
How the CASA
Imager currently
uses the
parallelization
infrastructure

Urvashi Rau

(on behalf of the CASA Imaging Team :
S.Bhatnagar, K.Golap, U.Rau, T. Tsutsumi)

NRAO, Socorro

2

Goal : Document and convey to the HPC group the
top­level parallelization strategy of CASA Imager

(1) Imaging Basics
 - major and minor cycles
 - block level code design, inputs/outputs
 - functional steps in making an image from visibilities

(2) Main modes : Continuum and Cube
 - data to image mapping
 - data partitioning for parallelization
 - functional steps in a parallel imaging run (messages, scatter/gather)

(3) Algorithmic options to support
 - gridding, deconvolution, widefield, stokes, spectral
 - relative computing and I/O costs, usage percentage, role of multithreading

(4) Commissioning Tests
 - Continuum : wideband multi-scale multi-term joint mosaic with wb-awp
 - Cube : TBD

3

Imaging Process – Iterative minimization2

4

Functional Blocks

FT

DA

IS Image Store : Residual, PSF, Model, Weight, Restored, Mask

FTMachine : Gridding / de-Gridding + Convolution Functions

Deconvolver Algorithm : Iteratively reconstruct the sky model

IC
Iteration Controller : Check stopping criterion between Major
 and Minor cycles + user-interaction

Basic Functional Unit : 1 Image field, N Frequency planes, M Stokes planes

5

Application Layer
D

A
TA

,
vi

/v
b

FT
IC

IS

IS DAIC

Synthesis Imager Synthesis DeconvolverIteration/
Interaction
Controller

Major Cycle : Read DATA or CORRECTED_DATA from MS on disk
(for each vb) Calculate MODEL_DATA by de-gridding model image
 Calculate RESIDUAL=DATA - MODEL and accumulate on grid.

 Only last Major Cycle writes MODEL_DATA to MS (if requested)
 -- Save FT state as Record inside SOURCE subtable (otf model)
 (or) -- Write MODEL_DATA column

Normalizer

IS

Gridding :
Vis list -> F(VisGrid)
Wt list -> sum_Wt
Wt list -> F(WtGrid)

De-Gridding :
 iF(Model Im)
 -> Mod Vis List

Residual Im =
F(VisGrid)/sum_Wt

PSF Im =
F(WtGrid)/sum_Wt

Input :
Residual Im, PSF Im

Output :
Model ImInteractive GUI

Display Res Im
Draw Mask
Change params

6

Functional Steps – Basic Run
SI . select_Data (Data and selection parameters)
SI . define_Image (Image Parameters , Gridding parameters)
SN . setup_Normalizer (Normalization Parameters)
SD . setup_Deconvolution (Algorithm parameters)
IC . setup_IterationControl (niter, threshold, gain...)

SI . make_PSF ()
SN . normalize_PSF ()

SI . run_Major_Cycle ()
SN . normalize_Residual ()

while (not IC . has_Converged()) :
 IC . interactive_Mask ()
 iter,peak = SD . run_Minor_Cycle ()
 IC . update (iter, peak)
 SI . run_Major_Cycle ()
 SN . normalize_Residual ()

SD . restore ()

Old Code :

Functional layer in C++
=> All modules communicated by
casa::imageInterface references.

New Code :

Functional layer in Python
=> All modules communicate via image
(names) on disk.

--> A design constraint, for serial and
parallel runs to use the same code, since
at the time of design, parallelization was
forced to be in python and not C++. But,
can move this layer down into C++ when
we can use MPI from there.

7

Main Imaging modes : Continuum and Cube
Mapping of Data to Image (shapes) Partitioning for parallelization

Continuum :

Data partitioning can be along
any data axis. e.g. row_id
(Preferences can come from algorithmic
details.)

All data goes to ONE grid.

Cube :

Data and Image partitioning
along Frequency

Each data chunk goes to its
own subImage.
(Only slight overlap in data chunks due
to software doppler tracking (otf cvel).)

8

Continuum Imaging : Serial to Parallel
D

A
TA FTIS

Synthesis Imager Normalizer

IS

D
A

TA
 1

FTIS
Normalizer

IS

D
A

TA
 2

FTIS

IS

IS

IS

Synthesis Imager

Synthesis Imager

IS DAIC

Synthesis Deconvolver

IS DAIC

Synthesis Deconvolver

All data goes to one final grid
 => Partitioning along ANY axis. Row Num is simplest.

Messages are only parameters and image names.

IC

IC

9

Functional Steps : Continuum Data Parallelization
continuum_Data_Partition () :
 In : Selection Params , N_Processes, Out : List of N selection parameters

For all processes : SI [proc] . select_Data(), SI [proc] . define_Image ()
SN . setup_Normalizer ()
SD . setup_Deconvolution ()
IC . setup_IterationControl ()

For all processes : SI [proc] . make_PSF ()
SN . gather_normalize_PSF ()

For all processes : SI [proc] . run_Major_Cycle ()
SN . gather_normalize_Residual ()

while (not IC . has_Converged()) :
 IC . interactive_Mask ()
 iter,peak = SD . run_Minor_Cycle ()
 IC . update (iter, peak)
 SN . scatter_Model ()
 For all processes : SI [proc] . run_Major_Cycle ()
 SN . gather_normalize_Residual ()

SD . restore ()

10

Cube Imaging : Serial to Parallel ­ 1
D

A
TA FTIS

Synthesis Imager Normalizer

IS IS DAIC

Synthesis Deconvolver
S

pw
 1

FTIS

Synthesis Imager Normalizer

IS IS DAIC

Synthesis
Deconvolver

IC

FTIS

Synthesis Imager Normalizer

IS IS DAIC

Synthesis
Deconvolver

IC

sp
w

 1
sp

w
 2

C
o

n
ca

te
n

at
e

sp
w

 1
,2

 c
ub

e
s

S
pw

 2

Mapping of Data Channels to Image Channels => Partitioning along FREQ
 (with slight overlap)

IC

11

Functional Steps – Cube Parallelization ­ 1
cube_Data_Image_Partition () :
 In : Selection Params , Image Cube Parameters, N_Processes
 Out : List of N selection parameters, list of N image cube parameters (csys)

For all processes :
 SI [proc] . select_Data(selection parameters for [proc])
 SI [proc] . define_Image (image cube definition for [proc])
 SN [proc] . setup_Normalizer ()
 SD [proc] . setup_Deconvolution ()
 IC [proc] . setup_IterationControl ()

 Run Basic Iteration Loops Separately per [proc]

Concatenate all final output sub-Image Cubes into one large Cube.

Problems :
-- Last step involves a full copy, and can be slow.
 - Exploring option of reference concatenation (KG).
-- Iteration control is separate per chunk => not in sync, for major-cycle triggers
-- No user interaction at runtime, or operate separate viewer/mask per chunk.

12

Cube Imaging : Serial to Parallel ­ 2
D

A
TA FTIS

Synthesis Imager Normalizer

IS IS DAIC

Synthesis Deconvolver

S
pw

 1

FTIS

Synthesis Imager Normalizer

IS IS DAIC

Synthesis
Deconvolver

IC

FTIS

Synthesis Imager Normalizer

IS IS DAIC

Synthesis
Deconvolver

sp
w

 1
sp

w
 2

C
on

ca
te

n
at

e
sp

w
 1

,2
 c

ub
e

s

S
pw

 2

C
o

nc
a

te
na

te
 s

pw
 1

,2
 c

ub
es

IC

13

Functional Steps : Cube Parallelization ­ 2
cube_Data_Image_Partition () :
 In : Selection Params , Image Cube Parameters, N_Processes
 Out : List of N selection parameters, list of N image cube parameters (csys)

For all procs : SI [proc] . select_Data(), SI [proc] . define_Image ()
 SN [proc] . setup_Normalizer ()
 SD [proc] . setup_Deconvolution ()
IC . setup_IterationControl ()

For all procs : SI [proc] . make_PSF (); SN [proc] . normalize_PSF ()
 SI [proc] . run_Major_Cycle (); SN [proc] . normalize_Residual ()

while (not IC . has_Converged()) :
 IC . interactive_Mask (concatenated large cube)
 For all procs :
 iter[p],peak[p] = SD [proc] . run_Minor_Cycle ()
 IC . update (iter[p], peak[p])

 For all procs : SI [proc] . run_Major_Cycle (); SN [proc] . normalize_Residual ()

For all procs : SD [proc] . Restore ()
Concatenate large cube

14

Many More Imaging Options...

– Gridding Convolution Functions (Standard, W-Proj, A-Proj, …)

– Deconvolution Algorithms (Clark/Hogbom Clean, MS-Clean, ASP, MEM)

– Cube Imaging (vs) Multi-Frequency Synthesis (Nterms = 1 or MTMFS)

– Stokes Parameters (I, Q, U, V, IV, QU,...., RR....., XX,...)

– Multiple Fields, Multiple Facets, Stitched / Joint Mosaics

 => Almost all possible combinations of the above are valid.

User Interaction :

– Create and edit masks during the Minor Cycle (including Auto- and PB- masks)
– Ability to monitor progress and change iteration control parameters at run-time

15

Gridding (Imaging) Options
Standard Imaging :
Prolate Spheroidal

W-Projection :
FT of a Fresnel kernel

A-Projection :
 Convolutions of Aperture Illumination Funcs
 + phase gradients for joint mosaics

Combined algorithms :
 Convolutions of different kernels

Kernels can be different per visibility point,
with varying degrees of approximation

Gridding Convolution Function (GCF)

 – Several GCF options (algorithms)

 Size range : 3x3 to > 100x100 pixels

 Range in computing cost spans few
orders of magnitude, following number of
operations per visibility point.

 Memory cost also varies.

16

Minor Cycle (Deconvolution) Algorithms

For Point Sources :

 – Hogbom Clean

 – Clark Clean

(simplest, fastest...)

For Point/Extended Sources :

 – Maximum-Entropy Method*

 – Adaptive-Scale Pixel Clean*

 – Multi-Scale-Clean

(medium computing cost)

For Wide-band Images

 – Multi-Frequency-Clean
 (with or without Multi-Scale)

(max computing cost, so far)
(Multi-Term Algorithms can be memory-intensive)

17

Multiple Fields

 – Work with N smaller sized images (deconvolve N images separately)

 – A few outlier sources that must be reconstructed to prevent artifacts
 from contaminating the main field.
 (Usually one large image and several tiny ones)

NOTE : To support this consistently, our code contains LISTS of modules in C++ and
Python, with the simplest case being a list of length 1. Major cycle has lists in C++ since
all fields share data, and minor cycles have lists at Python level (as they are independent)

18

Multiple Facets

– Wide-field imaging where array non-coplanarity and sky curvature
 produce artifacts away from the phase-center.

 – Work with smaller field-of-view images,
 – Deconvolve N facets separately (OR) as 1 single large image.

An (older) alternative to (or addition to) w-projection. Not very commonly used in casa

19

Mosaics – Grid pointings separately

 – Deconvolve N images separately, combine restored images : ‘stitched mosaic’
 OR
 – Grid pointings separately, combine before deconvolution : ‘image domain joint mosaic’
 [Use PB model as weights during combination, w/wo PB-cor]

Could parallelize (data and image) on pointings/fields at top level (via tool level)

20

Mosaics – Grid pointings together

 – Grid all pointings onto a single UV-grid, using GCFs with appropriate phase gradients.
 Do a joint deconvolution
 – Gridding math is very similar to “ facet ” and “ multi-field ” imaging but using separate data.

Uses standard continuum or cube parallelization .
Uses large gridding convolution fns (A-projection and its approximate forms)

21

Cube Imaging (Spectral Line)

– N data channels are binned into M image channels.

– Image channels are always in LSRK reference frame.

– Conversion to 'velocity', etc is only axis re-labeling (not regridding)

Data and Image parallelization

22

Continuum Imaging (MFS)

– Make use of combined UV-coverage from all channels together

– Make use of broad-band sensitivity during image reconstruction

– Deconvolve 1 image

Data Parallelization

23

Continuum Imaging (MT­MFS nterms>1)

– Combined UV-coverage and broad-band sensitivity

– Solve for sky spectrum as well as intensity.

– Joint multi-term deconvolution of all Taylor coefficients

Data parallelization. Expensive minor cycle.

24

Correlations / Stokes

Users can choose to make images of

R/L => I, Q, U, V, IV, QU, IQUV, RR, LL, LR, RL, RRLL, RLLR, 'all'

X/Y => I, Q, U, V, IQ, UV, IQUV, XX, YY, XY, YX, XXYY, XYYX, 'all'

 (when possible, use data even if some correlations are flagged)

25

- Multi-threading of gridders (KG)

- Multi-threading of some minor-cycle algorithms (KG,UR)

- Improving efficiency of FFT usage/implementation (KG)

- Smarter W-Projection plane selection (KG)

- Efficient use of Convolution function caches (SB)

- On-the-fly GPU calculations of convolution functions (SB)

- Virtual model column (trade I/O for computing) (KG)

- Efficient cube concatenation (reference/virtual) (KG)

 [All of the above apply to both old and new Imagers]

Other Ongoing Performance Improvements

26

Wideband multi-scale multi-term joint mosaic with wideband awprojection.

=> 106 pointing mosaic : 300 GB
=> Extended emission spanning multiple primary beams
 => Joint mosaic and multi-scale
=> Wideband 1-2 GHz EVLA data
 => Multi-term imaging to model the intensity and spectrum
 => WB-A-Projection to handle frequency dependent primary beam
=> Bright compact sources on top of diffuse emission : HDR
 => A-Projection with rotating and squint-correcting kernels

=> Minor Cycle is memory and compute intensive
=> Major Cycle is I/O and compute intensive

Results : Obtained expected speedup and scaling for major cycle.

(Worked through software issues : MS and image locks, parallel writes on
single MS, running on MMS, ability to restart / recover tclean with minimal
overhead, etc...)

Recent Commissioning Tests ­ Continuum

27

Recent Commissioning Tests ­ Continuum

Mosaic Primary Beam

Intensity

Intensity-weighted
Spectral Index

