Wide-band wide-field imaging with the EVLA — I

Goal : Make images at the wide-band sensitivity level

Outline :

— Bandwidth and bandwidth-ratio

— Frequency-dependent sky and instrument

— Methods to reconstruct intensity and spectra
— Dynamic-range and accuracy

— Wide-field effects of wide bandwidths

— Wide-band self-calibration

— RFI identification and flagging

Urvashi Rau (NRAO) NRAO SOC, Socorro,NM 16 Sep 2011



Bandwidth and bandwidth-ratio

Broad-band receivers => higher 'instantaneous' continuum sensitivity

O-(Sv O_chan

O conti — =
continuum \/ ( vV, = mm) [V \/N chan

Instantaneous bandwidth Vmax ™ Vmin

VLA =50 MHz
EVLA= 1 GHz at L-Band, 4 GHz at C-band, upto 8 GHz at higher bands.
(x4) (x9) (x12)

Currently, maximum bandwidthis 2 GHz => (x6)

max \4 min

A%

Bandwidth Ratio ( Ve Vmin )  Or Fractional Bandwidth

mid

Higher BWR (2:1 atL,S, C bands ) => Stronger frequency-dependent effects
within the band (sky and instrument)
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Wideband Imaging Options

(1) Make images for each (2) Combine all frequencies

channel / SPW separately. during imaging
( MES : multi-frequency synthesis )
- Signal-to-noise ratio : one SPW
- Signal-to-noise ratio : all SPWs
- Angular resolution varies e
with SPW (smooth to lowest) - Angular resolution is given by
the highest frequency
- Imaging fidelity may change
across SPWs - Imaging fidelity is given by
the combined uv-coverage

When will this suffice ? When do you need MFS ?

- Sources have sufficient SNR in - Single channel / SPW sensitivity is too low

a single channel / SPW
- Complicated fields where single-SPW
- UV-coverage per SPW gives uv-coverage gives non-unigue solutions
un-ambiguous reconstructions
- Need high angular-resolution images
- You don't need the highest-possible (intensity and spectral index)

angular resolution for spectra
(But, need to model / reconstruct spectra too... )



Comparison of single-SPW imaging with MFS - Intensity

Data : 20 VLA snapshots at 9 frequencies across L-band + wide-band self-calibration

Single SPW Imaging MS-MES (3 terms)
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=> Similar results
- both methods reconstruct plausible intensity images.
- both have similar residual errors due to deconvolution.

( MS-MFS : Multi-Scale Multi-Frequency Synthesis : models intensity and spectrum (Taylor polynomial) )



Comparison of single-SPW imaging with MFS — Spectral Index

Data : 20 VLA snapshots at 9 frequencies across L-band + wide-band self-calibration

MS-MFS Spectral Index
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- Limited to resolution of the lowest
.+ frequency
wzooo - Shows effect of insufficient single-
frequency uv-coverage

- Shows imaging fidelity due to multi-
30° scale deconvolution
- - Shows expected structure with
errors < 0.2

Two-point spectrum (1.4 —4.8 GHz) => |t helps to use the combined uv-

coverage and solve for sky spectra.

Can often extract more information from
your data, compared to traditional
methods.

C.Carilli et al, Ap.J. 1991.

(VLA AB.C.D Array at L and C band) Multi-Scale Multi-Frequency Synthesis




Multi-Scale MFS : as implemented in CASA

Sky Model : Collection of multi-scale flux

S V=
components whose amplitudes Ify=2t I,
follow a polynomial in frequency

1= LI+, ]

Image Reconstruction : Linear least squares + Deconvolution (2011AgA..532A.71R , arXiv:1106.2745 )

User Parameters : Imaging mode . mode="'mfs'

Number of Taylor-polynomial coeffs.  : nterms=2
Reference frequency . reffreq = '1.5GHZ'
Set of spatial scales (in units of pixels) : multiscale=[0,6,10]

Data Products : Taylor-Coefficient images o1, I, .-

- Interpret in terms of a power-law : spectral index and curvature

x(x—1)

I,=I, L=I« IL=I,

+p

(Or, evaluate the spectral cube (for non power-law spectra) )



Dynamic Range (vs) NTERMS - 3C286 field (point sources)
(1=14.4 Jy/bm, alpha =-0.47, BW=1.1GHz at Lband )

NTERMS =1 NTERMS =2
Rms : Rms :
9 mJy -- 1 mJy _ 1 mJy -- 0.2 mJy
DR : ' " DR :

1600 -- 13000 10,000 -- 17,000

NTERMS =3 NTERMS = 4
Rms :

: . Rms
0.2 mJy -- 85 udy

0.14 mJy -- 80 udy

DR :

. DR .
65,000 -- 170,000

>110,000 -- 180,000



Error estimates . Bandwidth-ratio vs 'nterms' (high SNR)

Peak Off-source Residuals
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Absolute Error in Peak Flux

If spectra are ignored

If there is high SNR,

Peak Off-source Residuals

=> more terms gives
smaller errors

Note : These plots are
for one point-source at
the phase center, with
very high signal-to-
noise levels.

In practice, use
nterms>2 only if there
is high SNR (>100),
and if you can see
spectral artifacts in the
image with nterms=2




Multi-Scale vs Point-Source model for wideband imaging

MFS
Intensity Image /(4 terms)\A

multi-scale point-source

Spectral | —
Turn-over x=—2

=> For extended emission,
—> a multi-scale model gives better spectral index and curvature maps



Separating regions/sources based on spectral index structure

(2011ApJ...739L..20B , arXiv:1106.2796 )

Initial results of a pilot survey (EVLA RSRO AB1345 ). These examples used nterms=2, and about 5 scales.

=> Within L-band and C-band, can tell-apart regions by their spectral-index
(+/-0.2) if SNR>100.

=> These images have a dynamic-range limit of few x 1000



Small spatial-scales - moderately-resolved sources

Can reconstruct the spectrum at the angular resolution of the highest frequency

Restored Intensity image
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Very large spatial scales - without short-spacing data

The spectrum at the largest spatial scales is NOT constrained by the data

Amplitude vs UV dist
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Very large spatial scales — with short-spacing data

External short-spacing constraints help ( visibility data, or starting image model )

Amplitude vs UV dist
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Spectral Curvature : VLA data : M87 1.1-1.8 GHz

Data : 10 VLA snapshots at 16 frequencies across L-band

o =-0.52
X =-0.62
X =-0.42
X =-0.52, B =-0.48
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=> Need SNR > 100 to fit spectral index variation ~ 0.2 ( at the 1-sigma level ... )
=> Be careful about interpreting §



Wide-Field issues : Wide-band Primary-Beam

3C286 field , C-config , L-band

Total Intensity Image
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Verified spectral-indices by pointing directly at one
background source.

—~ compared X with ‘corrected’ X off center

center

Obtained O X = 0.05to 0.1 for SNR or 1000 to 20

Also verified via holography observations at two frequencies
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|IC10 dwarf-galaxy : spectral-index : wideband PB correction
+ angular re 'II'III’I' offered by MS-MFS

After PB-correction Before PB-correction
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(2011ApJd...739L..23H, arXiv:1108.0401 )
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Result of post-MS-MFS wide-band PB-correction (CASA)

For comparison, spectral-index map made by PB-correcting
single-SPW images smoothed to the lowest resolution (AIPS).
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Choices that effect errors during wide-band imaging

- Artifacts in the continuum image due to too few Taylor-terms.

Very high signal-to-noise,point-sources : use a higher-order polynomial.
Otherwise, use 2 or 3 terms to prevent over-fitting.

- Error in spectral index/curvature due to too many Taylor-terms.

Low signal-to-noise : use a linear approximation.
Again, nterms=2 or 3 is safer for low signal-to-noise extended emission.

- Error propagation during the division of one noisy image by another.

Extended emission : use multiple spatial scales to minimize this error
Choice of scale sizes : by eye, and verifying that the total-flux converges

- Flux-models that are ill-constrained by the measurements
Choose scales/nterms appropriately. For very large scales, add short-spacing information.

- Wide-field errors : Time and Frequency-variability of the Primary Beam
Use W-projection, A-projection along with MS-MFS (software in progress)

Positive things : Increased imaging sensitivity (over wide fields), high-fidelity high dynamic-
range reconstructions of both spatial and spectral structure.



Choices that effect performance (current MS-MFS implementation)

- Major Cycle runtime x N (and size of dataset)

taylor

— N_Taylor residual images are gridded separately; N_Taylor model images are 'predicted'.
— Wide-field corrections are applied during gridding (A-W-Projection, mosaicing).

- Minor Cycle runtime x N taylorN scales NV pixels

2
N taylor N scales +N taylor +N taylor N scales N pixels

- Minor Cycle memory x [0,5

Rate of convergence : Typical of steepest-descent-style optimization
algorithms : logarithmic. Can control 'loop gain', 'cleaning depth’

Some source structures will handle loop-gains of 0.3 to 0.5 or more (0.3 is safe).

Runtimes reported by different people have ranged from 1 hr to several days.

=> Different choices of parameters => Choose only what you really need.
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Only MS-Clean
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MS-MFS +
W-Projection
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Max sampled spatial scale : 19 arcmin (L-band, D-config)
Angular size of G55.7+3.4 : 24 arcmin

'
MS-Clean was able to reconstruct total-flux of 1.0 Jy
MS-MFS large-scale spectral fit is unconstrained.
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G55.7+3.4 : within the main lobe of the PB
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Wide-band Self-calibration ( using MS-MFS wideband model )

In CASA, 'clean' writes wide-band model visibilities to disk (calready=True). Or, use 'ft'.

Ll —

[ [
o =
= =
o o
= =
G o
L 4
[ila] ]
= =
<
.,_I

I3
FAVY;

I3
FAVLY;

J
J

- Frequency

Eh 32Mo0n® 31Mon® 30Mo0®

J2000 Right Asce - Ascension

Peak residual = 32 mJy/bm

Peak residual = 65 mJy/bm
Off-source rms = 6 mJy/bm

Off-source rms = 18 mJy/bm

Amplitudes of
bandpass gain
solutions......

5 chans x 7 spectral-windows

- Can use MS-MFS on your calibrators too, if you don't know their spectra.
- Can also use this wide-band model for continuum subtraction.



RFI and automatic flagging

At L-Band, can use ~500 MHz with very rough flagging, ~800 MHz if done carefully.

CASA : TFCrop (fit a smooth function to the time-freq plane, and find outliers)
AIPS : RFLAG (statistics-based flagger with automatic threshold-calculation)

Spectrum of percentage of RFl-affected data
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One way to examine your data, Is to run ‘autoflag' and look at flag counts

— Inspect uncalibrated data to identify 'clean’ regions

— Get an estimate of the fraction of total bandwidth usable for imaging.

— Obtain a flagversion to use as a starting point (first calibration/imaging pass).

— Run it on RFI monitoring data — feed-back information about un-documented RFlI



TFCrop : Detect outliers on the 2D time-frequency plane
(testautoflag in CASA)

— Average the data along one dimension
e e [ — Fit a piece-wise polynomial to the base of RFI spikes
-- calculate 'sigma’ of data - fit.
— Flag points deviating from the fit by more than N-sigma
— Repeat along the second dimension.
— Extend flags along time, frequency, polarization

flag:9.5% (pre-flag:0.0%)

1.11.141.151.161.171.181.19 1.2
— before:LR == gfter:LR — tfcrop

0 10 20 30 40 50 &0 70
Frequency




(1) 3C286_A

[spw:2] eal0-ea22 ( RR)

[spw:2] eal0-eaZ2 (RL)

(1) 3C286_A

[spw:2] eal0-2a22 [ LR)

Visualize Data/Flags at run-time
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Example 1

(0) 0137+331=3C48
[spw:0] ea0l-eal7 (RR)

(D) 01374+331=3C48
[spw:0] eadl-eal7 (RL)

(0) 0D137+331=3C48
[spw:0] ea0l-ea07 (LR )

(0) 01374+331=3C48
[spw:0] eadl-eal7 (LL)

120 120 o 120 120
100 100 100 3 100 3
80 3 80 3 g0 3 80
fal] . . . .
E 603 60 60 60 3
= = = = =
40 40 40 - 40 o
20 4 20 - 20 - 20 4
o o - o~ 0 -
0 10 20 30 40 50 60 7O 0o 10 20 30 40 50 60 7O 0 10 20 30 40 50 60 7O 0 10 20 30 40 50 60 7O
flag:50.3% (pre-flag:0.0%) flag:50.3% (pre-flag:0.0%) flag:50.3% (pre-flag:0.0%) flag:50.3% (pre-flag:0.0%)
120 120 120
100 3 100 3 100 3
80 80 80
2 . . -
E 60 60 60
[= 4 3 4
403 40 40 3
20 20 20
0 o - 0 -
IIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIl |IIII|IIII|IIII|IIIIIIIIIIIIIIlIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII|IIIIIIIIIlIIIIlIIII|IIII|IIII|
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 &0 70 0 10 20 30 40 50 60 70
Frequency Frequency Frequency Frequency
0.7 1.2 1 2
06 13 3 ]
o E 0.8 . 15
i 0.8 4 ] 7]
0.4 ] 0.6 7 ]
0.6 4 7 14
0.3 3 0.4+ 7
0.2 0.4 — ] ]
0.2 057
0.1 0.2 H < 1 ]
0 | e— - p - IS o - 0 | —— :"
IIIII|IIIIIIIIIIIIIIlIIIIIIIIIIIIII| IIIIIIIIIIIIIII|IIII|IIII|IIII|IIII| IIIII|IIII|IIII|IIII|IIII|IIII|IIII| IIIIIIIIII|IIIIIIIIIlIIIIIIIIIIIIIII
1621.631.641.651.661.671.681.69 1621631641651 661.671.681.69 1621631641 651.661.671.681.69 1621631641651 661.671.681.69
— before:RR == after:-RR — tfcrop — before:RL == after:-RL — tfcrop — before:LR == after:LlR — tfcrop — before:LL == after:Lll. — tfcrop
Prev Baseline ] [ MNext Baseline ] [ Next Chunk l [ Stop Display ] [ Quit

oo o ToOr



Example 2
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Example 3
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RFI identification strategies
— RFl is in-general frequency and direction-dependent (satellites / local/ ... )
=> |Inspect and decide flagging strategies separately per SPW /IF and Field.
=> [nspect baseline groups (short, mid, long... ), especially at higher frequencies
— Choose which correlations to operate on (extend flags to others)
=> RL, LR have higher RFI signal-to-noise, and RR and LL have stronger band-
shape information (depends on what you're looking for)
— Operate on bandpass-corrected data
=> Do a bandpass calibration in a separate step, or use methods that account for
uneven bandpass levels.
— Hanning Smoothing

=> when there is very strong RFI with ringing in nearby channels.
( for weak RFI, this can spread the RFI to more channels )
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