run a realtime RFI detector and populate a database (prototype exists)
- (- If possible, include O.Ojeda's kurtosis filter within A.Erickson's framework.)
- Use metadata from the database for post-processing flagging (python queries/scripts)

(2) Evaluate real-time RFI removal strategies :

Simulate voltage streams and correlation (multiply-accumulate) to evaluate blanking vs replacement with zero/noise (python script, simulator from BYU for decorrelation ?)
 Evaluate computing/design requirements + analyse external efforts/experience

(3) Evaluate RFI subtraction methods

– Interface with BYU group to apply (simulation) results from their ngVLA community study to real VLA data taken in summer 2017 (awaiting \sim 6k funding)

- Evaluate computing requirements and feasibility + analyse other methods

(4) Autoflag methods (all stages)

- Analyse numerical/computational scaleability of current algorithms
- Identify areas where heuristics may need to change + new R&D focus

(5) Connect with RFI survey predictions to identify what methods need the most focus.

Some ideas for the next 1.5 yrs – by 2020

(1) Demonstrate intelligent use of meta-data :

- Use RFI monitoring information to implement heuristics for better deterministic flagging
- Demonstrate the use of RFI meta-data to tune autoflag algorithms
- Deploy the above for the VLA pipeline ?
- Explore : Feed back of RFI information into Observation Scheduling (RFI avoidance)

(2) Test real-time RFI flagging/blanking strategies :

- Implement in antenna station boards (and/or CBE)
 - Flagging on time series, 2D time/freq planes, uv-grid, etc)
- Demonstrate on VLA data containing known RFI (DMEs, comm signals, etc)

(3) Proof-of-concept of RFI modeling and subtraction methods

- Demonstrate something that works (start with existing high time res test data)
- Explore : Use high time res visibilities to calculate RFI location (eliminate RFI sources)

(4) Improve auto-flag methods at all stages

- Continue R&D on ways to increase robustness and minimize the need for tuning
 - robustness analyses (e.g. sensitivity of kurtosis filters to target spectral lines),
 - algorithmic improvements and autotuning

Extra Slides – Details...

RFI mitigation approaches : Real time RFI removal

Experiments at other observatories : replace RFI filled samples with noise, zeros, etc...

GBO Pulsar Backend : R.Prestage et al (Ref: URSI-NRSM 2018 talk)

- Real-time peak detection along time/freq
- Replace RFI filled samples with digital noise

uGMRT : K.Buch et al (Ref : https://arxiv.org/pdf/1710.08576.pdf)

- Real time RFI detection/excision at multiple stages
- Comparison of replacement by digital noise, zeros, and threshold value
 They chose replacement by zeros.

Questions :

→ Other groups/results to evaluate ? SKA? LOFAR?

Todo (at NRAO)

- Flagging in "real-time"

=> Antenna boards : Leave samples out of the MAC step

=> CBE : Apply RFI detection algorithms to high time-res visibilities

RFI mitigation approaches : Real time RFI removal

Experiments at other observatories : replace RFI filled samples with noise, zeros, etc...

GBO Pulsar Backend : R.Prestage et al (Ref: URSI-NRSM 2018 talk)

- Real-time peak detection along time/freq
- Replace RFI filled samples with digital noise

uGMRT : K.Buch et al (Ref : https://arxiv.org/pdf/1710.08576.pdf)

- Real time RFI detection/excision at multiple stages
- Comparison of replacement by digital noise, zeros, and threshold value
 - They chose replacement by zeros.

Questions :

→ Other groups/results to evaluate ? SKA? LOFAR?

Todo (at NRAO)

- Flagging in "real-time"

=> Antenna boards : Leave samples out of the MAC step

=> CBE : Apply RFI detection algorithms to high time-res visibilities

RFI mitigation approaches : Real time RFI removal

Very simple simulation

- Flagging at high resolution can be very useful

- Flagging on voltage streams can help reduce noise even for uncorrelated RFI

Pre-corr or Post-corr ?

 Short timescale and/or high power RFI

=> Pre-corr (Just a threshold)

- Longer timescale

=> Post-corr (can use stats accumulated during MAC step)

RFI mitigation approaches – Auto-Flag

Autoflag :

- Various statistical filters for data streams (Median, MAD/MoM, Kurtosis, FT/threshold)
- RFLAG : Hierarchical statistical flagger across time/freq (E.Greisen)
- TFCROP : Outlier detection on the time-freq plane per baseline (U.Rau)
- UVBINFLAG : Outlier detection on the gridded uv-plane (K.Golap)
- AOFlagger : Outlier detection on the time-freq plane per baseline (A.O. (Astron))

=> All potentially work well but all need manual tuning for best results

To do :

- (1) Use a-priori information about RFI to better tune these algorithms
- (2) Algorithmic improvements : For example, automatic tuning (experimental) : Auto-tune : A genetic algorithm that optimizes a flagging quality metric to derive 'best fit' sets of parameters for rflag/tfcrop. (U.Rau / B.Martins)

Work in progress :

- Run autonomously on a dataset
 - Select training subsets
 - Derive best-fit parameters
 - Run autoflag on all data
- Evaluate for use in pipelines

RFI mitigation approaches – Intelligent use of meta-data

RFI monitoring :

- Regular monitoring and documentation (D.Mertely et al)

– RFI database : Framework to tap voltage stream data, run peak detection algorithms, populate a database with RFI metadata (A. Erickson et al)

- Can plug in different detection algorithms (e.g. kurtosis filter : Ref : O.Ojeda)

- A scriptable query interface (plots, post-processing use, etc)

select o.id,at,fc,power,antenna,az,el from observations o join evla_rf_observations eo join features_peak fp where round(fc) = 1408						
id	at	fc	power	antenna	az	el
1129 2016-	 10-13 17:49:05.546863-06	1408.3717	+ 54.6825838621869	 ea21	467.199027	31.77079
1628 2016-	10-13 19:24:23.018826-06	1408.3337	66.1043710604892	ea24	244.763031	18.659935
1663 2016-	10-13 19:32:48.962686-06	1408.49827	66.7330828433405	ea28	245.988693	21.091347
1685 2016-	10-13 19:34:39.944485-06	1407.99509	66.0529598598333	ea19	245.815323	23.25943
2045 2016-	10-13 20:45:25.186452-06	1407.6797	55.1536793906279	ea18	252.924164	35.071106
2509 2016-	10-13 22:14:19.627664-06	1407.7601	55.7998185629984	ea21	262.202789	54.940567
2642 2016-	10-13 22:29:37.128164-06	1408.0483	54.8150993445764	ea13	263.822937	55.304832
2755 2016-	10-13 22:32:36.318104-06	1408.49579	56.5655637769771	ea21	263.988885	55.569516
2760 2016-	10-13 22:33:18.908546-06	1408.3803	67.8603100327471	ea07	263.915649	56.25515
2839 2016-	10-13 22:35:35.886739-06	1407.6797	55.0361618504793	eal8	264.8515	56.635384

Ready for preliminary tests for post-processing use.

RFI mitigation approaches – Intelligent use of meta-data

RFI monitoring :

- Regular monitoring and documentation (D.Mertely et al)

– RFI database : Framework to tap voltage stream data, run peak detection algorithms, populate a database with RFI metadata (A. Erickson et al)

- Can plug in different detection algorithms (e.g. kurtosis filter : Ref : O.Ojeda)
- A scriptable query interface (plots, post-processing use, etc)
 - (Real time plots of RFI stats)

RFI mitigation approaches – Intelligent use of meta-data

Pipeline Heuristics : VLASS and ALMA (Ref L.Davis)

- A deterministic set of rules based on meta-data provided as auxiliary input.
- This is likely to suffice for a lot of RFI and reasons for bad data

Biggest improvements may come from better meta-data about intent and RFI

Examples

- Flag edges of scans and spws, apply QA0 flags (from pre-processing), online flags
- ALMA :
 - Look for outliers in Tsys and bandpass solution tables + apply flags to data
 - Look for outliers in fluxscale tables + implement flux transfer heuristics
 - Derive 2D views of the raw data to pick out deviant baselines, etc..
- VLA :
 - Deterministic heuristics similar to the above
 - Autoflag (rflag) with/without tuning.

To do :

- Use RFI database to inform mitigation choices at later stages (CBE, PP)
 - Deterministic flags as well as tuning of auto-flag methods
 - Decide what to turn on (and when).
 - E.g. RFI autoflag uncertainties shouldn't affect target science
- Think/learn about other machine learning / artificial intelligence approaches ?
- Explore RFI avoidance strategies (i.e. feed information back to the Observation setup)

RFI mitigation approaches – Modeling and Subtraction

(1) Several experiments have been done over the last 15 years (literature search)

- Various matrix decompositions, RFI modeling by phase fitting, imaging at NCP, etc

- All methods work only sometimes, and none are in routine use.

(2) One example : Ongoing NRAO-BYU collaboration (with Brian Jeffs' group)

- (a) 2016/2017 ngVLA community study on subspace projection methods
 - Simulation-based proof of concept on data containing partially decorrelated RFI
- (b) Summer 2017 (NRAO student project with U.R.)
 - Obtained some C-config S-band data at 20msec/50kHz resolution (w/ K.S., V.D., B.B.)
 - Basic demo of eigen-space projection to subtract RFI : Something worked.....

SIRIUS-XM : Projecting out eigen-vectors of the visibility matrix

RFI mitigation approaches – Modeling and Subtraction

To do : More experiments on the Summer 2017 dataset.

Eigen value spectra for all 256 channels

=> Out of 256 channels, about 50 channels have strong RFI, 40 have moderate to weak RFI, a few channels may have more than one RFI source.

(1) At BYU: Average the data from summer 2017 data (@20msec, 50kHz) and apply algorithms from their ngVLA study to test robustness to decorrelation

- Awaiting \sim 6K funding for student to do this and write it up.
- They may want a new dataset in a larger config if averaging doesn't suffice.
- Study their algorithm for different RFI levels

[One key lesson : Matrix decomposition methods need autocorrelations]

(2) At NRAO : Try imaging/self-cal/peeling ideas

 Time/Freq resolution constraints for subspace projection methods are identical to those for all-sky imaging.