

Quantifying Scientific Correctness in Radio Interferometric Imaging

Urvashi Rau
National Radio Astronomy Observatory, Socorro, NM, USA

28 Oct 2021, ADASS XXXI

Scientific Software

Ref : Accuracy and Reliability in Scientific Computing (SIAM, 2005)

Observational Astronomy

 - Observe unknown structures

 - Use instruments whose characteristics
 must be modeled and corrected for in
 software

Practical Scientific Software

 - What defines absolute correctness ?

 - What defines the operational readiness
 of the software ?

 - As code/software evolves, what to do
 when numbers change ?

Requirements, Specifications, and Tests

 - Truth values
 - Tolerances

Scientific Software

Ref : Accuracy and Reliability in Scientific Computing (SIAM, 2005)

Truth Values

 Simulations

 - Controlled (limited) environment
 - Truth : Known exactly.

 Test observations

 - Realistic environment
 - Truth : An independent measurement
 - Truth : Value obtained when the test was written

Tolerances

 - Accuracy needed for astrophysics ?

 - Accuracy defined by instrument limits ?

 - Accuracy of the algorithms/implementations ?

 - Machine precision ?

 - Include effects of error propagation ?

Scientific Software

Ref : Accuracy and Reliability in Scientific Computing (SIAM, 2005)

As code and algorithms evolve….

 …. numbers change.

 - What changes are ok, and what are not ?

 - Which tolerance to use ?

 - ‘Best result’ truth values can change.

 - What happens when a bug and a legitimate
 instrumental artifact produce a similar change
 in output ?

 - Must fix bugs, but must also consider the
 Cost vs Benefit of change/error/bug analyses

A Case Study

Radio Interferometry

 – Sources of uncertainty and error

The CASA software package

 – Navigating this situation

Radio Interferometry : Data acquisition and analysis

An indirect imaging technique

 => Measurements : An incomplete sampling of the 2D spatial Fourier Transform of the sky brightness.
 => Noise : Gaussian random
 => Reconstruction : Iterative numerical optimization to solve for instrument and sky model parameters

Correlation : Time Series → Correlation → Spectral Channels → Integrate

Data Archive : Each observation is stored as a database

Flagging Calibration Imaging

Post Processing

Identify and mask corrupted data
(RFI, Instrument errors, etc)

Solve for and apply corrections to
undo the effects of complex valued
antenna gains

Reconstruct images by iterative model
fitting while correcting for other
instrumental effects

 - Data Loss
 - Accuracy of outlier detectors

- Solver (and model) accuracy
- Available signal-to-noise

- Reconstruction uncertainty
- Approximations (instrument + sky)
- Available signal-to-noise

Automated Pipelines

Accuracy of the
Heuristics

Error Propagation

Sequences of steps

 - Feedback loops

 - Conditionals

 - Heuristics developed
 on benchmark datasets

 - Sequences vary per
 telescope and observing
 mode

Factors affecting accuracy

- Choices of FFT padding : Aliasing errors

- Pixel or bin sizes : Quantization errors

- Robustness of the algorithm and
 range/granularity of the controls

- Different compilers
- Different versions of 3rd-party
 software dependencies

- Operating systems
- Serial, mpi, openmp, cuda
- HPC frameworks

- Bugs

- Modeling the sky brightness
with delta-functions (or other
basis fns)

- Modeling an antenna power
pattern with a simple Airy disk

- Assumptions about signal
behaviour : perfect Gaussian
random noise

- Error propagation
- Incomplete sampling of
 the data domain

- Instrument/system noise

- Fraction of data loss

A Case Study

Radio Interferometry

 – Sources of uncertainty and error

The CASA software package

 – Navigating this situation

CASA : Common Astronomy Software Applications

CASA : A general-purpose suite of radio interferometry analysis tools
 operable within a Python environment

Team : ~20 software engineers, algorithm scientists and astronomers.
 (Build/Release, Infrastructure, Science Dev, Verification, Documentation)

Stakeholders :
 VLA users, ALMA users, Users of other telescopes (GMRT, MeerKAT, etc…)
 VLA-Sky-Survey pipeline, ALMA pipeline(s), VLA/SRDP pipeline
 ngVLA simulations/studies

Partners : Algorithm R&D group, Pipeline Dev team,
 VLBI dev team, Single-dish dev team, CARTA-team

 (Production pipelines are built using CASA methods + Heuristics)

User
Base :

Development Process

1 – 3
releases
per year

casadocs.readthedocs.io

Operational Complexity

Usage modes

 - Manual data reduction

 – Interactivity (visualization, logs, GUIs…)
 – Flexible tuning/exploration (lots of parameters/options)
 – New options/features continuously added

 - Production pipelines of multiple telescopes/projects

 – Stability & Reproduceability
 – Algorithmic evolution + support for new modes
 – Low tolerance for un-asked-for changes

 - Algorithm R&D : Design modularity + stability

Operating platforms :

 - Desktops/Laptops/Clusters/Cloud
 - Parallelization : MPI, OpenMP, GPU

Code Base :

 - C++, Fortran, Python
 - Experimenting with Python / Dask / Xarray / Docker, etc...

=> People are extremely wary of
 change.

=> Loss of objectivity.

=> Inefficient development process

Need ways to build trust….

Requirements :

 – Usually written as feature requests,
 algorithms, or problems to solve

 – Metrics are often not defined up front

 - Based on ‘best possible outcome’ after
 experimenting with a solution.

 - Independent analyses are sometimes
 available, but not always.

Tests are growing

Functional Verification Tests

 - Tests written against feature specifications. Emphasis is code coverage.
 - Small and simple simulations/datasets. Test numerics and algorithm features

Algorithm Characterization

 - Detailed simulations and analyses, with science metrics.

Stakeholder Verification Tests

 - Pipeline benchmark datasets for major usage modes. Use analyses steps and metrics relevant to stakeholders.
 - They also track diffs/changes (arising from CASA) at numerical precision level

Pipeline Validation Tests (run by pipelines, not CASA) : End-to-end tests for science readiness on ~100+ datasets

Performance tests : Monitor runtime and memory usage

Manual tests : Generic datasets. Use experience and technical expertise to assess ‘correctness’.

 However, there is still a large variety in metrics, tolerances, and acceptance rules.

Metrics : Towards consistency

Science-driven accuracy limits for major usage modes :

 Requirement : X → Good enough for most operations
 Goal : Y → Best case. This is the algorithm-development target

Demonstrated and documented accuracy of software : Z

 Use simulations or carefully-designed test observations. Z is defined w.r.to a known truth value.
 (A required operational accuracy constraint : Z = X/1000 or Y/10 to account for error propagation)

Acceptance Rules

 - If X > Y > Z > => All is well.

 - If Z > X => Unacceptable, and needs algorithm R&D or re-evaluation of requirements.

 - If X > Z > Y => Acceptable, but improvements are desired.
 - Changes above Y should be tracked/understood and communicated on a case-by-case basis.
 - Algorithm development should continue where relevant, to get Z < Y

 - When numbers change, use tighter(Y, Z) as the tolerance for acceptance.

 => Allow the code to evolve within these limits.

ϵ

Future

Current Operations (ALMA / VLA / VLASS / etc..) : Define metrics retrospectively and try to evolve….

New/Upgraded Telescopes (ngVLA + ALMA)

 - New Software “ngCASA”
 - Define use cases, metrics, acceptance rules at the start (but also plan for evolution….)

CASA Next Generation Infrastructure Project : https://cngi-prototype.readthedocs.io/en/stable

 - Under evaluation
 - Open-source 3rd party infrastructure for operational flexibility and some numerics (e.g. astropy)
 → Reduced in-house control of numerics

Thank you !

