Radio Interferometry

Image Reconstruction, Calibration and Data Analysis

Urvashi Rau National Radio Astronomy Observatory, Socorro, NM, USA

From Cells to Galaxies 2019 17 April 2019, Charlottesville, Virginia.

Outline

- Measurement Equation
- Image Reconstruction
 - Sky models and solvers
 - Calibrating for instrumental effects
 - Modeling instrumental effects
- Joint reconstructions (multi-spectral, filled-aperture + interferometer, etc)
- Typical compute costs
- Data reduction pipelines and algorithm automation

$$V_{ij}^{obs}(\mathbf{v},t) \approx \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} \int I(l,m) e^{2\pi i(ul+vm)} dl dm$$

$$V_{ij}^{obs}(\mathbf{v},t) = \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} S_{ij}(\mathbf{v},t) \iiint \frac{M_{ij}^{s}(l,m,v,t)}{M_{ij}^{s}(l,m,v,t)} I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$$

Direction Independent Gains

- feed gains, delays,bandpass

$$V_{ij}^{obs}(\mathbf{v},t) \approx M_{ij}(\mathbf{v},t) S_{ij}(\mathbf{v},t) \iint I(l,m) e^{2\pi i (ul+vm)} dl dm$$

$$V_{ij}^{obs}(\mathbf{v},t) = \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} S_{ij}(\mathbf{v},t) \iiint \frac{M_{ij}^{s}(l,m,v,t)}{M_{ij}^{s}(l,m,v,t)} I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$$

Direction Independent Gains

feed gains,
 delays,bandpass

Antenna primary beam

- Power pattern varies with time, frequency and baseline

- Ionospheric refraction

Direction Dependent Instrumental Effects => Multiplicative effect in the image domain => Convolutions in the visibility domain

W-Term

-Non-coplanar baselines

-Sky curvature

$$V_{ij}^{obs}(\mathbf{v},t) \approx \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} \int I(l,m) e^{2\pi i (ul+vm)} dl dm$$

 $V_{ij}^{obs}(\mathbf{v},t) = \frac{M_{ij}(\mathbf{v},t)}{S_{ij}(\mathbf{v},t)} \int \int \frac{M_{ij}^{s}(l,m,v,t)}{M_{ij}^{s}(l,m,v,t)} I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$

Direction Independent Gains

feed gains,
 delays,bandpass

Antenna primary beam

- Power pattern varies with time, frequency and baseline

- lonospheric refraction

Sky-brightness varies with frequency (time)

- Include source spectra and time variability into the sky model and/or the regularization process. W-Term

-Non-coplanar baselines

-Sky curvature

Direction Dependent Instrumental Effects => Multiplicative effect in the image domain => Convolutions in the visibility domain

$$V_{ij}^{obs}(\mathbf{v},t) \approx M_{ij}(\mathbf{v},t) S_{ij}(\mathbf{v},t) \iint I(l,m) e^{2\pi i (ul+vm)} dl dm$$

Iterative Image Reconstruction

L2 data regularization + Non-linear sky model and solver/constraints. $[A]I^{m} = V^{obs} \qquad \frac{\delta \chi^{2}}{\delta I^{m}} = 0$ **Normal Equations** (convolution eqn) $[A^T W A] I^m = [A^T W] V^{obs}$ Sky model solver $I_{i+1}^{m} = I_{i}^{m} + g[A^{T}WA]^{+}$ $\mathbf{R} = \left(A^T W \left(V^{obs} - A I_i^m \right) \right)$ Calculate Forward Model & Residual Image

Iterative Image Reconstruction + External calibration

Iterative Image Reconstruction + External calibration

Iterative Image Reconstruction + Self-Calibration

Calibration – Direction Independent effects

 $\langle E_i E_j^st
angle$ is known

- (2) Use data from all correlation pairs ij Solve for complex gains g_i
- (3) Apply corrections to target data :

Typically, solutions are done in a sequence, with averaging to increase SNR for the solutions.

E.g. Average in time and solve for average stable bandpass Apply bandpass solutions, average in frequency, solve for time-variable gains.

Baseline based calibration : Possible, but to be used with caution.

(Equivalence between solving for antenna-based terms and satisfying closure relations)

Direction Dependent Corrections – Using known models

Models of DD instrumental effects can be used to correct the data

Antenna Beams, Ionospheric Phase screen, Non-coplanar Baselines, Sky curvature

$$I^{obs} = \sum_{ij} I^{psf}_{ij} * \left[P_{ij} \cdot I^{sky} \right] \checkmark V^{obs}_{ij} = S_{ij} \cdot \left[A_{ij} * V^{sky} \right]$$

For each visibility, apply
$$A_{ij}^{-1} \approx \frac{A_{ij}^T}{A_{ij}^T * A_{ij}}$$

(1) Use A_{ij}^{T} as the convolution function during gridding

(2) Divide out $FT\left[\sum_{ij} A_{ij}^T * A_{ij}\right]$ from the image (in stages).

- If P_{ij} is invariant, an image-domain correction can be done instead (flat-fielding) - Phase gradients across A_{ij}^{T} can fix known pointing offsets (tip-tilt) and make mosaics

- A_{ij}^{-1} is often only approximate => Convergence depends on an accurate forward model

Gridding = Convolutional Resampling of visibilities to a regular grid

W-Projection : FT of a Fresnel kernel

A-Projection : Baseline aperture illumination functions + phase gradients for pointing offsets + ionospheric refraction models

Convolution in UV-domain (per vis)

=> Handle wide-field imaging effects before averaging in time/baseline

(Vis Prediction : Calculate Forward Model)

Standard Imaging :

Prolate Spheroidal

Examples of wide-field instrumental corrections

Antenna Beam rotation with parallactic angle

Antenna-based, time-variable pointing offsets

(1) Solve for parameters of instrument-specific models in a self-calibration loop

E.g. Pointing Self-Cal : Solve for antenna-based phase gradients across each aperture illumination function (Adaptive Optics !)

=> Correction : Apply opposite phase gradient during gridding

(2) Perform direction-independent (DI) calibrations for multiple directions on the sky

E.g. DD-Facets : Define regions around all bright sources.

Solve V = $g_i g_j^* \langle E_i E_j^* \rangle$ to get N complex gains for each selected direction

=> Correction : Image each region using different DI gain solutions.

Sky models and solvers (image reconstruction)

HOT WITH HOT WI

Most commonly used algorithms

For Point Sources :

- Hogbom CLEAN
- Clark CLEAN

-

Convolution Equation ==> Deconvolution

0 (51 - 6754% c) - 67 1 000 (c), - 690 1 000 (c), - 690 21921 - 25 - 264 -

×

For Point/Extended Sources :

- Multi-Scale-CLEAN

For Wide-band Sky models

Multi-Term Multi-Frequency Synthesis
 (with or without Multi-Scale / Time variability)

Multi-Term Convolution Equation ==> Joint Deconvolution

Others : Any non-linear image-domain solver (many compressed sensing formulations)

Algorithms : Parameterized models + Iterative model fitting. Feature extraction + classification, Mixed models

- Basis functions : Delta functions, Gaussians, Wavelets, Shapelets, Polynomials to represent spectral structure or time-variability, 2D,3D,4D models

- Metrics being optimized : L2 or L1 or TV norms, weighted combination of different norms and a-priori bias terms, Bayesian formulations, etc..

- Optimization schemes : Greedy algorithms + gradient descent, primal-dual methods, etc

Examples from Radio Interferometry : Gaussians (ASP), Wavelets and other Atoms with Sparsity (SARA / PURIFY / MORESANE), Bayesian forms (MEM, RESOLVE), wide-band non-parametric models, CHIRP/EHT (direct solvers for VLBI).

Examples from Optical Interferometry : BSMEM, IRBis, MACIM, MiRA, SQUEEZE, SPARCO, PAINTER, MiRA-3D,...

Algorithm Comparison

Algorithm choice depends on sky structure, data quality, target science.

Each algorithm needs (different) tuning for best results.

Joint Reconstructions : Wide-Band (multi-spectral) Solvers

Model the spectrum per 'atom' as a smooth polynomial

MT-MFS : Multi-term linear least squares + CLEAN-based greedy algorithm in a transformed (sparse) space.

Intensity and Spectral Index

Joint Reconstructions : Wide-Band+ Wide-Field

Antenna Power Patterns scale with observing frequency

- => Artificial spectral structure for all sources away from center
- (1) Include PB spectrum in Sky Model. Remove post-reconstruction.
- (2) Eliminate as an instrumental correction before modeling sky

Joint Reconstructions : Adding single-dish (low resolution) data

Missing Short Spacings

=> Negative Bowls => Unconstrained Spectra

Use Low-Resolution information from single dish maps.

Methods :

```
(1) Joint Reconstructions (better!)
```

Add another data regularization term to any existing solver

E.g. Joint PSFs and Residuals

(2) Feathering

Weighted UV-domain average of INT-only and SD-only images

Spectral Index

0.5

-0.5

-1.5

-0.5

-1.5

57^m

57ⁿ

Joint Reconstructions : Mosaics + Wide-Band + Wide-Field + Single Dish

Interferometer joint mosaic intensity

(used phase gradients across aperture functions during gridding)

Wide-Field Spectral Index

(with corrections for PB spectrum)

Joint mosaic primary beam from 106 VLA pointings

Interferometer + Single dish

(intensity only)

An example of the current state-of-the-art ...

Compute Costs

Number of iterations : 5 - 10 major cycle loops, 10^2 to 10^4 minor cycle steps

Runtime varies by 1-2 orders of magnitude. Depends on data.

Data Flow

Correlation (Real time system. FPGA/ASIC + backend cluster)

Time Series \rightarrow Correlation \rightarrow Spectral Channels \rightarrow Integrate

Example Data rate : N(N-1)/2 * 1000 complex values per second

Data Archive (2.4 PB RAID storage)

Each observation is stored as a relational database

Example : VLA archive is 1.8 PB in size (+ 1 TB per day)

Our current end-to-end pipelines are the result of hand-optimized manual tuning by a team of scientists, validated on \sim 100 datasets, for a few standard imaging modes.

Over the last few years :

- Reduced need for manual intervention
- Increase in supported observing modes.

Ongoing R&D :

- Automate the quality checks
- Automate the decision tree

 Automate algorithm and parameter choices
 (+ more robust imaging algorithms)

(1) Automating the data analysis decision tree :

It is possible to choose a sequence of steps and detailed parameter tunings that provides the best flagging, calibration and imaging outcome for any given dataset. This may differ between types of datasets and science goals.

(2) Error recognition :

Humans are adept at identifying RFI patterns in plots of recorded data, non-standard antenna behaviour from calibration solution plots, and artifacts and other tell-tale shapes in images.

(3) Telescope monitoring and control :

Using telemetry and monitoring data to classify problems and their symptoms and predict failures. Use information about RFI sources, weather, to optimize the observation schedule and setup.

(4) Image and Spectrum analysis :

Feature detection/description and classification for surveys and catalogues Spectral profile matching (mixed models) Quality assessment : Have we gotten the best we can out of the data ?

Summary

- Measurement Equation
- Image Reconstruction
 - Sky models and solvers
 - Calibrating for instrumental effects
 - Modeling instrumental effects
- Joint reconstructions (multi-spectral, filled-aperture + interferometer, etc)
- Typical compute costs
- Data reduction pipelines and algorithm automation

Synergy between Biomedical and Radio Interferometric Imaging and Analysis ?