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Imaging + Deconvolution
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Calibration (DI & DD)

(1) External models
(2) Self-Calibration

Image Reconstruction
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Iterative Image Reconstruction
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+ Non-linear sky model
and solver/constraints.

[A ] Im
=V obs

[AT W A ] Im
=[AT W ]V obs


2

 Im=0

Normal Equations
(convolution eqn)

R

I i+ 1
m =I i

m+ g[ AT W A ]+ ( AT W (V obs−A I i
m))R

Sky model solver

Calculate Forward Model
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Iterative Image Reconstruction  +   Self-Calibration
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Calibration – Direction Independent effects
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(1) Observe a known source

                            is known

(2) Use data from all correlation pairs  ij
      Solve for complex gains 

(3) Apply corrections
      to target data : 

gi

⟨ Ei E j
∗
⟩

Typically, solutions are done in a sequence, with averaging to increase SNR for the solutions.  

    E.g.   Average in time and solve for average stable bandpass 
             Apply bandpass solutions, average in frequency, solve for time-variable gains.

Baseline based calibration : Possible, but to be used with caution. 

( Equivalence between solving for antenna-based terms and satisfying closure relations )



 

Direction Dependent Corrections – Using known models

V ij
obs

=Sij . [ A ij∗V sky ]I obs
=∑ij

I ij
psf
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T
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T
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Models of DD instrumental effects can be used to correct the data
Antenna Beams, Ionospheric Phase screen, Non-coplanar Baselines, Sky curvature

For each visibility, apply
(1) Use         as the convolution function 
                     during gridding 

(2) Divide out                              from the 
image (in stages).

FT [∑ij
A ij

T∗Aij ]

P ij

A ij
T
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≈
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T
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T
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≈
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T
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– If         is invariant, an image-domain correction can be done instead (flat-fielding)

– Phase gradients across          can fix known pointing offsets ( tip-tilt ) and make mosaics

–           is often only approximate  => Convergence depends on an accurate forward model



 

Applying DD corrections (       ) during gridding

Standard Imaging : 
Prolate Spheroidal

W-Projection : 
FT of a Fresnel kernel 

Convolution in UV-domain (per vis)

 => Handle wide-field imaging effects
        before averaging in time/baseline

 ( Vis Prediction  :  Calculate Forward Model )

Gridding = Convolutional Resampling of visibilities to a regular grid

A-Projection : Baseline aperture illumination functions
                       + phase gradients for pointing offsets
                        + ionospheric refraction models

A ij
T



 

Examples of wide-field instrumental corrections

Antenna Beam 
rotation with 
parallactic angle

Sky curvature, 
non-coplanarity
 ( W-term )

Antenna-based, 
time-variable  
pointing offsets



 

Unknown instrumental models : DD Self-Calibration
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(1) Solve for parameters of instrument-specific models in a self-calibration loop

  E.g.  Pointing Self-Cal : Solve for antenna-based phase gradients across  
                                       each aperture illumination function   ( Adaptive Optics ! )

                 => Correction : Apply opposite phase gradient during gridding

(2)  Perform direction-independent (DI) calibrations for multiple directions on the sky

  E.g.  DD-Facets : Define regions around all bright sources.

          Solve V =                       to get N complex gains for each selected direction
 

                  => Correction : Image each region using different DI gain solutions.



 

Sky models and solvers ( image reconstruction )

For Point Sources : 

 –   Hogbom CLEAN
 –   Clark CLEAN

For Point/Extended Sources : 

 – Multi-Scale-CLEAN
 
For Wide-band Sky models

 – Multi-Term Multi-Frequency Synthesis
    ( with or without Multi-Scale / Time variability )

Others :  Any non-linear image-domain solver  (many compressed sensing formulations )

Most commonly used algorithms



 

Sky models and solvers ( image reconstruction )

Algorithms :  Parameterized models + Iterative model fitting. 
                        Feature extraction + classification, Mixed models

  – Basis functions : Delta functions, Gaussians, Wavelets, Shapelets, Polynomials to 
represent spectral structure or time-variability, 2D,3D,4D models
      
  – Metrics being optimized : L2 or L1 or TV norms, weighted combination of different norms 
and a-priori bias terms, Bayesian formulations, etc.. 

  – Optimization schemes : Greedy algorithms + gradient descent, primal-dual methods, etc

 
Examples from Radio Interferometry :   Gaussians (ASP), Wavelets and other Atoms with 
Sparsity (SARA / PURIFY / MORESANE), Bayesian forms (MEM, RESOLVE), wide-band 
non-parametric models, CHIRP/EHT (direct solvers for VLBI).

Examples from Optical Interferometry : BSMEM, IRBis, MACIM, MiRA, SQUEEZE, SPARCO, 
PAINTER, MiRA-3D,...



 

Algorithm Comparison

Algorithm choice depends on sky structure, data quality, target science. 

Each algorithm needs (different) tuning for best results.

Output 
Image

Residual 
Image

    CLEAN              MEM              MS-CLEAN            ASP

Image Quality Metrics : 

 Noise RMS, 

 Peak residual, 

 Dynamic Range



 

Joint Reconstructions : Wide-Band (multi-spectral) Solvers

I ν
sky

=∑t
I t

m(
ν−ν0
ν0 )

t

Model the spectrum per ‘atom’ as a smooth polynomial 

MT-MFS :  Multi-term linear least squares + CLEAN-based 
                greedy algorithm in a transformed (sparse) space. 

Intensity and Spectral Index

Improve
 
Angular 
Resolution
    &
Imaging
Fidelity
    & 
Dynamic 
Range

 [ Owen et al, 2014 ]



 

Joint Reconstructions : Wide-Band+ Wide-Field

1.0 GHz

1.5 GHz

2.0 GHz

Antenna Power Patterns scale with observing frequency 

=> Artificial spectral structure for all sources away from center

(1)  Include PB spectrum in Sky Model.  Remove post-reconstruction.

(2)  Eliminate as an instrumental correction before modeling sky 



 

Joint Reconstructions : Adding single-dish (low resolution) data 

Missing Short Spacings

=> Negative Bowls
=> Unconstrained Spectra

Use Low-Resolution information 
from single dish maps.

Methods :  

(1) Joint Reconstructions  (better!)

  Add another data regularization 
  term to any existing solver

   E.g. Joint PSFs and Residuals

(2) Feathering
 
 Weighted UV-domain average of 
 INT-only and SD-only images

 Intensity  Spectral Index 

INT only

INT+SD



 

Joint Reconstructions : Mosaics + Wide-Band + Wide-Field + Single Dish

Interferometer 
joint mosaic 
intensity

(used phase 
gradients across 
aperture 
functions during 
gridding)

Wide-Field  
Spectral Index 

(with corrections 
for PB spectrum)

Interferometer
 + Single dish 

(intensity only)

Joint mosaic 
primary 
beam from 
106 VLA 
pointings 

An example of the current state-of-the-art …



 

Compute Costs

Data volume

N_data = 
  N_ant^2  x 
  N_chan  x 
  N_pol     x
  N_time

Complex numbers

Lustre I/O 

Example :
 8hr data
 300 GB

Gridding : Convolutional resampling

O(N_data) x  (nxn) complex multiply/add (n=5 - 100)
=> Compute load : O(N_data) *  10^{2-5} flops 

Data parallelization, Multi-threading, GPUs, etc… 

Example : Major cycle : 1hr → 10 days (Diff Algorithms)

Image sizes  : N_pix =  Nx x Ny x  N_chan x N_pol

Real / Complex
FFTs : O(NlogN)   Pixel math: O(N^2)
Mem : ~8 copies
Multi-threading + Chan parallelization

Nx : 1k → 40k   N_chan : 200 - 16K

Example range : 
   1K x 1K x 256    ==>   20K x 20K x 8K  

Number of iterations :  5 – 10    major cycle loops,   10^2 to 10^4  minor cycle steps

Runtime varies by 1-2 orders of magnitude. Depends on data.



 

Data Flow

Flagging Calibration Imaging

Correlation  (Real time system.  FPGA/ASIC + backend cluster)

Time Series → Correlation → Spectral Channels → Integrate

Example Data rate : N(N-1)/2 * 1000 complex values per second

Data Archive  ( 2.4 PB RAID storage)

Each observation is stored as a relational database

Example : VLA archive is 1.8 PB in size ( + 1 TB per day )

Post Processing – (1.6 PB Lustre FS, workstations, 90 node cluster, AWS)

Identify and mask corrupted data
( RFI, Instrument errors, etc )

Derive and apply corrections 
to undo the effects of complex 
valued antenna gains

Reconstruct images  by 
iterative model fitting while 
correcting for other 
instrumental effects



 

Automated Data Analysis  : Science Ready Data Products

Our current end-to-end pipelines are the result of hand-optimized manual tuning by a team 
of scientists, validated on ~100 datasets, for a few standard imaging modes. 

Over the last few years : 

– Reduced need for manual 
intervention
– Increase in supported 
observing modes.

Ongoing R&D  :  

- Automate the quality checks
                           
- Automate the decision tree
                           
- Automate algorithm and 
parameter choices 
(+ more robust imaging algorithms)



 

Machine Learning : potential areas of application

(1) Automating the data analysis decision tree :  

It is possible to choose a sequence of steps and detailed parameter tunings that provides the best 
flagging, calibration and imaging outcome for any given dataset.   This may differ between types of 
datasets and science goals.

(2) Error recognition : 

Humans are adept at identifying RFI patterns in plots of recorded data, non-standard antenna 
behaviour from calibration solution plots, and artifacts and other tell-tale shapes in images. 

(3) Telescope monitoring and control :

Using telemetry and monitoring data to classify problems and their symptoms andpredict failures. 
Use information about RFI sources, weather, to optimize the observation schedule and setup.

(4) Image and Spectrum analysis : 

Feature detection/description and classification for surveys and catalogues
Spectral profile matching (mixed models)
Quality assessment : Have we gotten the best we can out of the data ? 



 

Summary 

        
                 – Measurement Equation

                 – Image Reconstruction
 
                             – Sky models and solvers

                             – Calibrating for instrumental effects

                             – Modeling instrumental effects

                 – Joint reconstructions (multi-spectral, filled-aperture + interferometer, etc)

                 – Typical compute costs

                 – Data reduction pipelines and algorithm automation

   Synergy between Biomedical and Radio Interferometric Imaging and Analysis ?


