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Sky-domain algorithms to reconstruct spatial, spectral 
and time-variable structure of the sky-brightness distribution

Urvashi Rau

National Radio Astronomy Observatory
Socorro, NM, USA

Outline :

- Overview of image reconstruction 
advances in the past decade.

- Image-reconstruction as a 
numerical optimization problem.

- Multi-term methods for sky-domain 
reconstruction 

- Need for data-domain methods to 
correct for instrumental effects

- EVLA Imaging examples

Image from F.Owen, NRAO
Intensity-weighted Spectral-index of Abell2256 (EVLA-LBand)
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'Standard' Aperture Synthesis + Imaging + Deconvolution

1.5 GHz

1 –  2 GHz

–  Generate visibilities by binning correlations in time and 
frequency (Earth-rotation and multi-frequency synthesis)

    Choose              such that du ,dv
1

FOV
dt , d

V ij
obs  , t =M ij , t S ij , t ∫ I sky l ,m e2 i ul vmdldm

Projection 
Algorithms

Deconvolution algorithms

I obsl ,m = I sky l ,m ∗ ∫ S u , v e−2 i ulvm 


2

–  Deconvolution / Model-fitting

    - Fit a sky-model via iterative       minimization

V iju−uij ∗ Gu
du ,dv

Gu

–  Imaging / Gridding + FT

    - Convolve : 
    - Resample on a regular grid (            )
    - Inverse FFT
    - Divide by the inverse FT of  
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Assumptions vs Reality

Assumptions :

  - sky brightness distribution is constant w.r.to frequency (and time)
  - calibration of time and freq-dependent instrumental effects at the phase center

Ok for imaging dynamic-range < few 1000, narrow bandwidths and small fields-of-view.

V ij
obs  , t =M ij , t S ij , t ∫ I l ,me2 i ul vmdl dm

W-Term
Sky brightnessPB effects

V ij
obs  , t =M ij , t S ij , t ∫Mij

s l ,m, , t  I l ,m,e2 iulvmwn−1 dl dmdnReality :

   - Increased receiver sensitivity (lower Tsys, larger bandwidth, larger collecting-area)

        => Artifacts that were earlier below the noise, are visible in the image.
                 - direction, frequency and time-dependence of the sky and instrument. 

   - Desire to image wide fields-of-view

               - Pressure on telescope time => wider fields-of-view from a single observation
               - Increase image fidelity for image-domain mosaics/facets.
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Imaging and Deconvolution Algorithms

Deconvolution algorithms 

Clean

Maximum-Entropy Clean

Multi-Frequency-Clean 

Adaptive-Scale Pixel Clean

Multi-Scale-Clean

Multi-Scale,Multi-Frequency Clean

Other experimental ideas :
   - Multi-Frequency Time-variable Clean

   - Ideas from compressed-sensing 
     methods : minimize L1 instead of L2 

Wide-field Imaging Algorithms

Post-deconvolution PB-correction

Multi-facet imaging
     (independent and joint deconvolution)

Mosaicing  (independent deconvolution)

W-Projection

A-Projection

Projection-Mosaicing

WideBand-A-Projection

Other ideas : 
      - Peeling
      - Differential-gain calibration

Cornwell, 2008
Greisen, 2008

Bhatnagar & 
Cornwell, 2004

Rau & Cornwell, 2011

Conway et al 1991,  
Sault & Wieringa 1994

Cornwell & Evans 1985
Narayan & Nityananda 1986

(Hogbom 1974, Clark 1980, 
Schwab & Cotton 1983 )

Hogbom 1974, Clark 1980, Schwab & Cotton 1983

Bhatnagar, Cornwell, Golap,  2004

Bhatnagar, Cornwell, Golap, Uson,  2004

Golap et al. ~ 2004   related to
Ekers/Rots 1979

Bhatnagar & Rau,    
        2012 (in prep)

LOFAR group, ~ 2010

Wenger et al, 2010,  Li & Cornwell 2011, 2012

Stewart et al, 2011

Smirnov 2011,  Yatawatta 2011

Schwarz, 1978
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Basic Imaging and Deconvolution

Image Reconstruction : Iteratively fit a sky-model to the observed visibilities.

Normal Equations  :                                                       

                             –  This describes an image-domain convolution

[ATW A ] Im=[ATW ]V obs

I psf∗Im=I dirty

χ2
=[V obs

−A Im ]TW [V obs
−A Im]

Im


2

 Im
=0

Fit the parameters of        via a weighted least-squares optimization : 

   –  Minimize                                                                               ==> 

Measurement Equation  :                                  

 –  The operator                         includes the UV-coverage and FT
 –  The vector       is the sky model ( e.g.  image-pixels, Gaussian set )

[A ] Im=V obs

Im
[A ]=[ S] [F ]

I i+ 1
m =I i

m+ g[ ATW A ]+ (ATW (V obs−A I i
m))

Imaging 
(Gridding + iFT)

Prediction
(FT + de-Gridding)

Deconvolution

Iterative Solution : 
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Basic Imaging and Deconvolution

Image Reconstruction : Iteratively fit a sky-model to the observed visibilities.

Normal Equations  :                                                       

                             –  This describes an image-domain convolution

[ATW A ] Im=[ATW ]V obs

I psf∗Im=I dirty

Major Cycle

Data, Residuals

Model Data

Dirty Image, Residual Image

Model Image

Residual = Data –  Model data

Imaging

Prediction

Deconvolution
Iterations

Minor Cycle

I i+ 1
m =I i

m+ g[ ATW A ]+ (ATW (V obs−A I i
m))

Imaging 
(Gridding + iFT)

Prediction
(FT + de-Gridding)

Deconvolution

Iterative Solution : 
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Basic Imaging and Deconvolution

Normal Equations  :                                                          where  

                             –  This describes an image-domain convolution

[ATW A ] Im=[ATW ]V obs

I psf∗Im=I dirty

I i+ 1
m =I i

m+ g[ ATW A ]+ (ATW (V obs−A I i
m))

Imaging 
(Gridding + iFT)

Prediction
(FT + de-Gridding)

Deconvolution

Iterative Solution : 

CLEAN

- Calculate dirty 
   image

- Normalize by sum 
  of weights

- Add location/amp   
  of peak to model

- Update residuals

[A ]=[ S] [F ]
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Extended emission :  Standard CLEAN

Im=∑i
ail−li

Pick basis functions that represent shapes in which most of the signal power is concentrated. 

      => Use a basis in which the signal is ' sparse ' (described by a few parameters)

            These concepts are gaining popularity as 'compressive-sampling' or 
            'compressed-sensing' methods in signal/image-processing
                       + some new ideas on the optimization strategy (minimize L1 instead of L2).

Delta-functions are an inefficient way of modeling extended emission. 

CLEAN

- Calculate dirty 
   image

- Normalize by sum 
  of weights

- Add location/amp   
  of peak to model

- Update residuals
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Extended emission : Multi-Scale CLEAN

I sky=∑s
[I s

shp∗I s
m] where             is a blob of size 's'  and    I s

m=∑i
as ,il−ls ,iI s

shp

Multi-Scale Sky Model  :  Linear combination of 'blobs' of different scale sizes 
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Extended emission : Multi-Scale CLEAN

I s=0,1
dirtyI s=0,1

m

Imaging Equations :  Multiple 'dirty' images, each a linear-combination of convolutions

MS-CLEAN

- Smooth residual by 
different scales (calc RHS)

- Calculate principal 
solution (2x2 matrix-
multiplication per pixel)

- Find peak flux and scale. 
Add to model

- Subtract response from 
all residuals (calc LHS)

Other multi-scale algorithms :   
                          MS-Clean (Cornwell), MS-Clean (Greisen) are variants of the above.
                          ASP-Clean (model sky as a set of Gaussians –  solve for parameters)
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Imaging examples with extended emission

   CLEAN                  MEM                   MS-CLEAN                 ASP

IM

IR

(Bhatnagar & 
 Cornwell 2004)

(Cornwell, 2008)
( Cornwell & 
Evans, 1985)

(Hogbom 1974, Clark 1980, 
Schwab & Cotton 1983 )

Minimize L2 
(assume sparsity 
in the image)

Minimize L2 subject to 
an entropy-based prior 
(e.g. smoothness)

Minimize L2
(assume a set of 
spatial scales)

Minimize L2 with
TV-based subspace 
searches

I 
sky=∑i

G ai , x i , y i , s i
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I t= 0,1,2
m I t= 0,1,2

dirty  MF-CLEAN (and variants)

- Construct dirty-images as 
weighted averages in frequency

- Calculate principal solution
   ( 3x3 matrix mult. per pixel )

- Pick Taylor-coefficient set that 
gives the biggest change in 

- Subtract response from all 
residuals (evaluate LHS)


2

I 0,
m I 1,

m I 2,
m...Data Products : 

Wide-Band Imaging : Multi-Frequency CLEAN

I 
sky
=∑t

I t
m −0

0

t

Model the sky spectrum with polynomial coefficients : 
 (sparse representation of a smooth spectrum)

Power Law model                        Interpret Taylor-coefficients as a Power-Law : 

I =I 0 0 
log  /0 

I 0
m
=I0

I1
m
=I 0

 I 2
m
=I0  −1

2

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Multi-Scale Multi-Frequency Clean

I 
sky
=∑t

I t −0

0

t

I t=∑s
[ I s

shp∗I s , t ]

Sky Model : Collection of 'blobs' whose amplitudes follow a polynomial in frequency.

Multi-Frequency :                                         Multi-Scale :  

Data products are Taylor-coefficient-images (combined across scales) : I 0,
m I 1,

m I 2,
m...

MS-MFS

- Construct dirty-images as weighted 
averages in frequency + smooth to 
different scales.

- Block-diagonal approximation for scales, 
principal solution for Taylor-coefficients

- Pick components and add to models.

- Update all residual images
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Example of wideband-imaging on extended-emission

Spectral 
Turn-over

Average Spectral Index Gradient in Spectral Index

Intensity Image 

 

=1 =−1

=−2

0.05 ≈0.5

0.2 ≈0.5

multi-scale point-source

    MFS 
(4 terms)









I 0 I 0

=> For extended emission......
                           ......... a multi-scale model gives better spectral index and curvature maps
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Extended emission – SNR example (a realistic expectation)

Wide-band Galactic-Plane SNR survey (pilot)  [ MS-MFS with nterms=2, and about 5 scales ]
       
 => Within L-band and C-band, can tell-apart regions by their spectral-index ( +/- 0.2 ) if  SNR>100.  
 
              => These images have a dynamic-range limit of  few x 1000  

I 0

I 0

I 0

I 0

Bhatnagar et al,  2011
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Dynamic-range with MS-MFS : 3C286 example : Nt=1,2,3,4

NTERMS = 1

Rms :
 9 mJy -- 1 mJy

DR :
   1600 -- 13000

NTERMS = 2

Rms :
1 mJy  -- 0.2 mJy

DR :
 10,000 -- 17,000

NTERMS = 4

Rms 
0.14 mJy  -- 80 uJy

DR :
>110,000 -- 180,000

NTERMS = 3

Rms :
 0.2 mJy -- 85 uJy

DR :
 65,000 -- 170,000
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Other methods based on linear-combinations

I t
sky
=∑i

Ii
m  t−t ref

t ref 
i

Multi-Frequency-Synthesis <==> Earth-rotation synthesis

–  Source structure that varies smoothly with time :  

        Taylor-polynomial in time :    

–  Frequency-dependence of Stokes Q,U,V.

–  Source structure that varies with (erratically) with time and (smoothly) with frequency 
                                  
                => need different basis functions :  Fourier sinusoids and Chebyshev polynomials

–  Can add in multi-scale support to both of the above ideas (same ideas as MS-MFS)

–  Stokes parameters :  I = RR+LL,  V = RR-LL  

            => Another set of linear equations : Can do a joint I and V deconvolution.

Stewart et al, 2011, based on Sault-Wieringa 1994
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Handling Instrumental effects in the sky-domain

Average Primary Beam
1.0 GHz

Multi-Frequency Primary Beams

1.5 GHz

2.0 GHz

50%

90%

Spectral Index of PB

20%

The sky model can absorb 
some time-invariant and real-
valued instrumental effects

e.g. frequency-dependent PB gain 
for a non-squinted and non-rotating 
antennas.

MS-MFS Taylor-coefficients 
represent the product of the sky 
and PB spectra.

  => Divide out the PB-spectrum, 
       post-deconvolution.

(I 0,
m I 1,

m I 2,
m...)

(P0, P1, P2,...)
=(I 0,

sky I 1,
sky I 2

sky ...)
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Continuum (MS-MFS) vs Cube Imaging (with PB-correction)

50% of PB

After PB-correction Before PB-correction

MS-MFS : Result of wide-band PB-correction after MT-MS-MFS.

Cube : Spectral-index map made by PB-correcting single-SPW       
            images smoothed to the lowest resolution.

Any post-deconvolution PB-correction assumes that the primary-
beam does not vary / rotate during the observation.

IC10 Dwarf 
Galaxy :

Spectral Index 
across C-Band.

Heesen et al, 2011

Projection Methods : W-term, PB gain, PB offsets ( pointing, 
squint, mosaics ), PB-frequency-dependence.......
       --- Careful choices of Gridding Convolution functions. 
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G55 examples.....

7 hour synthesis,   L-Band,   8 spws x 64 chans x 2 MHz,  1sec integrations

Due to RFI, only 4 SPWs were used for initial imaging ( 1256, 1384, 1648, 1776 MHz )

( All flagging and calibration done by D.Green )

Imaging Algorithms applied : MS-MFS with W-Projection

     (nterms=2, multiscale=[0, 6, 10, 18, 26, 40, 60, 80] )

Peak Brightness         :   6.8 mJy
Extended Emission    :  ~ 500 micro Jy
Peak residual     :  65 micro Jy
Off-source RMS :  10 micro Jy (theoretical = 6 micro Jy)

Example : SNR G55.7+3.4 
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G55 examples..... Only MS-Clean
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G55 examples..... MS-Clean + 
W-Projection
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G55 examples..... MS-MFS + 
W-Projection

Max sampled spatial scale : 19 arcmin (L-band, D-config)
Angular size of G55.7+3.4 :  24 arcmin

MS-Clean was able to reconstruct total-flux of 1.0 Jy
MS-MFS large-scale spectral fit is unconstrained.
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G55 examples..... MS-MFS + 
W-Projection + 
MS-Clean model

=−1.1 =−2.7

=−0.9 ≈−3.2

≈−2.9
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Example of wide-field sensitivity, because of wide-bandwidths

1

4

G55.7+3.4 : Galactic supernova remnant :  4 x 4 degree field-of-view from one EVLA pointing

 1 Jy total flux

 24 arcmin 

(PB: 30 arcmin)

10 micro Jy RMS
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Summary

Image reconstruction is done via an iterative least-squares minimization.

Sky domain : natural domain to parameterize the sky signal (non-closing). Sees only averages. 

Minor Cycle :   Construct a model from the 'dirty' image(s). Algorithms differ in choice of model 
parameters, objective function, optimization strategy.

    → Clean (hogbom, clark), mem, msclean, asp, mfclean, ms-mfs, …  )

Data domain :  model instrumental effects and correct them ( 'calibration' )

Major Cycle :  Model prediction (FT+de-gridding), Residual calculation,  Imaging (gridding+IFT).
Algorithms differ in the choice of gridding-convolution function (Sanjay's talk : July 9)

     W-Projection,  A-Projection,  WB-A-Projection, Pointing Offsets and Mosaicing. 

=> A combination of all these methods is required for HDR imaging.   LDR imaging (few 1000) is 
possible through various approximate methods (as has always been the case).

           ==> Already getting EVLA proposals for low-freq wide-band mosaics with A-config
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