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Overview

• Medical imaging and astronomy work at vastly different scales; however, 
there are many parallels between them:
• “Remote sensing” of regions where cannot directly sample
• Reliance on Fourier methods
• Inverse problems to find underlying structure from data/observations
• Reliance on modeling; need for calibration, deconvolution of “psf”
• Need to account for effects of intervening “medium”
• Multispectral/multimodality/multidimensional imaging in both
• Associated visualization issues
• Potential for machine learning approaches



My Background

• PhD in Astrophysics from Princeton (1971)
• Thesis on modeling the atmosphere of Jupiter from observations (combining 

UV, visible, IR data)
• However, I wanted to do work more directly related to people
• I was also fascinated by the concept of the body as a mechanism- e.g., 

Leonardo, Descartes, Helmholtz…

• MD and radiology residency at UCSF
• Research on modeling perfusion from dynamic CT enhancement data

• Subsequent clinical and research work on cardiovascular MRI
• Quantitative perfusion and function imaging with MRI



Some of my Research Approaches/Activities

• Astronomers were early users of digital imaging, “multispectral” data
• Trying to model quantitative imaging of Jupiter for my thesis, I found 

discrepancies between visible (terrestrial) and far-UV (space) data
• I showed that these data could be reconciled if there were suitable small 

absorbing particles high in the atmosphere of Jupiter; these were 
subsequently found to be present by tracking a space probe fly-by
• In radiology, most people have approached imaging as qualitative pattern 

recognition; I was trained to see images as spatially distributed data
• My subsequent research has focused on using quantitative imaging to 

better understand physiology/pathophysiology, particularly cardiovascular



Medical Imaging and Astronomy Work at Vastly 
Different Scales (“Heavenly and Human Bodies”)

• Human perception (initial observations of both):
• Visual spectrum, about 380 to about 750 nanometers
• Times: ~fractions of a second to seconds
• Angular resolution ~ 0.017° (augmented by optics)
• Dynamic range depends on overall brightness

• Astronomical structures (“heavenly bodies”): 
• Solar system: cms (through remote probes) to orbits (AU ~1.5 x 10^8 km)
• Galaxies: light years to billions of light years
• Times: seconds to billions of years

• Human structures (“bodies”): 
• Organs ~cms; cells ~microns
• Times ~fractions of a second to years



However, Both Depend on “Remote Sensing” 
to Explore  Inaccessible Regions
• Direct sampling of solar system possible only where can reach with 

probes; otherwise dependent on passively received signals
• Invasive imaging of humans has risks, changes the nature of the 

system being studied; so medicine primarily relies on indirect imaging
• Even “invasive” sampling methods rely heavily on imaging guidance
• Suitable analysis of imaging data for both can reveal underlying 

structures and aspects of their nature
• Both domains rely on modeling of underlying structures, and on 

physics of imaging, to gain understanding



M87 Elliptical Galaxy with Jet and Black Hole

Hubble Space Telescope
(optical image)

Chandra X-ray Observatory
(x-ray space telescope)

Event Horizon Telescope
(radio waves)

2019 2023



Cardiac Imaging Examples

Radionuclide

Quantitative MRI perfusion

Cine MRI

LGE MRI



Resolution Limits (Spatial and Temporal)

• Astronomy:
• “Lens” apertures; detector arrays (size, spacing)
• Interferometry baselines
• Data sampling rates (limited by SNR)
• Observation durations limited by resources

• Medical Imaging:
• Can use MRI detector arrays (size, spacing)
• Gradient limits in MRI
• Data sampling rates (limited by SNR)
• Imaging durations limited by resources, patient tolerance



Inverse Problems in Both Kinds of Imaging

• How to study underlying structures and their properties from limited 
indirect observations?
• Need calibration of detectors
• Limited by undersampling of available data

• Rely on “regularization” to make problems tractable
• Can  use modeling of structures and imaging processes

• Relate “forward” and “backward” propagation of data; can iterate
• Need to account for effects of intervening/surrounding medium

• Absorption, scattering, “refraction”/distortion
• Need deconvolution of “point spread functions” in space and time
• “Big data”-scale (terabyte) data processing challenges



Multispectral, Multidimensional, and 
Multimodality Imaging in Both Domains
• Multispectral/spectroscopic imaging

• “Color”/brightness, spectrum for star classification
• “Relaxation times” and spectra for MRI tissue classification

• Data can extend well beyond visual spectrum (x-ray to UV; IR to RF)
• Combine data from different kinds of sources

• Overlay astronomical observations ranging from gamma ray to radio astronomy
• Radionuclide tracer imaging overlaid with anatomic images from MRI or CT

• Can turn temporal series data into underlying time-related variables
• Orbits of exoplanets or around black holes; gravitational radiation effects
• MRI contrast kinetics for modeling tissue perfusion, delayed enhancement
• MRI of tissue kinetics or deformation



Visualization Challenges for Both Domains

• Limits of human eye-brain combination for comprehending displays
• Flat retinas- only stereo, shaded, interactive slice/angle displays available for 

adding depth information
• Mapping other kinds of data to visual displays
• Trichromatic color vision- limited information content of color
• Nonlinear/uncalibrated subjective perception of color and brightness
• Limited ability to integrate separately presented displays

• How to efficiently/effectively explore large multidimensional 
(space/time/”spectrum”) data sets?



Both Have Potential for Using Machine-
Learning Approaches
• Can learn automated classification from images (annotated data 

sets/”self-supervised”)
• Can learn processes for image reconstruction from raw data
• Potential for “super-resolution” image reconstructions
• Potential for combined analysis of mixed data sets



Conclusions

• Despite the great apparent differences in their subjects, there is much 
in common between the tools of medical and astronomical imaging
• Solutions developed for data handling (e.g., image 

reconstruction/analysis/display) in one domain may have potential 
applications in the other
• More scientific exchange between the two domains may help lead to 

advances in the corresponding methods used in both



Thank you
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From Inner Space to Outer Space :  How?
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Imaging in Astronomy

Objects in space emit electromagnetic radiation

Radio                            Infrared   Visible   Ultraviolet            X-Ray           Gamma



Imaging in Astronomy

Crab Nebula                                        Center of the Milky Way galaxy
Credit: G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; 
NRAO/AUI/NSF; A. Loll et al.; T. Temim et al.; F. Seward et al.; Chandra/CXC; 
Spitzer/JPL-Caltech; XMM-Newton/ESA; and Hubble/STScI Credit : SARAO, Heywood et al (2022), J.C. Munoz-Mateos



Imaging in Astronomy

What we measure : 

Intensity of the received power 
EM Polarization
Spectral structure
Time-variability 

        Quantitative ! 

What we infer : 

Temperature,  Energetics, 
Emission Physics
Chemical Composition
Magnetic Fields
Velocities , 3D structure
Age of the source

Why ?   To study new Physics



MRI: Looking inward



NMR 

• Spin states of of atomic nuclei in background magnetic field

• Transitions (‘spin flips’) can be induced by on-resonant exciation

• When coherent, the nuclei give off radio signals

• Discovered 1945, by Edward Purcell und Felix Bloch

• Shared Nobel Prize in 1952

Edward M. Purcell Felix Bloch 



• Predicted by Van de Hulst (1945) 

• Measured by Ewen & Purcell (1950)

              è The same Purcell (of NMR fame)

      
   ( Radio : Electron spin-flip transition )

21 cm Hydrogen line…. from space



Radio Waves from the Milky Way

Karl Jansky ( 1933 ) 



First All-sky Radio Map

Grote Reber ( 1936 ) 



Imaging different spatial scales 

The M87 Radio Galaxy

Credits : 
NRAO,
ALMA, 

Event
Horizon
Telescope
collaboration

50000 light years

0.006 light years



Spectral Encoding :  Chemistry + Doppler Shifts

Credits : Eli Brinks



CO line : Tracer of star-formation

Credits: ALMA 
(ESO/NAOJ/NRAO); 
NRAO/AUI/NSF, 
B. Saxton

Star-Forming 
Clouds in Disk 
Galaxies



3D structure ( spatio-spectral encoding )

CO emission

- Spiral-shell 
structure around 
the AGB star LL 
Pegasi and its 
stellar companion
             
                                                                                                                             
( Kim et al, 
Nature Astro 2017.)



Hydrogen in the Milky Way



B-field direction (polarization angle)



In-situ B-field strength ( Zeeman effect )

B-field from OH Zeeman lines
 
NGC2024 star-forming region 

Credits : Crutcher & Kemball, 2019

Stokes V 

Frequency



MRI from natural emission?

N Müller, A Jerschow, PNAS 103:18 (2006)

Natural emission = very convenient !

We can actually do that, too: spin-noise imaging 
• no RF excitation
• just random (thermal) coherence 
• very insensitive though

 
Better: RF excitation for strong, coherent signal

But signals still only in the µW range, compare to kW for excitation
 

Reflects the fact that NMR is weak
 
Downside: low SNR      Upside:  nuclei are largely transparent to signal from kin
       requirement for looking into the body



What do we measure ? 

Spectral Power Flux Density

Measured range : 104  Jy   to   10-6 Jy

Very weak signals…

… and noise

( We also look through the atmosphere/ionosphere  +  RF interference )



• Use dishes to increase collecting area 

• Cooled receivers 
• Low noise amplifiers

Increasing SNR

Accumulate data in 
time and frequency

Sky : 2.7K
Ambient : 300K
Current instruments : ~ 20 K

(Ref. CDL, NRAO)



Raster Scan

Angular resolution

 𝜃 = 1.22	 𝜆/𝐷  

      D  is limited by 
      structural constraints

How do we make an image ? 



The largest single-dish telescopes

Green Bank Telescope, USA Arecibo, Puerto Rico, USA



The largest single-dish telescopes

Green Bank Telescope, USA Arecibo (1963 - 2020)



The largest single-dish telescopes

Green Bank Telescope, USA FAST, China



MRI and Optics
  
Diffraction limit: 𝜆 = 10 − 100 𝑐𝑚 ⇒   useless resolution
 
   

Propagation encodes source positions in spatial field patterns

Maxwell:                                                    limits their spatial frequency to

Instead: Lauterbur’s gradient encoding

Bloch:                                                                                            

Precession encodes source positions in temporal field patterns

𝜕
𝜕𝑡
𝑀!"(𝑟, 𝑡) = 𝑖 𝛾 𝐵# + 𝑮(𝒕) 7 𝑟 𝑀!"(𝑟, 𝑡)

𝜕2

𝜕𝑡2
𝐸 𝑟 = −

𝜔$

𝑐$
∆𝐸 𝑟

𝜔
𝑐

Δ𝑥 ≥
𝜆

2 𝑁𝐴

Paul C. Lauterbur
Nobel Prize 2003



Enter k-space

optical aperture

𝑘! [𝑟𝑎𝑑/𝑚]

𝑘" [𝑟𝑎𝑑/𝑚]

2𝜋/Δ𝑥aperture needed:

𝑘 ≤
𝜔
𝑐
=
2𝜋
𝜆



Enter k-space

Resolution not limited by
- electrodynamics
- size of the equipment

But encoding takes time

𝑘! [𝑟𝑎𝑑/𝑚]

𝑘" [𝑟𝑎𝑑/𝑚]

𝑑𝑘(𝑡)
𝑑𝑡

= 𝛾𝐺⃑ 𝑡

We roam free in k-space! 

k-space velocity

2𝜋/Δ𝑥aperture needed:

!



Going beyond single dishes ? 

Aperture Synthesis



Aperture Synthesis

b

Young’s double-slit experiment

                       
Aperture = infinite pairs of slits          Each pair of slits sees 1 Fourier component



Aperture Synthesis

b

Young’s double-slit experiment

Measure the spatial coherence of the incident E-field at each pair of detectors



Aperture Synthesis

K-space encoding 

𝑢

𝑣⃗



First Fourier encoding 

McReady, Pawsey, Payne-Scott (1946) 

Sea-Cliff Interferometer 

Time-series 
   à Interference pattern
             à Angular size of the source



First Aperture Synthesis in Astronomy 

Martin Ryle (1960+) 

First intentional K-space sampling 

Nobel Prize ( 1974 ) 



Today’s interferometers – dish arrays

ALMA, Chile GMRT, India

MeerKAT, S.AfricaVLA, USA WSRT, Netherlands

ASKAP, Australia



Today’s interferometers – aperture arrays

LOFAR, Netherlands

LWA, USA HERA, S.Africa

MWA, Australia



Next generation (future) instruments

DSA-2000 USA

NGVLA, USA

Designed for O(10) increase in :  
K-space coverage,   Collecting Area 

                                  …… and computing cost.

SKA, Australia & S.Africa



Very long baseline interferometry



Very (very) long baseline interferometry

Event
Horizon 

Telescope Space - VLBI



What does our K-space coverage look like?



What does our K-space coverage look like?



What does our K-space coverage look like?



What does our K-space coverage look like?



What does our K-space coverage look like?



What does our K-space coverage look like?



What does our K-space coverage look like?



What does our K-space coverage look like?



Imaging Quality ? 

𝐼!"# 𝑙, 𝑚𝑆 𝑢, 𝑣

Image of the sky
using 27 antennas

“Aperture Synthesis”



Curves in k-space?

𝑘! [𝑟𝑎𝑑/𝑚]

𝑘" [𝑟𝑎𝑑/𝑚]

E.g., arcs, do you put dishes on rails?

2𝜋/Δ𝑥aperture needed:

𝑑𝑘(𝑡)
𝑑𝑡

= 𝛾𝐺⃑ 𝑡 k-space velocity



Aperture Synthesis

𝐼!"# 𝑙, 𝑚𝑆 𝑢, 𝑣

Image of the sky
using 27 antennas

Observation : 1 second



Earth Rotation Synthesis

Image of the sky
using 27 antennas

Observation : 2 hours

“Earth Rotation Synthesis”

𝐼!"# 𝑙, 𝑚𝑆 𝑢, 𝑣



Earth Rotation Synthesis

𝐼!"# 𝑙, 𝑚𝑆 𝑢, 𝑣

Image of the sky
using 27 antennas

Observation : 4 hours

“Earth Rotation Synthesis”



Radial sampling

𝑘! [𝑟𝑎𝑑/𝑚]

𝑘" [𝑟𝑎𝑑/𝑚]

2𝜋/Δ𝑥aperture needed:

𝑑𝑘(𝑡)
𝑑𝑡

= 𝛾𝐺⃑ 𝑡 k-space velocity

How about radial?



Earth Rotation Synthesis

𝐼!"# 𝑙, 𝑚𝑆 𝑢, 𝑣

Image of the sky
using 27 antennas
Observation : 4 hours

Channels : 1.5 GHz



Multi-Frequency synthesis

𝐼!"# 𝑙, 𝑚𝑆 𝑢, 𝑣

Image of the sky
using 27 antennas
Observation : 4 hours

Channels : 1.0 GHz, 1.5 GHz

“Multi-Frequency Synthesis”



Multi-Frequency synthesis

𝐼!"# 𝑙, 𝑚𝑆 𝑢, 𝑣

Image of the sky
using 27 antennas
Observation : 4 hours

Channels : 1.0 GHz, 1.5 GHz, 2.0 GHz

“Multi-Frequency Synthesis”



The observed image

The “CLEAN” algorithm  (Hogbom 1974, Clark 1980, Cotton-Schwab 1983, ...)

Sparse Sky Model,   Non-linear reconstruction (iterative),   L2 data normalization,   Greedy regularization



Compressed sensing in MRI
• started in 2005 
• permits deliberate undersampling  à save time
• widely deployed, in research and commercially
• favored sampling: random, center-heavy

Compressed sensing 



𝑘!

𝑘" [𝑟𝑎𝑑/𝑚]

2𝜋/Δ𝑥aperture needed:

Parallel MRI

first conceived in late 1988

Parallel MRI:

• capture near-field  by array detection

• broadens and samples aperture 

• enables undersampling, saving time

• saves time / increases FOV

• taps into both temporal and spatial   
degrees of freedom of RF field

• widely deployed

• first conceived in 1988  by M. Hutchinson



Planetary parallel MRI

Courtesy: M. Hutchinson



Instrument Response

Angular Resolution Field of View

𝐼!"# = 𝑃𝑆𝐹 ∗ 𝑃𝐵 ( 𝐼#$%

𝑃𝑆𝐹 𝑃𝐵



Image a finite field-of-view

Image from
 
one “pointing”



Increase the field-of-view

Increase field-of-view

multiple “pointings”



Increase the field-of-view

Increase field-of-view

multiple “pointings”



Mosaic Imaging

Raster 
in time 



Mosaic Imaging

Raster 
in time 

Multiple Beams
in parallel



System of equations in MR

𝑚!,# = #𝑠! 𝑟 𝜌 𝑟 𝑒$%(#)(*⃑ 𝑒$+, *⃑,# 𝑑-𝑟

magnetic field perturbation

k-space trajectorycoil sensitivity
magnetization 



System of equations in Radio Interferometry

𝑉.,!,# = #𝑀! 𝑟, 𝑏, 𝑡 𝐼/%0 𝑟 𝑒$%!(*⃑ 𝑒$+, *⃑ 𝑑-𝑟

3D -> 2D 
projection effectsk-space trajectoryantenna 

sensitivity
sky 
brightness 



We share signal equations

𝑚!,# = #𝑠! 𝑟 𝜌 𝑟 𝑒$%(#)(*⃑ 𝑒$+, *⃑,# 𝑑-𝑟

magnetic field perturbation

k-space trajectorycoil sensitivity
magnetization 

3D -> 2D 
projection effectsk-space trajectoryantenna 

sensitivity
sky 
brightness 

𝑉.,!,# = #𝑀! 𝑟, 𝑏, 𝑡 𝐼/%0 𝑟 𝑒$%!(*⃑ 𝑒$+, *⃑ 𝑑-𝑟



Reconstruction in MRI

Discretize signal model:

Minimize suitable cost function, default:

For regularization, add cost term:       

Or combine costs and constraints, e.g., 

Popular cost terms:                                                        trained networks

Popular transforms:    Fourier, wavelet, low-rank modeling, …

𝐸𝒙 = 𝒎

𝐿 = 𝐸𝒙 −𝒎 !
!

𝐿 = 𝐸𝒙 −𝒎 !
! + 𝜆𝑅(𝒙)

𝐿 = 𝐶𝒙 " 𝑠. 𝑡. 𝐸𝒙 −𝒎 ! < 𝜖

𝐶𝒙 ! , 𝐶𝒙 " , 𝑇𝑉 𝒙 ,



Reconstruction in MRI



Reconstruction in radio interferometry 

Algorithm Ingredients 

• Sky Model
• Priors & Regularizers
• Optimization Strategy
• Instrumental Corrections
• Knowns    vs   Unknowns

Major Cycle

OBS
VIS

GRIDDING

RESIDUAL
VIS

MODEL
VIS

iFFT

FFT

RESIDUAL IMAGE

MODEL IMAGE

DE-GRIDDING

Minor Cycle

𝑉#$% = 𝐴 	𝐼& + 𝑛	 min 𝑉#$% 	− 𝐴 	𝐼& !
!
	+ 	𝜆	𝑅 𝐼& 	

Data/Instrument domain         Image Domain



Algorithm Variability 

𝐼

𝐼

CLEAN               MEM             MS-CLEAN             ASP
Point source model Point source model 

 with a smoothness
 constraint

Multi-Scale model
with a fixed set of 
scale sizes

Multi-Scale model
with adaptive best-fit 
scale per component

Model 

Residual



elephAnt In the room

𝑚!,# = #𝑠! 𝑟 𝜌 𝑟 𝑒$%(#)(*⃑ 𝑒$+, *⃑,# 𝑑-𝑟

magnetic field perturbation

k-space trajectorycoil sensitivity
magnetization 

3D -> 2D 
projection effectsk-space trajectoryantenna 

sensitivity
sky 
brightness 

𝑉.,!,# = #𝑀! 𝑟, 𝑏, 𝑡 𝐼/%0 𝑟 𝑒$%!(*⃑ 𝑒$+, *⃑ 𝑑-𝑟



elephAnt In the room

Personal take:
 

• Potential for ML supporting reconstruction is huge and in a wide-open, creative  space

• Seems greatest for harnessing prior knowledge about imaging targets

e.g., image plausibility metrics for given anatomy

• Learning is tempting also for instrumental corrections (e.g. gradient heating, …)

• Learning is data-hungry: minimize the degrees of freedom to address in this way

• Let’s make sure we do not learn what we already know, can know, or can measure

• Let’s keep in mind that ML-informed processing cannot add fresh information, only 

blend in prior knowledge. 



elephAnt In the room

Practical considerations when designing an AI/ML (or any!) algorithm

• Accuracy  :   What features can we trust ? 

• Robustness  :  How does it handle imperfect input data ? 

• Generalizability : Does it work for all types of source structures ? 

• Interpretability  : Can we understand its biases ? 

• Compute Cost : Can we afford it ? 

• Usability : How well can it fit within application workflows ? 



Let’s keep the conversation going …


