Deconvolution and Wide-Band Imaging

3GC3 Workshop, 11-22 Feb 2013, Port Alfred, South Africa

Urvashi Rau

National Radio Astronomy Observatory Socorro, NM, USA

Image from an interferometer : Convolution eqn : $I^{obs} = I^{PSF} * I^{sky}$

Image Reconstruction or Deconvolution : Extract I^{sky} from I^{obs} .

- Estimate the visibility function in unsampled regions of UV-space, such that it fits the data.
- There is no unique solution. In fact, there are infinite solutions.
- Constrain the solution by forcing astrophysical plausibility
 (point-like compact structure, positive intensity, smooth extended emission, etc...)
- The reconstruction process is always 'non-linear'.

=> Use methods of successive approximation (iterative model-fitting).

- There are limits to the largest and smallest features that can be trusted (set by uv-coverage)

Deconvolution – Iterative Model Fitting (χ^2 minimization)

Solve $[A]I^m = V^{obs}$ to fit a sky-model to the observed visibilities

Normal Equations : $[A^T W A]I^m = [A^T W]V^{obs}$

– This describes an image-domain convolution $I^{psf} * I^m = I^{dirty}$

Iterative Solution :
$$I_{i+1}^{m} = I_{i}^{m} + g[A^{T}WA]^{+} (A^{T}W(V^{obs} - AI_{i}^{m}))$$
Deconvolution
$$I_{maging}_{(Gridding + iFT)}$$
Prediction
(FT + de-Gridding)

Deconvolution Algorithms + Image Restoration

(Minor cycle) Deconvolution algorithms differ in choice of sky-model, optimization scheme, and how they handle parameters that depend on each other.

Classic CLEAN : Point-source sky model, Steepest-descent optimization

Maximum Entropy Method : Point-source sky model with a smoothness constraint. Steepest-descent optimization with backtracking

Multi-Scale CLEAN : Sky is a linear combination of components of different known shapes/sizes. Steepest-descent optimization

Adaptive-Scale-Pixel CLEAN : Sky is a linear combination of best-fit Gaussians. BFGS optimization with subspace filtering.

[Several other adaptations of compressed-sensing reconstruction techniques (R&D)]

Output of deconvolution (minor cycle) : A model image (units : Jy/pixel) A residual image (units : Jy/beam)

Restoration : Convolve model with a 'clean beam' (Gaussian fit to PSF main lobe) Add in residual image. (units : Jy/beam)

Deconvolution – MS-CLEAN

Multi-Scale Sky Model : Linear combination of 'blobs' of different scale sizes

 $I^{sky} = \sum_{s} \left[I_{s}^{shp} * I_{s}^{m} \right]$

where I_s^{shp} is a blob of size 's'

and
$$I_s^m = \sum_i a_{s,i} \delta(l - l_{s,i})$$

A scale-sensitive algorithm

- (1) Choose a set of scale sizes (basis set)
- (2) Calculate residual images smoothed to several scales– Normalize by the instrument's relative sensitivity to each scale
- (3) Find the peak across all scales, update a multi-scale model and all residual images (accounting for coupling between scales)

Iterate, similar to Classic CLEAN with Major and Minor cycles

Deconvolution – Adaptive Scale Pixel (ASP) CLEAN

Sky Model : List of Gaussians $I^{sky} = \sum_{c} a_{c} e^{-\frac{(x-x_{c})^{2}}{\sigma^{2}}}$

(1) Calculate the dirty image, smooth to a few scales.

(2) Find the peak across scales to identify a good initial guess of a_c, x_c, σ_c for a new component.

(3) Find best-fit parameters, and add this component to a list.

- (4) Choose a subset of components most likely to have a significant impact on convergence. Re-fit Gaussian parameters for new and old components together.
- (5) Subtract the contribution of all updated components from the dirty image.

Repeat steps (2)-(5) until a stopping criterion is reached.

Adaptive Scale sizes leads to better reconstruction than MS-Clean, and more noise-like residuals.

Deconvolution – Comparison of Algorithms

CLEAN

MEM

MS-CLEAN

Point-source model

Point-source model with a smoothness constraint Fit using a set of multi-scale basis functions.

ASP

Fit for parameters of compact and extended components

3GC3 Workshop and Interferometry School

12 Feb 2013

 I^m

I^{out}

Deconvolution – Comparison of Algorithms

CLEAN

MEM

MS-CLEAN

Point-source model

Point-source model with a smoothness constraint Fit using a set of multi-scale basis functions.

ASP

Fit for parameters of compact and extended components

3GC3 Workshop and Interferometry School

12 Feb 2013

 I^m

I^{res}

Wide Band Imaging + Multi-Frequency Synthesis (MFS)

Broad-band hardware => UV-coverage / imaging properties change with frequency

But, the sky brightness distribution also changes with frequency (astrophysical source spectrum and the antenna primary beam)

=> If you want to use the combined UV-coverage during image reconstruction, you need to model and reconstruct sky intensity and spectrum simultaneously.

=> Or.... treat each frequency separately (limited uv-cov and sensitivity) + combine later.

3GC3 Workshop and Interferometry School

Spectral Cube (vs) MFS imaging

Simulation : 3 flat-spectrum sources + 1 steep-spectrum source (1-2 GHz VLA observation)

Images made at different frequencies between 1 and 2 GHz (limited to narrow-band sensitivity)

Decli

2000

11

43

19^h59^m45^s

15 J2000 Right Ascension

35° 30° 25^s 20⁸ 15° J2000 Right Ascension

J2000 Right Ascension

15^s

h59m45* 35⁸ 30° 25^s 20^s 15⁸ 12000 Right Ascension

Add all singlefrequency images (after smoothing to a low resolution)

Use wideband UVcoverage, but ignore spectrum (MFS)

Output : Intensity and Spectral-Index

150^m45

35° 30° 25° 20^s

3GC3 Workshop and Interferometry School

30⁸ 25^s 208

J2000 Right Ascension

358

12 Feb 2013

2 GHz

Multi-term Multi-frequency-synthesis – fit a polynomial to the spectrum

Sky Model : Collection of (multi-scale) flux components whose amplitudes follow a polynomial in frequency

$$I_{\nu}^{sky} = \sum_{t} I_{t} \left(\frac{\nu - \nu_{0}}{\nu_{0}} \right)^{t} \quad \text{where} \quad I_{t} = \sum_{s} \left[I_{s}^{shp} * I_{s,t} \right]$$

(1) Define 'spectral PSFs": the instrument's response to each term of a Taylor polynomial in frequency :

The observed image is a sum of convolutions....

 $I^{obs} = \sum_{t} I_{t}^{psf} * I_{t}^{obs}$

 $I_t^{psf} = \sum_{\nu} \left(\frac{\nu - \nu_0}{\nu_0} \right)^t I_{\nu}^{psf}$

(this follows basic polynomial-fitting rules)

(2) Do a joint deconvolution of ALL Taylor-PSFs (spectral PSFs) from a series of dirty-images formed as Taylor-weighted averages of individual-frequency images.

Ι

(3) Interpret the output Taylor Coefficient maps in terms of a power law

$$I_{\nu} = I_{\nu_0} \left(\frac{\nu}{\nu_0}\right)^{\alpha + \beta \log(\nu/\nu_0)}$$

Intensity Spectral Index

3GC3 Workshop and Interferometry School

Dynamic-range with MS-MFS : 3C286 example : Nt=1,2,3,4

Example of Imaging with wide-band PB (artificial spectrum)

Sources away from the pointing center pick up an artificial spectrum due to the Primary Beam.

Do a post-deconvolution polynomial-division of the model spectrum by the PB-spectrum

Accuracy depends on how good the PB model is. Also verified via holography observations at two frequencies Obtained $\delta \alpha = 0.05$ to 0.1 for SNR of 1000 to 20

3GC3 Workshop and Interferometry School

12 Feb 2013

Example of wideband-imaging on extended-emission

=> For extended emission - spectral-index error is dominated by 'division between noisy images' - a multi-scale model gives better spectral index and curvature maps

3GC3 Workshop and Interferometry School

Continuum (MS-MFS) vs Cube Imaging (with PB-correction)

Summary

Several image reconstruction (deconvolution) algorithms exist.

- Point source flux models (CLEAN)
- Point source model with smoothness constraints (MEM)
- Multi-scale flux models (MS-CLEAN, ASP)
- Wide-band flux models ($\mathsf{MS}/\mathsf{MT}\text{-}\mathsf{MFS}$)

All are iterative, constrained, non-linear optimizations : fit a model to the data.

Traditional : chi-square minimizationNew : compressed sensing methods

Choose/constrain your deconvolution algorithm based on

- Source structure : point sources only, extended emission, flat/steep spectrum, wide-field...
- UV-coverage : choose weighting schemes to match the sky structure, use masks if the model is ill-constrained, choose a model that is well-constrained by the data, etc...