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Goal : Document and convey to the HPC group the 
top­level parallelization strategy of CASA Imager

(1) Imaging Basics
      - major and minor cycles
      - block level code design, inputs/outputs
      - functional steps in making an image from visibilities

(2) Main modes : Continuum and Cube
      - data to image mapping
      - data partitioning for parallelization
      - functional steps in a parallel imaging run (messages, scatter/gather)

(3) Algorithmic options to support
      - gridding, deconvolution, widefield, stokes, spectral
      - relative computing and I/O costs, usage percentage, role of multithreading

(4) Commissioning Tests
      - Continuum : wideband multi-scale multi-term joint mosaic with wb-awp
      - Cube : TBD
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Imaging Process – Iterative     minimization2
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Functional Blocks

FT

DA

IS Image Store  :  Residual, PSF, Model, Weight, Restored, Mask

FTMachine :  Gridding / de-Gridding + Convolution Functions

Deconvolver Algorithm :   Iteratively reconstruct the sky model

IC
Iteration Controller :  Check stopping criterion between Major 
                                  and Minor cycles + user-interaction

Basic Functional Unit  :  1 Image field, N Frequency planes, M Stokes planes
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Application Layer
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Synthesis Imager Synthesis DeconvolverIteration/
Interaction
Controller

Major Cycle :    Read DATA or CORRECTED_DATA from MS on disk
(for each vb)     Calculate MODEL_DATA by de-gridding model image 
                         Calculate RESIDUAL=DATA - MODEL and accumulate on grid.
                    
 Only last Major Cycle writes MODEL_DATA to MS (if requested)
                           -- Save FT state as Record inside SOURCE subtable (otf model)
                   (or)  -- Write MODEL_DATA column

Normalizer 

IS

Gridding : 
Vis list -> F(VisGrid)
Wt list -> sum_Wt
Wt list -> F(WtGrid)

De-Gridding : 
   iF(Model Im) 
          -> Mod Vis List

Residual Im = 
F(VisGrid)/sum_Wt

PSF Im = 
F(WtGrid)/sum_Wt

Input : 
Residual Im, PSF Im

Output :
Model ImInteractive GUI

Display Res Im
Draw Mask
Change params
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Functional Steps – Basic Run
SI . select_Data ( Data and selection parameters )        
SI . define_Image ( Image Parameters , Gridding parameters )
SN . setup_Normalizer ( Normalization Parameters )
SD . setup_Deconvolution ( Algorithm parameters )
IC . setup_IterationControl ( niter, threshold, gain... )

SI . make_PSF ( )
SN . normalize_PSF ( )

SI . run_Major_Cycle ( )
SN . normalize_Residual ( )

while (  not  IC . has_Converged( ) ) :
      IC . interactive_Mask ( )
      iter,peak = SD . run_Minor_Cycle ( )
      IC . update ( iter, peak )
      SI . run_Major_Cycle ( )
      SN . normalize_Residual ( )

SD . restore ( )

Old Code : 

Functional layer in C++
=> All modules communicated by 
casa::imageInterface references.

New Code : 

Functional layer in Python
=> All modules communicate via image 
(names) on disk.

--> A design constraint, for serial and 
parallel runs to use the same code, since 
at the time of design, parallelization was 
forced to be in python and not C++.  But, 
can move this layer down into C++ when 
we can use MPI from there.
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Main Imaging modes : Continuum and Cube
Mapping of Data to Image (shapes) Partitioning for parallelization

Continuum : 

Data partitioning can be along 
any data axis. e.g. row_id
( Preferences can come from algorithmic 
details. )

All data goes to ONE grid.

Cube : 

Data and Image partitioning
along Frequency

Each data chunk goes to its 
own subImage.
( Only slight overlap in data chunks due 
to software doppler tracking (otf cvel). )
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Continuum Imaging : Serial to Parallel
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FTIS

IS

IS

IS

Synthesis Imager

Synthesis Imager

IS DAIC

Synthesis Deconvolver

IS DAIC

Synthesis Deconvolver

All data goes to one final grid
    => Partitioning along ANY axis.  Row Num is simplest.

Messages are only parameters and image names.

IC

IC
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Functional Steps : Continuum Data Parallelization
continuum_Data_Partition ( ) :
    In : Selection Params , N_Processes, Out : List of N selection parameters

For all processes : SI [proc] . select_Data( ), SI [proc] . define_Image ( )
SN . setup_Normalizer ( )
SD . setup_Deconvolution ( )
IC . setup_IterationControl ( )

For all processes : SI [proc] . make_PSF ( )
SN . gather_normalize_PSF ( )

For all processes : SI [proc] . run_Major_Cycle ( )
SN . gather_normalize_Residual ( )

while (  not  IC . has_Converged( ) ) :
      IC . interactive_Mask ( )
      iter,peak = SD . run_Minor_Cycle ( )
      IC . update ( iter, peak )
      SN . scatter_Model ( )
      For all processes : SI [proc] . run_Major_Cycle ( )
      SN . gather_normalize_Residual ( )

SD . restore ( )
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Cube Imaging : Serial to Parallel ­ 1
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Mapping of Data Channels to Image Channels => Partitioning along FREQ
                                                                                 ( with slight overlap )

IC
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Functional Steps – Cube Parallelization ­ 1
cube_Data_Image_Partition ( ) :
    In : Selection Params , Image Cube Parameters, N_Processes
    Out : List of N selection parameters, list of N image cube parameters (csys)

For all processes : 
           SI [proc] . select_Data( selection parameters for [proc] )
           SI [proc] . define_Image ( image cube definition for [proc] )
           SN [proc] . setup_Normalizer ( )
           SD [proc] . setup_Deconvolution ( )
           IC [proc] . setup_IterationControl ( )

           Run Basic Iteration Loops Separately per [proc] 

Concatenate all final output sub-Image Cubes into one large Cube.

Problems : 
-- Last step involves a full copy, and can be slow.
     - Exploring option of reference concatenation (KG).
-- Iteration control is separate per chunk => not in sync, for major-cycle triggers
-- No user interaction at runtime, or operate separate viewer/mask per chunk.
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Cube Imaging : Serial to Parallel ­ 2
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Functional Steps : Cube Parallelization ­ 2
cube_Data_Image_Partition ( ) :
    In : Selection Params , Image Cube Parameters, N_Processes
    Out : List of N selection parameters, list of N image cube parameters (csys)

For all procs : SI [proc] . select_Data( ), SI [proc] . define_Image ( )
                       SN [proc] . setup_Normalizer ( )
                       SD [proc] . setup_Deconvolution ( )
IC . setup_IterationControl ( )

For all procs : SI [proc] . make_PSF ( );  SN [proc] . normalize_PSF ( )
                       SI [proc] . run_Major_Cycle ( ); SN [proc] . normalize_Residual ( )

while (  not  IC . has_Converged( ) ) :
      IC . interactive_Mask ( concatenated large cube )
      For all procs : 
                      iter[p],peak[p] = SD [proc] . run_Minor_Cycle ( )
                      IC . update ( iter[p], peak[p] )

      For all procs : SI [proc] . run_Major_Cycle ( ); SN [proc] . normalize_Residual ( )

For all procs : SD [proc] . Restore ( )
Concatenate large cube



14

Many More Imaging Options...

– Gridding Convolution Functions  ( Standard, W-Proj, A-Proj, … )

– Deconvolution Algorithms ( Clark/Hogbom Clean, MS-Clean, ASP, MEM)

– Cube Imaging (vs)  Multi-Frequency Synthesis ( Nterms = 1 or MTMFS )

– Stokes Parameters ( I, Q, U, V, IV, QU,...., RR....., XX,... )

– Multiple Fields,  Multiple Facets,  Stitched / Joint Mosaics

             =>  Almost all possible combinations of the above are valid. 

User Interaction :

– Create and edit masks during the Minor Cycle (including Auto- and PB- masks)
– Ability to monitor progress and change iteration control parameters at run-time
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Gridding (Imaging) Options
Standard Imaging : 
Prolate Spheroidal

W-Projection : 
FT of a Fresnel kernel 

A-Projection : 
  Convolutions of  Aperture Illumination Funcs
   + phase gradients for joint mosaics

Combined algorithms : 
       Convolutions of different kernels

Kernels can be different per visibility point, 
with varying degrees of approximation

Gridding Convolution Function (GCF)

 – Several GCF options ( algorithms )

  Size range : 3x3  to  > 100x100 pixels 

    Range in computing cost spans few 
orders of magnitude, following number of 
operations per visibility point.                       
           
    Memory cost also varies.
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Minor Cycle (Deconvolution) Algorithms

For Point Sources : 

 –   Hogbom Clean

 –   Clark Clean

( simplest, fastest... )

For Point/Extended Sources : 

 – Maximum-Entropy Method*

 – Adaptive-Scale Pixel Clean*

 – Multi-Scale-Clean

( medium computing cost )

For Wide-band Images

 – Multi-Frequency-Clean
   ( with or without Multi-Scale )

( max computing cost, so far )
( Multi-Term Algorithms can be memory-intensive )
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Multiple Fields

       –  Work with N smaller sized images ( deconvolve N images separately )

       –  A few outlier sources that must be reconstructed to prevent artifacts
           from contaminating the main field.  
                                                                       ( Usually one large image and several tiny ones )

NOTE : To support this consistently, our code contains LISTS of modules in C++ and 
Python, with the simplest case being a list of length 1.  Major cycle has lists in C++ since 
all fields share data, and minor cycles have lists at Python level (as they are independent)
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Multiple Facets

– Wide-field imaging where array non-coplanarity and sky curvature
   produce artifacts away from the phase-center.

  – Work with smaller field-of-view images, 
  –  Deconvolve N facets separately  ( OR )  as 1 single large image.

An (older) alternative to (or addition to) w-projection.  Not very commonly used in casa
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Mosaics – Grid pointings separately

 – Deconvolve N images separately, combine restored images : ‘stitched mosaic’
                                                            OR
 – Grid  pointings separately, combine before deconvolution : ‘image domain joint mosaic’
                                      [ Use PB model as weights during combination, w/wo PB-cor ]

Could parallelize (data and image) on pointings/fields at top level ( via tool level )
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Mosaics – Grid pointings together

 –  Grid all pointings onto a single UV-grid, using GCFs with appropriate phase gradients.
     Do a joint deconvolution
 –  Gridding math is very similar to “ facet ” and “ multi-field ” imaging but using separate data.

Uses standard continuum or cube parallelization . 
Uses large gridding convolution fns (A-projection and its approximate forms)
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Cube Imaging (Spectral Line)

– N data channels are binned into M image channels.

– Image channels are always in LSRK reference frame.

– Conversion to 'velocity', etc is only axis re-labeling (not regridding)

Data and Image parallelization
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Continuum Imaging (MFS)

– Make use of combined UV-coverage from all channels together

– Make use of broad-band sensitivity during image reconstruction

– Deconvolve 1 image

Data Parallelization
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Continuum Imaging (MT­MFS nterms>1)

– Combined UV-coverage and broad-band sensitivity

– Solve for sky spectrum as well as intensity.

–  Joint multi-term deconvolution of all Taylor coefficients

Data parallelization. Expensive minor cycle.
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Correlations / Stokes

Users can choose to make images of 

R/L => I, Q, U, V,    IV, QU,  IQUV,    RR, LL, LR, RL,   RRLL, RLLR,  'all'

X/Y => I, Q, U, V,   IQ, UV,  IQUV,    XX, YY, XY, YX,   XXYY, XYYX,  'all'

                 ( when possible, use data even if some correlations are flagged )
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- Multi-threading of gridders (KG)

- Multi-threading of some minor-cycle algorithms (KG,UR)

- Improving efficiency of FFT usage/implementation (KG)

- Smarter W-Projection plane selection (KG)

- Efficient use of Convolution function caches (SB)

- On-the-fly GPU calculations of convolution functions (SB)

- Virtual model column (trade I/O for computing) (KG)

- Efficient cube concatenation (reference/virtual) (KG)

                              [ All of the above apply to both old and new Imagers ]

Other Ongoing Performance Improvements
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Wideband multi-scale multi-term joint mosaic with wideband awprojection.

=>  106 pointing mosaic : 300 GB
=>  Extended emission spanning multiple primary beams
              => Joint mosaic and multi-scale
=> Wideband 1-2 GHz EVLA data
              => Multi-term imaging to model the intensity and spectrum
              => WB-A-Projection to handle frequency dependent primary beam
=> Bright compact sources on top of diffuse emission : HDR
              => A-Projection with rotating and squint-correcting kernels

=> Minor Cycle is memory and compute intensive
=> Major Cycle is I/O and compute intensive

Results : Obtained expected speedup and scaling for major cycle.

( Worked through software issues : MS and image locks, parallel writes on 
single MS, running on MMS, ability to restart / recover tclean with minimal 
overhead, etc...)

Recent Commissioning Tests ­ Continuum 



27

Recent Commissioning Tests ­ Continuum 

Mosaic Primary Beam

Intensity

Intensity-weighted 
Spectral Index


