Wide-field, wide-band and multi-scale imaging - II

Radio Astronomy School 2017 National Centre for Radio Astrophysics / TIFR Pune, India

28 Aug - 8 Sept, 2017

Urvashi Rau National Radio Astronomy Observatory, USA

Outline

- WideBand Imaging
 - UV-coverage changes with frequency
 - Modeling wideband sky brightness
 - Point sources + Multi-Scale emission
 - Reconstructing very large spatial scales

- Wideband primary beams + Mosaics

- Example : Imaging the G55 supernova remnant
- Summary
 - Basic CLEAN vs Wide-field Wide-band imagng
 - Imaging algorithm framework in CASA

Why do we need wide bandwidths ?

Broad-band receivers => Increased 'instantaneous' imaging sensitivity

Continuum sensitivity :
$$\sigma_{cont} = \frac{\sigma_{chan}}{\sqrt{(N_{chan})}} \propto \frac{T_{sys}}{\sqrt{N_{ant}(N_{ant}-1)}} \delta \tau \delta v$$

(at field-center)
50 MHz \rightarrow 2 GHz => Theoretical improvement : $\sqrt{\frac{2GHz}{50 MHz}} \approx 6$ times.

In practice, effective broadband sensitivity for imaging depends on bandpass shape, data weights, and regions of the spectrum flagged due to RFI. For VLA L-band, we typically use 70% of the band.

Why do we need wide bandwidths ?

Broad-band receivers => Increased 'instantaneous' imaging sensitivity

Continuum sensitivity :
$$\sigma_{cont} = \frac{\sigma_{chan}}{\sqrt{(N_{chan})}} \propto \frac{T_{sys}}{\sqrt{N_{ant}(N_{ant}-1)}} \delta \tau \delta v$$

(at field-center)
50 MHz \rightarrow 2 GHz => Theoretical improvement : $\sqrt{\frac{2 GHz}{50 MHz}} \approx 6$ times.

In practice, effective broadband sensitivity for imaging depends on bandpass shape, data weights, and regions of the spectrum flagged due to RFI. For VLA L-band, we typically use 70% of the band.

Some bandwidth jargon.....

Frequency Range :	$\boldsymbol{\nu}_{min}$, $\boldsymbol{\nu}_{max}$	(1 – 2 GHz)	(4 – 8 GHz)	(8 – 12 GHz)
Bandwidth :	$v_{max} - v_{min}$	1 GHz	4 GHz	4 GHz
Bandwidth Ratio :	\boldsymbol{v}_{max} : \boldsymbol{v}_{min}	2:1	2:1	1.5 : 1
Fractional Bandwidth :	$(v_{max} - v_{min})/v_{mid}$	66%	66%	40%

The instrument and the sky change with frequency...

The instrument and the sky change with frequency...

Imaging Properties change with frequency

- Angular-resolution increases at higher frequencies
- Sensitivity to large scales decreases at higher frequencies
- Wideband UV-coverage has fewer gaps => lower Psf sidelobe levels

2.000 4.000 Uwave

-8,000 -6,000 -4,000 -2,000 2.000 4.000 Uwave

Measure visibilities in frequency 'channels' and place them at their correct locations on the UV-plane => Multi-Frequency Synthesis

Suppose the entire receiver bandwidth was measured in one channel $\, \nu_{0} \,$

 $V(u_{\nu})$ is mistakenly mapped to $\frac{v_0}{v}u_{\nu}$

Similarity theorem of Fourier-transforms :

Radial shift in source position with frequency. => Radial smearing of the sky brightness

Excessive channel averaging during post-processing has a similar effect.

Bandwidth smearing limit for HPBW field-of-view : $\delta v < \frac{v_0 D}{r}$

max

2 MHz

200 MHz

Bandwidth Smearing limits at L-Band (1.4 GHz), 33 MHz (VLA D-config), 10 MHz (VLA C-config), 3 MHz (VLA B-config), 1 MHz (VLA A-config)

The instrument and the sky change with frequency...

Algorithms : Cube Imaging vs Multi-Frequency Synthesis

5^s 35^s 30^s 25^s 20^s 15^s J2000 Right Ascension

^h59^m45^s 35^s 30^s 25^s 20^s 15^s J2000 Right Ascension

Cube Imaging :

- (1) Reconstruct each chan/spw separately
- (2) Smooth to the lowest available resolution
- (3) Combine to calculate continuum and spectra

Multi-Frequency-Synthesis :

Combine data from all frequencies onto a single grid and do a joint reconstruction (assuming flat sky spectra)

Algorithm : Multi-Term Multi-Frequency-Synthesis

Solve for coefficients of a Taylor polynomial in frequency $I_v^{sky} = \sum_t I_t^m \left(\frac{v - v_0}{v_0} \right)^t$

Interpret coefficients as a power-law (spectral index and curvature)

Cube Imaging vs Multi-Frequency-Synthesis

(MT) MFS

- Low angular resolution

- Weakest sources are not deconvolved enough

- Crowded field may suffer from 'Clean bias' due to PSF sidelobes and require careful masking

+ Independent of spectral model

+ High angular resolution

- + Imaging at continuum sensitivity
- + Better PSF and imaging fidelity can eliminate 'Clean bias' and the need for masks in crowded fields

- Depends on how appropriate the spectral model is

Dynamic-range : 1-2GHz : 3C286 example : Nt=1,2,3,4

Spectral Index Accuracy (for low signal-to-noise)

Accuracy of the spectral-fit increases with larger bandwidth-ratio

To trust spectral-index values, need SNR > 50 (within one band – 2:1) For SNR < 50 need larger bandwidth-ratio.

Multi-Scale + Wide-Band image reconstruction

Multi-Scale Sky Model : Linear combination of 'blobs' of different scale sizes

- Efficient representation of both compact and extended structure (sparse basis)

MS-Clean : an iterative scale-sensitive algorithm

- (1) Choose a set of scale sizes
- (2) Calculate dirty/residual images smoothed to several scales (basis functions)
 - Normalize by the relative sum-of-weights (instrument's sensitivity to each scale)

(3) Find the peak across all scales, update a single multi-scale model as well as all residual images (using information about coupling between scales)

Wideband + Multiscale Sky Model : Collection of multi-scale flux components whose amplitudes follow Taylor polynomials in frequency.

(There are several newer MS algorithms that adaptively pick best-fit basis functions. Work is ongoing to include wideband models as well.)

Example of wideband-imaging on extended-emission

=> Spectral-index error is dominated by 'division between noisy images'
 - a multi-scale model gives better spectral index and curvature maps

Supernova Remnants at L and C Band [Bhatnagar et al, 2011]

These examples used nterms=2, and about 5 scales.

- => Within 1-2 Ghz and 4-8 GHz, spectral-index error is < 0.2 for SNR>100.
- => Dynamic-range limit of few x 1000 ---> residuals are artifact-dominated

Example : Abell 2256 [Owen et al, 2014]

VLA A,B,C,D at L-Band (1-2 GHz), VLA A at S&C bands(2-4, 4-6, 6-8 GHz)

Calibration and Auto-flagging in AIPS. Intensity/Spectral index Imaging in CASA.

Spectral Curvature

=> Need SNR > 100 to fit spectral index variation \sim 0.2 (at the 1-sigma level ...) => Be very careful about interpreting $~\beta$

For which scales can we reconstruct the spectrum ?

For which scales can we reconstruct the spectrum ?

For which scales can we reconstruct the spectrum ?

Moderately Resolved Sources + High SNR

Can reconstruct the spectrum at the angular resolution of the highest frequency (only high SNR)

NCRA-TIFR Radio Astronomy School, 8 Sept 2017

Very large spatial scales : Need wideband single dish data

Example : Flat spectrum emission at very large scales

Top : Only interferometer data => Negative bowl and artificial steep spectrum

No short spacings to constrain the spectra

=> False steep spectrum reconstruction

NCRA-TIFR Radio Astronomy School, 8 Sept 2017

Very large spatial scales : Need wideband single dish data

Example : Flat spectrum emission at very large scales

Top : Only interferometer data => Negative bowl and artificial steep spectrum

Bottom : Joint wideband reconstruction => Recovers more flux and gets accurate spectrum

[Naik & Rau, 2017 (in prep)]

The instrument and the sky change with frequency...

Wide-Band Wide-Field Imaging : Primary Beams

MFS : artificial 'spectral index' away from the center

For VLA L-Band (1-2 GHz)

About -0.4 at the PB=0.8 (6 arcmin from the center)
About -1.4 at the HPBW (15 arcmin from the center)

Wide-Band Wide-Field Imaging : Primary Beams

MFS : artificial 'spectral index' away from the center

For VLA L-Band (1-2 GHz)

About -0.4 at the PB=0.8
(6 arcmin from the center)
About -1.4 at the HPBW

(15 arcmin from the center)

Primary beams also

- rotate with time
- have polarization structure(beam squint, etc...)

Cube Imaging

^{20&}lt;sup>h</sup>04^m 02^m 00^m 19^h58^m 56^m 54 J2000 Right Ascension

- -- Sky model represents $I(\mathbf{v})P(\mathbf{v})$
- -- Divide the output image at each frequency by $P(\mathbf{v})$

Multi-Term MFS Imaging

- -- Output spectral index represents $I(\mathbf{v})P(\mathbf{v})$
- -- Polynomial division by PB Taylor coefficients

$$\frac{(I_{0,}^{m}I_{1,}^{m}I_{2,}^{m}...)}{(P_{0,}P_{1,}P_{2,}...)} = (I_{0,}^{sky}I_{1,}^{sky}I_{2}^{sky}...)$$

Wideband A-Projection

-- Remove $P(\mathbf{v})$ during gridding

$$P_{\nu} \cdot P_{\nu_c} \approx P_{\nu_{mid}}^2$$

$$A_{\nu}^{-1} \approx \frac{A_{\nu_c}^T}{A_{\nu_c}^T * A_{\nu}}$$

-- Output spectral index image represents only the sky

Wideband VLA imaging of IC10 Dwarf Galaxy [Heesen et al, 2011]

Wide Band Full Beam imaging – Algorithm Comparison

The instrument and the sky change with frequency...

Wide-Band Wide-Field Imaging : Mosaics

The mosaic primary beam has an artificial spectral index all over the FOV

Wide-Band Wide-Field Imaging : Mosaics

The mosaic primary beam has an artificial spectral index all over the FOV

- Deconvolve Pointings separately or together (Stitched vs Joint Mosaic)
 Impacts image fidelity, especially of common sources.
- Deconvolve Channels separately or together (Cube vs MFS)
 Impacts imaging fidelity and sensitivity, dynamic range
- Use A-Projection or not (Accurate vs Approximate PB correction)
 Impacts dynamic range and spectral index accuracy

[Rau &Bhatnagar, 2017 (in prep)]

Wideband Mosaic Imaging Accuracy [Rau et al, 2016]

Method	I/I _{true}	I/I _{true}	I/I _{true}	$\alpha - \alpha_{true}$	$\alpha - \alpha_{true}$
Intensity Range	$> 20 \mu J y$	$5 - 20\mu Jy$	$< 5\mu Jy$	$> 50 \mu Jy$	$10 - 50 \mu Jy$
Cube	0.9 ± 0.1	0.9 ± 0.3	0.9 ± 0.5	-0.5 ± 0.2	-0.6 ± 0.5
Cube + AWP	1.0 ± 0.05	1.0 ± 0.2	1.0 ± 0.3	-0.15 ± 0.1	-0.1 ± 0.25
MTMFS + WB-AWP	1.0 ± 0.02	1.0 ± 0.04	1.0 ± 0.15	-0.05 ± 0.05	-0.1 ± 0.2

Wideband Mosaic of CTB80 (1-2 GHz, VLA-D config)

Intensity

Mosaic Primary Beam

Intensity-weighted Spectral Index

300GB calibrated dataset, 106 pointings over 1.5x2 deg, imaged with MT-MFS (NT=2) and WB-A-Projection.

Major cycle runtime without parallelization : \sim 10 days. With 40 processes : 5 hrs (CASA)

Wide-Band (wide-field) Imaging - Summary

- UV coverage changes with frequency
 - -- Avoid bandwidth-smearing
 - -- Use multi-frequency-synthesis
 - -- to increase the uv-coverage and image-fidelity
 - -- to make images at high angular-resolution
- Sky brightness changes with frequency
 - -- reconstruct intensity and spectrum together (MT-MFS)
 - -- (or) make a Cube of images
- Instrumental primary beam changes with frequency
 - -- divide PB-spectrum from observed sky-spectrum.
 - -- apply wide-field imaging techniques to eliminate the PB frequency dependence during imaging.
 - -- Stitched vs Joint mosaics
- For very large scales, include single dish data before reconstruction

Outline

- WideBand Imaging
 - UV-coverage changes with frequency
 - Modeling wideband sky brightness
 - Point sources + Multi-Scale emission
 - Reconstructing very large spatial scales

- Wideband primary beams + Mosaics

- Example : Imaging the G55 supernova remnant

- Summary

- Basic CLEAN vs Wide-field Wide-band imagng
- Imaging algorithm framework in CASA

MS-MFS + **W-Projection** 30' 15' Declination Declination 45' J2000 30' 15' Max sampled spatial scale : 19 arcmin (L-band, D-config) Angular size of G55.7+3.4 : 24 arcmin 21°00' MS-Clean was able to reconstruct total-flux of 1.0 Jy MS-MFS large-scale spectral fit is unconstrained. 45' 19^h26^m 24^m 23^m 22^m 21^m 20^m 19^m 18^m 17^m

Spectral Indices before and after WB-A-Projection

Without PB correction Outer sources are artificially steep

With PB correction (via WB-AWP) Outer sources have correct spectra

Intensity-weighted spectral index maps (color = spectral index from -5.0 to +0.2) (Without single dish information, we can trust only small scale spectral index)

Wide-field sensitivity because of wide-bandwidths

G55.7+3.4 : 4 x 4 degree field-of-view from one EVLA pointing

Outline

- WideBand Imaging
 - UV-coverage changes with frequency
 - Modeling wideband sky brightness
 - Point sources + Multi-Scale emission
 - Reconstructing very large spatial scales
 - Wideband primary beams + Mosaics
- Example : Imaging the G55 supernova remnant
- Summary
 - Basic CLEAN vs Wide-field Wide-band imagng
 - Imaging algorithm framework in CASA

An interferometer partially measures the spatial Fourier transform of the sky brightness distribution.

$$V_{ij}^{obs}(v,t) = M_{ij}(v,t)S_{ij}(v,t) \iint I(l,m)e^{2\pi i(ul+vm)} dl dm$$

$$Observed visibilities Independent Gains UV sampling pattern Brightness (Image) Fourier transform kernel$$

$$Standard calibration eliminates M_{ij}(v,t)$$
The observed image is a convolution of the PSF with the sky brightness.
$$I^{obs}(l,m) = I^{PSF}(l,m) * I^{sky}(l,m)$$

NCRA-TIFR Radio Astronomy School, 8 Sept 2017

J2000 Right Ascension

Wide Band and Full Beam Imaging

An interferometer partially measures the spatial Fourier transform of the sky brightness distribution.

$$V_{ij}^{obs}(\mathbf{v},t) \approx M_{ij}(\mathbf{v},t) S_{ij}(\mathbf{v},t) \iint I(l,m) e^{2\pi i(ul+vm)} dl dm$$

 $V_{ij}^{obs}(\mathbf{v},t) = \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} \frac{S_{ij}(\mathbf{v},t)}{M_{ij}^{s}(l,m,\mathbf{v},t)} I(l,m,\mathbf{v},t) e^{2\pi i (ul+vm+\frac{w(n-1)}{v})} dl dm dn$

=> The observed image is NOT a simple convolution equation

Wide Band + Full Beam Imaging – Algorithms

The measurement equation of an interferometer (per baseline) :

Iterative χ^2 minimization – Major and Minor Cycles in CASA

