
UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Performance Model and Load Balancer for a Parallel

Monte-Carlo Cellular Microphysiology Simulator

A thesis submitted in partial satisfaction of the

requirements for the degree Master of Sciences

in Computer Science

by

Urvashi Rao Venkata

Committee in charge:

Professor Scott B. Baden, Chair
Professor Keith Marzullo
Professor Henri Casanova

2004

The thesis of Urvashi Rao Venkata is approved.

Chair

University of California, San Diego

2004

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Abstract . viii

I Introduction . 1

II MCell and MCell-K . 4
A. MCell . 4

1. Model Description Language . 4
2. Simulation Characteristics . 5
3. Implementation . 6
4. Running Times . 7

B. MCell-K . 8
1. Parallelization Strategy . 8
2. Results . 9

III Performance Model . 12
A. MCell workload statistics . 13

1. Workload Measure . 13
2. Observations . 16
3. Analysis . 17

B. Instantaneous model . 18
C. Predictive model . 21

1. Temporal spatial load variations 22
2. Overall running time trends . 22
3. MDL input . 24

IV Load Balancing . 26
A. Domain decomposition . 26

1. Recursive Co-ordinate Bisection 26
2. Hilbert Space Filling Curve . 28
3. Optimality . 29

B. Adaptive Load Balancing . 31

V MCell Parallel Simulator . 34
A. Implementation . 35
B. Verification . 38

iv

VI Simulations and Results . 41
A. Test Case : Simple Unbounded Diffusion 41

1. Performance model . 42
2. Load Balancing . 42

B. Test Case : Chick Ciliary Ganglion 49
1. Performance Model . 49
2. Load Balancing . 50

VII Conclusion . 57

Bibliography . 59

v

LIST OF FIGURES

II.1 3D Visualization of the Chick Ciliary Ganglion MCell simulation . . 6
II.2 Dynamic Load Imbalance in MCell-K 10

III.1 MCell core computation loop . 14
III.2 Counts and Times for all ligands and free ligands 15
III.3 Number of SSV walls checked and hit and corresponding times . . 15
III.4 Number of Mesh walls checked and hit and corresponding times . . 15
III.5 Total, Ray Trace, Wall Hit and Estimated Running times 17
III.6 Total, Ray Trace, Wall Hit and Estimated Running times 21
III.7 Unbounded Diffusion - Gaussian Ligand Density Profiles 22
III.8 Processor workload variation for Unbounded Diffusion 23
III.9 Chick Ciliary Ganglion : Ligand Count and Running time 24

IV.1 Schematic diagram for Recursive Co-ordinate Bisection 27
IV.2 Schematic diagram for Hilbert Space Filling Curve Partitioning. . . 28

V.1 Validation of the parallel simulator 38
V.2 Validation of the load balancer . 39

VI.1 Unbounded Diffusion : Total Running time and Workload estimate 42
VI.2 Unbounded Diffusion - SFC load balancing 43
VI.3 Load Balancing Communication Counts - Unbounded Diffusion . . 46
VI.4 Estimate for Unbounded Diffusion with Periodic Ligand Releases . 47
VI.5 Times for Unbounded Diffusion with Periodic Ligand Releases . . . 48
VI.6 Chick Ciliary Ganglion : Running Time and Estimated Time 50
VI.7 Chick Ciliary Ganglion - SFC Load Balancing 52
VI.8 Load Balancing Communication Counts - Chick Ciliary Ganglion . 54
VI.9 3D Visualization of Irregular Distribution of Ligands 55
VI.10Load Balanced Parallel Running times on 8,16,32,64 processors . . . 56

vi

LIST OF TABLES

III.1 Measured Operation counts and timings. 14

VI.1 Unbounded Diffusion - Parallel Running times and speedups 44
VI.2 Chick Ciliary Ganglion - Parallel Running times 51
VI.3 Running times and speedups on 8,16,32 and 64 simulated processors. 56

vii

ABSTRACT OF THE THESIS

A Performance Model and Load Balancer for a Parallel

Monte-Carlo Cellular Microphysiology Simulator

by

Urvashi Rao Venkata

Master of Sciences in Computer Science

University of California, San Diego, 2004

Professor Scott B. Baden, Chair

This thesis presents a performance model for a parallel cellular microphys-

iology simulator and discusses dynamic load balancing techniques that employ it.

These simulations are characterized by highly irregular spatial workload concen-

trations that are determined by the initial data configurations and their time-

dependent evolution. A performance model giving reliable spatial and temporal

workload estimates is useful in facilitating the adaptive distribution of workload

across processors during the course of the computation.

A hybrid performance model was derived and then tuned to accurately

estimate and predict the characteristics of each simulation. One component of

the performance model is the classical instantaneous model that estimates the

workload based on retrospective information about the state of the system. The

other is an evolutionary model that augments the instantaneous model by using

information about the initial state of the system and the mechanisms that drive

it to predict performance trends before they occur. Workload estimates obtained

with the hybrid model were used to drive a partitioner that adaptively partitioned

the workload and improved the parallel runtime performance by a factor of two on

16 processors.

viii

Chapter I

Introduction

A Monte-Carlo cellular microphysiology simulation is typically charac-

terized by a non-uniform spatial workload distribution. As a result, a parallel

implementation using a regular domain decomposition is prone to a severe load

imbalance. This leads to a parallel running time that is considerably high com-

pared to an implementation in which all processors are equally loaded. An irregular

domain decomposition that partitions regions of higher workload more finely than

others, is therefore required. In addition, the workload distribution across the

computational domain can vary with time, leading to the need for dynamic load

balancing techniques that respond to changes or shifts in workload concentrations

by adaptively partitioning the domain. Such load balancing techniques require

workload estimates obtained from a reliable performance model.

Performance modeling consists of estimating the running time of an ap-

plication based on parameters and conditions that drive the computation. One

instance where a performance model is useful is efficient run-time load balancing

of a parallel application in which varied data dependent behaviour can result in

dynamic and irregular workload concentrations. The design of an accurate per-

formance model becomes challenging when there are a variety of data dependent

conditions that evolve dynamically through the course of the computation. The di-

rect measurement of the running time per iteration may not always provide reliable

1

2

and stable estimates, given the overhead of performing fine grained timing, lim-

ited timer resolution and inherently noisy running time variations. A performance

model based on operation counts and simulation variables is therefore desired.

MCell-K1 is a parallel simulator used to study sub-cellular communica-

tion via signaling pathways and neurotransmitters. It is based on MCell2, a serial

application developed at the Salk Institute for Biological Studies and the Pitts-

burgh Supercomputer Center. Spatial workload concentrations in a typical MCell

run are highly irregular and determined by the initial data configurations and

their time-dependent evolution. The use of a static regular domain decomposition

can result in the maximally loaded processor holding more than twice the average

workload. A performance model giving reliable spatial and temporal workload es-

timates would be useful in adaptively distributing the workload across processors

during the course of the computation. MCell-K simulations are described by an

elaborate model description and a single performance model is unlikely to apply

under all circumstances. However a good model can enable a computation to scale

well, thereby allowing simulations of large proportions to be run in a reasonable

amount of time.

This thesis proposes a hybrid performance model for MCell-K, and dis-

cusses dynamic load balancing techniques that employ it. Two kinds of cost models

are explored. One is an empirically derived short term instantaneous model that

estimates the workload based on retrospective information about the state of the

system [3, 9, 13, 14, 5]. Some MCell-K events can induce a sudden load imbalance

and a purely instantaneous model cannot be used to predict and avoid the resulting

imbalance. There is therefore the need for a predictive component that estimates

the workload in advance, given information about the initial state of the system

and the mechanisms that drive it. The hybrid performance model is validated by

its ability to generate reliable and accurate workload estimates for dynamic load

balancing algorithms that are based on adaptive irregular domain decompositions.

1http://www.cnl.salk.edu/ tilman/index.php?file=home.html
2http://www.mcell.psc.edu/

3

The performance models and load balancing algorithms were designed

and validated using the serial MCell code, instrumented to simulate a parallel run.

Simulations were performed on sample problems with characteristics typical of a

standard MCell run. Load balancing was tested using two domain decomposi-

tion techniques. A recursive co-ordinate bisection algorithm was compared to a

decomposition based on a Hilbert space filling curve. The load balancing tests

revealed that both domain decomposition algorithms give similar results in terms

of workload distribution but that the space filling curve algorithm incurred less

load balancing computation and communication costs. The use of these adaptive

load balancing techniques improved the performance of the simulated parallel run

by a factor of two on 16 processors. The varied nature of MCell-K simulations

are specified by a complex model description language and warrant a method of

creating custom performance models. An analysis of the speedups obtained on

8,16,32 and 64 processors showed that with an accurate workload estimate, these

load balancing algorithms lead to scalable computations.

The organization of the material in this thesis is as follows. Chapter II

gives an overview of the design of MCell and MCell-K with an emphasis on factors

that can affect runtime performance. Chapter III describes the instantaneous

and predictive performance models for MCell-K. Chapter IV describes dynamic

load balancing algorithms based on these models. Chapter V deals with details

concerning the implementation and validation of the parallel simulator used to

design the models. Chapter VI discusses the accuracy, stability and efficiency of

the performance model and load balancing techniques for a set of sample MCell-K

runs. Chapter VII concludes with a summary of the results and a short description

of how the production MCell-K code will incorporate the load balancer into its

structure.

Chapter II

MCell and MCell-K

II.A MCell

MCell [2] is a cellular microphysiology simulator that uses Monte Carlo

methods to trace the movement and behaviour of a large number of reactive

molecules called ligands as they diffuse through space in a three dimensional com-

putational domain. These ligands can undergo unimolecular or bimolecular state

transitions as they interact with reactive elements called effector sites, located on

surfaces and membranes that represent sub-cellular biophysical structures 1. MCell

uses a Model Description Language (MDL) as a high level user interface and link

between the steps of model design, simulation and output of results.

II.A.1 Model Description Language

MCell’s Model Description Language (MDL) is an extremely versatile

way of representing the properties of diffusing molecules and arbitrary surface

structures along with diffusion and reaction mechanisms typical of any desired

physical system which involves particle diffusion. Parameterized descriptions of the

micro-physiological environment along with diffusion and reaction mechanisms are

used to drive an MCell simulation. Types of ligand molecules and their properties

1Currently ligands interact only with surfaces and not with each other. A future version of MCell
will incorporate bi-ligand interactions.

4

5

are specified along with the locations of ligand release sites and corresponding

release mechanisms. Complex reactive surfaces and membranes are represented

using polygonal meshes. Mesh elements are provided with reactive (effector sites),

reflective or absorptive properties and reaction mechanisms between the ligand

molecules and reactive mesh elements are explicitly defined.

II.A.2 Simulation Characteristics

A typical MCell simulation begins with the release of numerous ligands

from release sites according to specified release mechanisms. Computations are

organized into iteration timesteps. Within an iteration timestep, each ligand per-

forms a Brownian-dynamics random walk. A maximum diffusion distance specified

in the MDL input controls the amount each ligand can move during the course

of one iteration timestep. For each ligand the direction and distance to be moved

are determined probabilistically, and a three dimensional ray trace operation is

performed to compute the new location. In each iteration, ligands take several

steps until they reach their maximum allowed diffusion distance. During each step

the ray trace operation includes checks for intersections with all walls and mesh

elements in the immediate vicinity of the ligand. If a mesh wall is intersected, the

ligand may undergo a state change as dictated by the type of mesh element it has

encountered. As iterations proceed, ligands diffuse outward from their release sites

and can reflect off mesh walls, react with effector sites present on them, be ab-

sorbed by binding sites located on mesh walls, or interact in any other way defined

in the MDL input. Ligand binding sites maintain ligand saturation counts and

may undergo variations in reactive properties based on the number of bound lig-

ands associated with them. Output can be obtained from MCell in various forms.

Counts and statistics can be obtained with respect to any class of participating

elements of the simulation. Output can also be generated in a format compatible

with the DReAMM2 three dimensional visualization tool (Figure II.1.A).

2http://www.mcell.psc.edu/DReAMM/about.htm

6

Figure II.1: (A (left)) Three dimensional visualization of ligands diffusing out

from release sites in the chick ciliary ganglion MCell simulation (T. Bartol and T.

Sejnowski) (B (right))Spatial subvolumes in MCell with planes along the X,Y and

Z axes along with a spherical polygon mesh surface(J.Stiles and T. Bartol).

II.A.3 Implementation

The three dimensional computational domain is divided into a large num-

ber of spatial sub-volumes (SSVs) formed by the tensor product of a set of parti-

tions along each dimension (Figure II.1.B). This limits the computation required

to track individual ligands by requiring that a ligand check for intersections only

with the mesh walls physically located within the SSV enclosing the ligand. Dur-

ing the ray trace operation, if a ligand encounters a subvolume wall, its subvolume

identifier is updated and the ligand takes its next step 3.

Ligands are represented as data structures holding state and location

information about a ligand. There is a global linked list of ligand structures that

is traversed through during each iteration timestep and ligand movements and

reactions are recorded as state changes. For the purpose of statistical accuracy

there is no correlation between the ordering of ligands in this list and the location

3In the current implementation the SSVs are represented on a cartesian grid, whereas the mesh walls
and surfaces are based on a triangulated three dimensional mesh. An alternate grid representation
is being implemented in which both the SSVs and the mesh walls will be represented using a three
dimensional tetrahedral mesh. This will allow some mesh tiles and SSV walls to coincide, thus reducing
the number of intersections to be checked for during ray tracing.

7

of the ligands in the computational domain. Surface mesh walls are also represented

as linked lists of mesh elements holding information of their location, orientation,

reactive properties and saturation counts. During each ray trace step along a

ligand’s trajectory, the part of the mesh wall linked list representing mesh elements

contained in the current SSV is traversed to check for intersections.

The radial direction and step length for the movements of each ligand are

controlled by a set of random numbers that correspond to Monte Carlo probabilities

derived from bulk solution rate constants of a Brownian-dynamics random walk

algorithm. MCell uses a 64-bit random number generator and splits each number

to obtain random numbers for the direction and length of a ligands step. MCell also

allows for checkpointing wherein the state of the system at a particular iteration

can be saved in a log file for the current state of the simulation to be examined. The

simulation can then resume along with additional of changed MDL information.

II.A.4 Running Times

The main determinants of the running time of a typical serial MCell run

are the number of release sites, ligands and mesh walls in the computational domain

and the number of iterations required for the simulation to run to completion. A

serial MCell run with 20 release sites and 100000 ligands, simulated with the micro

structure of a chick ciliary ganglion takes approximately 2 hours to complete 3000

iterations on a single 2.2GHz processor, and uses approximately 500MB of memory.

In a typical run the number of free ligands reduces considerably after about 2500

iteration timesteps as they bind to mesh walls and stop diffusing. A full production

run involving all 550 release sites would run for over 2 days. These runs usually

have to be repeated several times to ensure statistical accuracy of the results, and

the total running time required soon becomes prohibitive.

8

II.B MCell-K

MCell simulations possess complex spatial and temporal dynamics that

can potentially limit scalability in a parallel environment. Also due to the dynamic

nature of migrating particles and the requirement of numerical and physical accu-

racy in the simulation, MCell is not embarrassingly parallel and requires careful

synchronization. A parallel variant of MCell, called MCell-K[1], has been imple-

mented using the KeLP parallel programming infrastructure. KeLP enables the

management of distributed pointer-based structures, has mechanisms to handle

data migration among processors, and can facilitate load balancing via overde-

composition. These parallel programming paradigms make KeLP a good choice

for implementing a parallel variant of MCell.

II.B.1 Parallelization Strategy

A regular domain decomposition is used to partition the computational

domain in a one-to-one mapping of partitions to processors. Initially, all processors

read the input file and create local copies of geometry and other simulation data

pertaining to their local regions of space in the computational domain. Mesh

elements that cross processor boundaries are duplicated on multiple processors.

Each processor maintains local linked lists for ligand structures and mesh elements.

The ligands in the local processor lists are arbitrarily ordered with respect to their

physical location within the processor’s computational domain.

Processor boundaries are introduced into the MCell computational do-

main as walls of a particular type, and regular MCell ray trace operations are

used to detect when a ligand steps across a processor boundary. Each iteration

timestep is split into several sub-iteration timesteps. Ligands whose movements

do not result in intersections with processor walls are completely updated in the

first sub-iteration timestep. Ligands that record intersections with processor walls,

are transfered to a communication list. At the end of each sub-iteration step, if

9

any ligand that has not yet been completely updated has registered a hit with a

processor boundary, there is a synchronization step where all ligands flagged for

communication are sent to their destination processors. An iteration terminates

only when all ligands in the entire computational domain have been updated.

II.B.2 Results

Speedups

MCell-K was tested with sample MDL input data and produced numerical

and statistical results in agreement with those produced by the serial code [1].

A large MCell simulation of ligand diffusion through the chick ciliary ganglion

mircostructure was performed with 192 release sites and 5000 ligands per release

site on the NPACI Blue Horizon [1]. Under typical conditions the ligands decay

as iterations proceed, but this run was modified to simulate the case of all ligands

remaining active in the system at each timestep. The simulation using MCell-K

was run for 2500 iteration timesteps and took 81.7 minutes to complete on 16

processors and 44.2 minutes on 32 processors. (A serial run of this size would

take approximately 6 hours on a 2.2GHz processor.) Most ligands were completely

updated in the first sub-iteration timestep and the additional time required for

sub-iteration synchronization was found to be negligible compared to the total

running time.

Communication Overhead

Communication events in MCell-K are frequent but involve message sizes

of only a few kilobytes. Communication costs per iteration were found to be neg-

ligible in comparison to the running time per iteration. The maximum number of

ligands (over all processors) communicated per timestep was found to be inversely

proportional to the number of processors used. This, along with the small message

sizes involved, suggests that communication costs may not be significant even in

large runs with a large number of processors.

10

0 5 10 15 20 25
epoch (100 time-steps)

0

10000

20000

30000

40000

lig
an

ds
 p

er
 p

ro
ce

ss
or

processor 17
processor 20
processor 25
processor 27
processor 33

Ligands per Processor
heavily loaded processors - persistent ligand case

0 5 10 15 20 25
epoch (100 time-steps)

0

20000

40000

60000

80000

lig
an

ds
 p

er
 p

ro
ce

ss
or

16 processors, maximum
16 processors, average
32 processors, maximum
32 processors, average
64 processors, maximum
64 processors, average

Maximum and Average Ligands per Processor
persistent ligand case

Figure II.2: Dynamic Load Imbalance in MCell-K (A (left)) Ligands per processor

for each of the most heavily loaded processors of a 64 processor MCell-K run

(Gregory T. Balls [1]). (B (right)) Maximum and average ligand counts over all

processor for 16,32 and 64 processors (Gregory T. Balls [1]). Time is measured in

epochs, each epoch corresponding to 100 iterations.

Load Imbalance

Load imbalance was found to be a major bottleneck in the system. In a

run of the chick ciliary ganglion simulation the initial load imbalance was limited

by initializing the simulation such that the distribution of ligand release sites over

processors was within a factor of two of the average number of release sites per

processor.

Figure II.2.A shows the number of ligands per processor for the most heav-

ily loaded processors as they vary as a function of iteration number. (Reported

times are averaged over epochs, each corresponding to 100 iteration timesteps).

Ligands were observed to rapidly diffuse across processor boundaries resulting in

a high load imbalance that persisted throughout the rest of the simulation. Plots

of the maximum load over all processors for each iteration timestep also showed

that the total running time is affected by a load imbalance with the maximally

loaded processor carrying approximately twice the average (ideal) load in the sys-

tem (Figure II.2.B).

11

It can therefore be seen that the dynamic nature of the diffusing ligand

distributions and the static but irregular concentrations of mesh elements results

in a considerable load imbalance in a parallel implementation that uses a static

regular domain decomposition. This necessitates the use of irregular domain de-

compositions that divide some regions of high workload more finely than others,

as well as dynamic load balancing strategies that can detect changes or shifts in

workload concentration and then perform an adaptive domain decomposition and

workload redistribution.

Chapter III

Performance Model

The first step in analyzing the performance of an application for the pur-

pose of designing a performance model, is to identify the operations that dominate

the running time. These operation counts can then be used to obtain an estimate

of the workload and predict running times. The running time of a parallel appli-

cation is determined by the time taken by the most heavily loaded processor. In

applications like MCell-K, since the work is divided among processors by parti-

tioning the discrete three dimensional computational domain into subvolumes of

space, the running time of the parallel simulation will depend on spatially depen-

dent counts such as free ligand density and the number of mesh walls that ligands

can intersect with, in each partition subvolume. An instantaneous model can use

the operation counts of one iteration to predict the spatial workload distribution

for the next iteration. This model can detect an increase in running time due to

a load imbalance in the system only after it occurs, but it can be combined with

a predictive model in which workload estimates that could indicate the need for

load balancing, may be obtained prior to the actual computation that could cause

the load imbalance.

This chapter describes the main computational components of a typical

MCell run and discusses the formulation of instantaneous and supporting predictive

models for a parallel MCell-K run.

12

13

III.A MCell workload statistics

The workload in a typical MCell run depends on the number and density

of diffusing ligands and their proximity to walls and effector sites. An irregular dis-

tribution of effector sites on (irregular) mesh surfaces results in irregular workload

concentrations. An irregular distribution of release sites results in highly concen-

trated workloads in some regions in the computational domain. This is especially

significant during the first few hundred iterations which represent a large fraction

of MCell’s total running time (Figure III.2.B).

III.A.1 Workload Measure

To obtain a workload estimate, various counts and timing statistics are

collected over a spatial grid of Workload Sample Boxes (WSB) in the computational

domain. MCell uses the SSV grid to speed up searches for encounters with mesh

surfaces. For the purpose of load balancing the WSB grid used is a coarsened

version of the MCell SSV grid and load redistribution is carried out in terms of

units of work determined by workload estimates per WSB.

A practical choice of the resolution of the WSB grid depends on the

average diffusion rate of the ligands as specified in the MDL input. To ensure the

numerical accuracy of the simulation and to minimize the movement of ligands

across processor boundaries within an iteration, the distance along each edge of a

sample box must be greater than the maximum distance a ligand can diffuse during

one iteration timestep. The workload sample boxes chosen for the experiments

described in this thesis each enclose 8 × 8 × 8 SSVs.

The overhead of collecting these count statistics is low. For each ligand, a

linear index mapping between the SSV index and the corresponding WSB index is

used to accumulate counts for each sample box. The performance model is based

on various counts and timings obtained by treating each sample box as a unit of

work.

14

1. for (each timestep) {
2. for (each ligand) {
3.

5.

8. while (ligand has not diffused far enough) {
9. move the ligand
10. check for intersection with nearest SSV walls
11. check for intersection with SSV’s mesh wall list

13. if (wall hit) {
14. process subvol wall hit
15. process mesh wall hit
16. }
17. }

12. }

18. }

20. }
19. }

4. if isbound (ligand) give it a chance to unbind

6. if isfree (ligand) {
7. call ray_trace (ligand) {

Figure III.1: Code structure of the core MCell computation loop.

The core of the MCell computation consists of tracking each ligand in the

system for a series of iteration timesteps. The processing of each ligand depends on

its state (bound or free) and its proximity to mesh walls and effector sites (collisions

and reactions). To identify the operations that dominate the running time, various

operation counts were monitored and timings obtained for corresponding code

segments. The code structure of the core MCell computation loop is shown in

Figure III.1 and the counts and times measured are listed in Table III.1.

Counts Times Operations Lines

ctotal ttotal Total Ligand Count and Running time 2-19
cfree tfree Free Ligand Count and Ray Trace time 7-17
cssv checks tssv checks Checking for SSV wall hits 10
cssv hits tssv hits Processing SSV wall hits 14
cmesh checks tmesh checks Checking for mesh wall hits 11
cmesh hits tmesh hits Processing mesh wall hits 15

Table III.1: Measured Operation Counts and Timings in Fig III.1. The design and

analysis of the performance model was done in terms of these counts and timings.

15

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 5 10 15 20 25

Co
un

ts

Epoch (100 timesteps)

(A) Ligand Counts

Total Ligand Count
Free Ligand Count

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

Ti
m

e
(s

ec
on

ds
)

Epoch (100 timesteps)

(B) Total Times

Total Time
Ray Trace Time

Figure III.2: (A) Total ligand count (ctotal) and Free ligand count (cfree). (B) Total

time (ttotal) and Time spent on free ligands in ray trace (tfree).

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0 5 10 15 20 25

Co
un

ts

Epoch (100 timesteps)

(A) SSV Counts

SSV Check Count
SSV Hit Count

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 5 10 15 20 25

Ti
m

e
(s

ec
on

ds
)

Epoch (100 timesteps)

(B) SSV Times

SSV Check Time
SSV Hit Time

Figure III.3: (A) Number of SSV walls checked (cssv checks) and hit(cssv hits). (B)

Time spent checking for (tssv checks) and processing (tssv hits) SSV wall hits.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 0 5 10 15 20 25

Co
un

ts

Epoch (100 timesteps)

(A) Mesh Wall Counts

Mesh Wall Check Count
Mesh Wall Hit Count

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

Ti
m

e
(s

ec
on

ds
)

Epoch (100 timesteps)

(B) Mesh Wall Times

Mesh Wall Check Time
Mesh Wall Hit Time

Figure III.4: (A) Number of Mesh walls checked (cmesh checks) and hit(cmesh hits).

(B) Time spent checking for (tmesh checks) and processing (tmesh hits) mesh wall hits.

16

III.A.2 Observations

Timings and corresponding operation counts were measured for a sample

serial run of a chick ciliary ganglion MCell simulation. This simulation had 32

release sites positioned near mesh walls, each releasing a train of 1000 ligands in

the first iteration timestep. As the iterations proceeded the ligands diffused away

from their release sites and began interacting with mesh walls and surfaces. Some

ligands began to bind while others continued to diffuse.

Total Running Time

Figure III.2.A shows the total ligand count (ctotal) and compares it to the

free ligand count (cfree). The number of free ligands in the system is seen to drop

rapidly as the ligands encounter binding sites on mesh elements. Figure III.2.B

shows the total time spent in updating the ligands(ttotal) and the time spent in the

ray trace function call (tfree). It can be observed that the total running time of a

serial MCell run is dominated by the computation done on free ligands in the ray

trace function call.

Ray Trace operations

Within the ray trace function there are two main contributors to the

running time - the checking and processing of intersections with SSV walls and

the checking and processing of intersections with mesh walls. Figure III.3.A

shows counts of the number of SSV walls that are checked for possible ligand

encounters (cssv checks) along with the number of SSV walls actually intersected

by the diffusing ligands (cssv hits). Figure III.3.B shows the corresponding times

(tssv checks, tssv hits). The time spent checking for SSV walls is greater than that

spent processing intersections. Regions of high free ligand concentrations will in-

cur higher tssv checks and cfree will be able to estimate the time spent checking for

SSV wall intersections. Figure III.4.A shows counts of the number of surface mesh

walls that are checked for intersections (cmesh checks) and counts of mesh elements

17

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

Ti
m

e
(s

ec
on

ds
)

Epoch (100 timesteps)

Running Times

All Time
Ray Trace Time

Wall Hit Time

Figure III.5: Chick Ciliary Ganglion : Total running time(ttotal), time spent in the

Ray Trace function call (tfree) and the time spent processing intersections with

mesh walls (tmesh hits).

that register ligand encounters(cmesh hits). Figure III.4.B shows the correspond-

ing times (tmesh checks, tmesh checks). It can be observed that although the number

of mesh walls checked for intersections greatly exceeds the number of mesh walls

actually intersected, the running time in this segment of the code is dominated

by the time spent processing intersections with mesh walls. Figure III.5 compares

ttotal,tfree and tmesh hits and shows that the total running time is dominated by the

time spent in processing intersections with mesh walls.

III.A.3 Analysis

Absence of mesh walls

In the absence of mesh walls all ligands are free and all the time is spent

in the ray trace function call, checking for and processing intersections of ligands

against SSV walls. The time taken per ligand to check for and process intersections

with SSV walls does not vary much with location since there is no spatial variation

in the density of SSV walls (the SSVs form a regular grid). Therefore in the

absence of mesh walls, the total time spent in the ray trace function call is directly

proportional to the number of free ligands.

18

Presence of mesh walls

The presence of mesh surfaces affects the running time depending on their

spatial distribution as well as local ligand densities. The time taken per ligand to

check for intersections with mesh walls depends on the number of mesh walls

in the current SSV, and this shows a large spatial variation. Upon intersection

with a mesh wall, a ligand can undergo several different state changes and the

accompanying computations dominate the running time. Figure III.5.A shows

that the total running time follows a trend that closely matches that of the time

spent processing intersections with mesh walls. Intersections with mesh walls and

surfaces are spatially dependent operations and the corresponding computational

load varies with location in the computational domain. Since the running time of a

parallel application involving the spatial sub-division of the computational domain

is decided by the maximally loaded processor, these spatially dependent operation

counts can be used to estimate the running time of a parallel implementation.

III.B Instantaneous model

This model assumes that in a typical MCell run, the state of the system

varies smoothly between successive iterations and that there are no abrupt changes

in workload on the timescale of one iteration. This assumption is based on the

observation of running times and operation counts which vary smoothly from itera-

tion to iteration (Figure III.2.B). A workload estimate used to predict the running

time at any given iteration timestep (t + 1) can be based on a weighted aver-

age of spatially dependent operation counts obtained during the previous iteration

timestep (t).

We must note that the perfect instantaneous workload estimate for an

iteration timestep would be the measured running times on each processor for

the previous step. This however is not practical1. The use of operation counts

1The timer resolution places a lower limit on the number of operations that can be accurately timed.
In certain systems and simulations there can be noticeable overheads of using a timer function call.

19

to generate a workload estimate is efficient, and can be used along with prior

information to predict load imbalances and take corrective measures before they

occur.

Workload Estimate: An empirical workload estimate can be constructed from

counts corresponding to operations whose running times dominate the total run-

ning time. The total running time (ttotal) is dominated by the number of free ligands

(cfree) and the processing of their intersections with mesh walls (cmesh hits). There

is also a finite computation time associated with each ligand, bound or free (ctotal).

These counts vary considerably with location in the computational domain and

can be used to obtain an estimate of the running time of a parallel MCell run. A

workload estimate WLt+1 at the iteration timestep t+1 can be given as a weighted

average of ct
total, ct

free, and ct
mesh hits measured during the tth iteration timestep.

WLt+1 = a ∗ ct
total + b ∗ ct

free + c ∗ ct
mesh hits (III.1)

where the model parameters a,b and c are to be chosen such that this weighted

sum of spatially varying operation counts predicts trends observed in the overall

running time over all WSBs.

Model Parameters: Running times of all spatially varying computations were

totaled over the entire computational domain and used to compute values of a,

b and c via a linear least squares fit over all iterations of a test run. Since the

times and counts used in the model are those of spatially varying computations

(ray trace function calls and mesh wall intersections) this model will also be able

to estimate the workload per spatial subdomain (sample box (WSB) or processor).

Now, it is not possible to use this method to obtain parameter values for

the model function during an actual parallel MCell-K run that requires dynamic

Running time profiles sometimes include spurious spikes caused by factors like memory and disk I/O and
other system processes. In addition, a load imbalance and corresponding change in running time can be
detected only after it occurs, and it may take a few iterations to recover. Using the running times as
the workload estimate does not allow the use of prior information for the model to be predictive. Also,
the variations in running time across iterations are inherently noisy and the use of individual iteration
timings in load balancing decisions may result in frequent unnecessary load balancing steps.

20

load balancing. Also, note that it is only required that the profile of the running

time be estimated and not the actual absolute running times. Any scaling of the

total workload estimate will be valid as an estimate. Therefore, values of a,b and c

that hold the same ratios with each other as those computed using a representative

MCell-K run would suffice.

In the absence of mesh walls the running time depends on the number of

free ligands within each sample box, with the operations done on the free ligands

deciding the running time. Since all free ligands constitute an equal amount of

work, and there are no further spatial effects that need to be factored in, the ligand

count per WSB is a good estimator of the running time profile of such a parallel

run.

The presence of mesh walls in the computational domain adds additional

spatially varying workloads. The computation per sample box now depends on

both the spatial ligand distribution as well as the density of mesh walls within the

sample box. The model was trained on an actual run which simulated the sub-

cellular dynamics in a chick ciliary ganglion with 32 release sites each releasing

1000 ligands during the first iteration. The simulation was allowed to run for 2500

iterations. It was observed that the following ratio was a good estimator of the

running time profile of a parallel run in which the diffusing ligands interacted with

mesh walls and effector sites (Figure III.6).

a : b : c = 1 : 7 : 10 (III.2)

In the absence of mesh walls, only the first two terms remain, but since

ctotal = cfree, the estimate from Equation III.1 is still valid. In practice, for a

general MCell-K run a scaled down serial version of the simulation can first be

run to obtain the counts required for the model along with measured total times.

Values of a, b and c can then be found via a least square fit. As long as these

parameters are obtained from spatially varying counts and times, the model will

be representative of an actual parallel run.

21

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

No
rm

al
ize

d
Ti

m
es

Epoch (100 timesteps)

Normalized Total and Estimated Running time

Total Time
Estimated Time

Figure III.6: Chick Ciliary Ganglion : Total measured running time (ttotal) and

estimated running time using the instantaneous model (WL). The times are nor-

malized to the same scale.

The following is a possible strategy of obtaining reliable workload esti-

mates from the performance model. The performance model can be trained for

each individual data set. Typically, MCell runs are repeated several times to en-

sure statistical accuracy. One such run can be used as a sample run in which a

generic model is applied, and operation counts and timings are gathered. This can

then be used to find more accurate model parameters (Equation III.1) that are

tuned to the actual simulation. This more accurate model can then be applied to

the remaining simulation runs.

III.C Predictive model

In an MCell run, it is sometimes possible to predict the occurrence of a

simulation event that may adversely affect the running time. A predictive workload

estimate obtained from such information can complement the instantaneous model

and allow for a potential load imbalance to be predicted before it actually occurs.

This section describes some predictable simulation events and characteristics that

can affect the parallel running time of MCell-K.

22

Figure III.7: Unbounded Diffusion - Gaussian Ligand Density Profiles. Three

dimensional visualization of ligand clouds at iteration 25(A) and 50(B).

III.C.1 Temporal spatial load variations

In the absence of obstructing mesh walls, clouds of ligands diffuse spheri-

cally outward from release sites with a density profile similar to that of an expand-

ing three dimensional Gaussian. It is this behaviour that MCell is meant to model.

Once the ligands are released, they are allowed to diffuse out in all directions ac-

cording to a three dimensional random walk. The ligand diffusion rates specified

in the MDL input can be related to the observation of Gaussian density profiles,

to form a basis for a model that can predict spatial workload distributions, and

hence establish whether a load balancing step is needed at a future iteration.

In the presence of obstructing mesh walls however, this is not practical.

The computational overhead of precisely predicting the spatial distribution would

be more than the overhead due to allowing the simulation to become imbalanced

for a few of iterations until it is detected by the load balancer.

III.C.2 Overall running time trends

Most of the total MCell running time is spent in the first few hundred

iteration timesteps. This is because most released ligands begin life as active and

free and later either bind with effector sites or are destroyed. As the iterations

proceed, there are generally fewer free ligands in the entire system, thus reducing

23

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 5 10 15 20 25 30 35 40 45 50

Li
ga

nd
 C

ou
nt

s

Epoch (20 timesteps)

Processor Workload Variation

Figure III.8: Processor workload variation for Unbounded Diffusion and a static

regular decomposition.

the total parallel running time. This observation suggests that emphasis must be

placed on being able to predict trends accurately during the crucial early timesteps

of the simulations.

Usually, MCell simulations begin with very high ligand densities around

release sites. With a static initial decomposition (regular or adapted to the initial

workload distribution based on release site locations) ligands diffuse out and soon

cross sample boxes and processor boundaries. Once the particles diffuse out con-

siderably, the workload is closer to being naturally balanced (Figure III.8). This

observation also suggests that load balancing may be required more frequently in

the first few hundred iterations and can be relaxed later.

The amount of computation performed in each sample box over time can

also be predicted from the initial ligand distributions within each sample box.

A workload sample box (WSB) with an initially high density of free ligands is

likely to see a decrease in free ligand count and the associated running time as

some ligands begin to bind and some diffuse out. In a WSB that begins empty,

ligands can diffuse into it and begin reacting with mesh walls, resulting in an initial

increase in running time as ligands diffuse into the WSB, followed by a leveling off

and decrease in workload as the ligands begin to diffuse out or bind (Figure III.9).

24

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

No
rm

al
ize

d
Co

un
ts

 a
nd

 ti
m

es

Iteration timestep

(A) Counts for one WSB

Total Time
Total Ligand count
Free ligand count

 Wall Hit count

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

No
rm

al
ize

d
Co

un
ts

 a
nd

 ti
m

es

Iteration timestep

(B) Counts for one WSB

Total Time
Total Ligand count
Free ligand count

 Wall Hit count

Figure III.9: (A) Normalized running times and counts for a sample box containing

a ligand release site. (B) Normalized running times and counts for a sample box

that is initially empty and contains mesh walls with effector sites.

III.C.3 MDL input

The MDL input describes the initial state of the system and the mech-

anisms that drive the MCell simulation. Therefore, these specifications hold con-

siderable information that can be used to predict some dynamic workload trends.

1. The distribution of release sites along with counts of ligands to be released

during the first few iterations, provides a good estimate of the initial spatial

workload distribution. This can guard against high load imbalances dur-

ing the first few (up to 5) iterations, when the workload concentrations are

inherently high and irregular (Figure VI.9).

2. MDL parameters that specify the binding and reaction probabilities, effector

site saturation limits, ligand destruction probability and other such factors,

control the number of free ligands in the system. These parameters can be

monitored during the simulation, to predict workload concentrations before

they actually occur 2.

2A new version of MCell is being developed in which a scheduler will be used as a performance
optimization to avoid a large number of conditional tests that are guaranteed to be false under certain
local or global conditions. The scheduler will monitor the state of the system and decide when to execute
these operations. The operations include checks for encounters with mesh walls and effector sites as well
as ligand releases.

25

3. Ligand diffusion rates specified in the MDL input can be used with the Gaus-

sian diffusion model to predict how workloads are likely to change with time.

This however is possible and practical only in regions of the computational

domain without obstructing mesh walls.

4. Some MCell simulations involve periodic ligand releases, specified via release

site object parameters in the MDL input. A mapping between the release

train interval and actual iteration timestep number can be used to predict an

imbalance that can occur if a large number of ligands are suddenly released

into previously sparse locations in the computational domain. The load

balancer can then be called just before the releases with an artificial workload

distribution and this can prepare the system for the sudden influx of new

work. This kind of prediction can also be done if sudden releases depend on

dynamic parameters of the simulation. The load balancer can monitor these

parameters and use a tighter threshold than that used for the releases, to

predict a large imbalance before it occurs. Simulation results with prediction

will be discussed in Chapter VI.

An accurate prediction is not always possible or helpful using informa-

tion from the MDL input. For instance, some MCell simulations involve ligand

releases at random points in time, from random locations in space. This cannot

be predicted and the load balancer will have to resort to an instantaneous work-

load estimate based on an imbalance sensor that is sensitive enough to detect the

imbalance within an iteration of it occurring. Also, ligand releases that do not

significantly change the workload density over parts of the computational domain

are not disruptive to the workload balance and can be ignored with regard to the

predictive model.

Chapter IV

Load Balancing

The performance model described in Chapter III was validated by using

the workload estimates it generated as a basis for load balancing. This chapter

describes the adaptive domain decomposition algorithms used, and discusses some

heuristics used to make the load balancing dynamic.

IV.A Domain decomposition

Irregular spatial workload concentrations in MCell necessitate the use of

an adaptive irregular domain decomposition, in which areas with high workload

concentration are divided relatively finely compared to areas with lower workloads.

Two domain decomposition methods explored were Recursive Co-ordinate Bisec-

tion (RCB) and a one dimensional partitioning along a 3D Hilbert Space Filling

Curve (SFC). Both methods were applied to a computational domain gridded in

three dimensions at the scale of the sample boxes (WSB), with each grid cell hold-

ing the current workload estimate for the corresponding region of space.

IV.A.1 Recursive Co-ordinate Bisection

Recursive co-ordinate bisection involves a hierarchical partitioning of space

in which the domain is first split into two subdomains of equivalent computational

load by the geometric division of the enclosed volume along a co-ordinate axis.

26

27

(A) (B) (C)

Figure IV.1: Schematic diagram for Recursive Co-ordinate Bisection with differ-

ent termination criteria : (A)Height of the tree, (B)Total number of partitions,

(C)Maximum workload density. The dots represent spatially concentrated work-

loads with the size of the dot corresponding to the amount of work at that spatial

location.

The two subdomains may not enclose volumes of the same size, but will contain

approximately equal workloads. Each subdomain is then further divided into two

partitions, each with approximately half the total workload of the parent domain.

This is a recursive process which continues until terminated by one of the following

heuristics.

Recursion can be terminated on the basis of (A) recursion tree depth,

(B) a limit on the total number of partitions formed in the system, or (C) a pre-

determined estimate of maximum allowable workload per partition (Figure IV.1

A,B,C). In the first case, the number of partitions will always be a power of two, but

partitions are not guaranteed to have approximately equal workloads and might

even be empty, especially if workloads are highly concentrated and irregular (Fig-

ure IV.1.A). The second approach is sometimes useful when trying to generate

partitions that carry a one-to-one mapping with available processors but is imple-

mentation dependent and can also result in unevenly distributed workloads. One

way of avoiding this is to overdecompose the domain and then perform an in-order

traversal through the leaves of the recursion tree and create a many-to-one map-

28

Figure IV.2: Schematic diagram for Hilbert Space Filling Curve Partitioning.

ping between partitions and processors. The third method is generally the most

practical in which a sub domain is always further partitioned unless its workload

count is below a certain fraction of the total workload. This allows regions with

higher workload densities to be partitioned more finely than others and is the

method chosen for the simulations.

IV.A.2 Hilbert Space Filling Curve

A three dimensional Hilbert space filling curve passes through the cells of

a three dimensional grid following a one dimensional path. Such a traversal ensures

locality, with every adjacent pair of cells in the one dimensional traversal being

physically adjacent to each other in three dimensional space. The space filling

curve is generated via a recursive, fractal based algorithm where the base traversal

path on a cube follows a gray code ordering of its eight vertex co-ordinates. The one

dimensional traversal along the space filling curve corresponds to a linear traversal

through the leaves of the fractal recursion tree.

Once a mapping from three dimensional co-ordinates to the one dimen-

sional index has been computed, a partitioning algorithm can traverse the one

dimensional path and assign grid points, in this case sample boxes, to processors.

A one dimensional recursive co-ordinate bisection routine or a simple average based

binning algorithm can be used to assign WSBs to processors (Figure IV.2).

29

IV.A.3 Optimality

A comparison between the two methods in terms of practicality and op-

timality of a good domain decomposition technique for MCell-K is given below.

Optimal Load Division

A load balancing step ideally results in each processor holding a workload

equal to the average load on the system. The average workload can be computed

from global information about the total load and number of available processors. A

recursive co-ordinate bisection partitioner is vulnerable to the generation of empty

partitions, and requires overdecomposition and a many-to-one mapping between

partitions and processors to achieve an optimal decomposition (Figure IV.1). A

many-to-one mapping however introduces an additional level of partitioning and

mapping in an already overdecomposed partitioning at the scale of the workload

sample boxes (WSBs), and this may result in a computational overhead.

A space filling curve partitioner on the other hand directly uses the

overdecomposition at the scale of the WSBs and is able to generate partitions

with a one-to-one mapping, with each processor holding a workload as near to the

average as possible.

Locality

It is desired that sample boxes adjacent to each other in three dimensional

space, be grouped onto the same processor. This is based on the observation that

ligand populations move gradually and workload shifts per iteration are mainly

between nearby sample boxes. Both methods are capable of preserving locality.

Irregularly Shaped Partitions and Load Redistribution

If processor partitions are restricted to regular shapes as in recursive

co-ordinate bisection, the workload balance is limited by the average size of the

30

partitions per processor. This is because the workload redistribution involves the

transfer of slices of space corresponding to groups of sample boxes between pro-

cessors rather than individual sample boxes. A one dimensional decomposition on

the space filling curve however allows for irregularly shaped partitions where load

balancing can be done by distributing workload at the scale of single WSBs. This

results in a finer load distribution over processors (Figure IV.2).

Communication

Communication between processors occurs either due to ligand diffusion

across processor boundaries or workload redistribution during load balancing.

Ligand diffusion : The surface to volume ratio of the processor partitions will

affect the amount of communication between processors. Regularly shaped par-

titions have a smaller surface to volume ratio than irregularly shaped partitions,

and are hence subject to less communication due to ligand diffusion. The space

filling curve based partitioning results in irregularly shaped partitions and more

communication may be required. This however does not result in a drastic com-

munication overhead because of the locality inherent in the space filling curve.

Also, the MCell-K results [1] described in Chapter II show that the cost of ligand

communication in a typical MCell-K run is negligible in comparison to the total

running time. We therefore ignore communication due to ligand diffusion, in our

performance analysis and load balancing algorithms.

Load Balancing Workload Redistribution : Whenever the load balancer is

invoked and a load redistribution is performed, WSBs and the associated ligand

lists are to be communicated between processors. To minimize communication of

sample boxes between processors, changes must be based on the current load distri-

bution rather than recomputing over the entire domain. The recursive co-ordinate

bisection algorithm can be made incremental by combining pairs of leaves and re-

31

dividing them based on the projected workload. However, this process may require

that the tree be unraveled up to higher levels or to the root, and this will increase

communication. The space filling curve algorithm is a one time computation. A

map is created from three dimensional cartesian co-ordinates to a one dimensional

traversal. This map is then used to do a one dimensional workload distribution

between nearest neighbour processors based on global information. Since the map

is computed only once, there is very little overhead of the workload redistribution

during a load balance call.

The space filling curve algorithm is therefore a more efficient approach

than recursive co-ordinate bisection and would be a better choice for an adaptive

load balancing algorithm.

Limitation due to size of sample boxes

One point to note is that both methods are limited by the granularity of

the computational domain at the scale of the sample boxes. It is entirely possible

that a single WSB may contain an extremely large workload that exceeds the

target average workload per processor. Since this sample box cannot be divided

further there is no way to distribute the load among different processors, and a

few iterations will have to pass before a sufficient number of ligands diffuse out of

the sample box and can be moved to another processor (Figure V.2.B).

IV.B Adaptive Load Balancing

Temporal variations in workload concentrations as described in Chapter

III suggest that adaptive load balancing is required. A scheduler can constantly

monitor the state of the system and be able to detect conditions that may indicate

a need for immediate load balancing. Information can also be obtained from the

initial state of the system to predict certain events that may require a load balance

step in the future.

32

Workload Imbalance

The overall workload imbalance Wim can be estimated at each iteration

by computing the fraction of the average workload by which the maximally loaded

processor exceeds the average workload.

Wim =
Maximum Load − Average Load

Average Load
(IV.1)

Wim can be monitored and a load balancing step is performed only if it crosses a

predetermined threshold. This method requires global information about current

workloads over all processors. Since this is a collective operation it will introduce

synchronization delays if performed at every iteration timestep. This can partially

be alleviated by checking for load imbalance only at regular intervals of time, with

the assumption that the load distribution does not change drastically within the

interval1.

MDL input

In some simulations the MDL input provides information about the oc-

currence of certain events that can disrupt the workload balance in the system.

If sudden ligand releases are to occur at regular intervals, it is usually possible

to translate this information from the MDL input, into a set of specific iteration

numbers at which the releases will occur. The releases can thus be predicted and

the load balancer can be called with an artificial additional load, just before the

release actually happens. This is particularly useful if the load imbalance is not

being monitored at every iteration timestep. Simulation results with prediction

are discussed in Chapter VI.

1In MCell-K, the sub iteration timesteps can be ignored with regard to monitoring load imbalance
since the number of ligands diffusing between processors within one iteration is usually not large enough
to cause a load imbalance.

33

Monitoring simulation variables

In some MCell simulations the operations that dominate the running time

change as the iterations proceed. For example, as increasing numbers of ligands

bind and saturate the binding effector sites, the fraction of the total running time

spent on bound ligands may increase. The workload estimate can then be altered,

and load balancing decisions can be made based on the new estimate. Also, if

large ligand releases are triggered when certain simulation parameter values cross

thresholds, the resulting workload imbalance can be predicted by monitoring the

critical variables. A decision of whether to load balance or not, can depend on

such monitored variables. There is no overhead in monitoring these parameters,

since the MCell simulation itself requires it. If the workload on any processor

is predicted to drastically exceed the average at any iteration timestep, the load

balancer can be invoked to redistribute sample boxes among processors based on

an artificial estimated load, before the load imbalance actually occurs.

Chapter V

MCell Parallel Simulator

The current version of MCell-K supports a regular domain decomposition

with a one-to-one mapping between partitions and processors. It does not yet

support overdecomposition and each processor maintains a single list of ligands

randomized with respect to the ligands’ location in the processors computational

domain. Currently, load balancing algorithms that employ overdecomposition at

the scale of the workload sample boxes cannot be implemented and tested with

MCell-K1.

In order to develop and test the performance model and load balancing al-

gorithms described in Chapters III and IV, the serial MCell code was instrumented

to simulate a parallel run. The parallel simulator was validated by demonstrating

that it could produce spatial-temporal workload trends similar to those observed

in actual MCell-K runs using a regular domain decomposition. It was then used to

test the performance model and load balancing techniques. This chapter describes

the design of this simulator, the assumptions it uses, and its validation.

1Work is currently in progress to implement an overdecomposition of the computational domain and
support a many-to-one mapping between subdomains and processors. KeLP distributed data structures
[4] are being used to overdecompose the computational domain. The overdecomposed sub-domains can
be configured to be of the size of the sample boxes required for load balancing. This will facilitate the
implementation of the dynamic load balancer described in Chapter IV, into MCell-K.

34

35

V.A Implementation

Sample Boxes

Since the performance model and the load balancer are based on statistics

obtained at the scale of the sample boxes, the first step in constructing the simula-

tor was to map all the SSVs in the computational domain to WSBs. The domain

partitions whose tensor product formed the sample box partitions were aligned

with SSV partitions to ensure that no SSV was only partially accommodated in

any sample box. A direct linear mapping from the one dimensional SSV index

carried in each ligand’s data structure, to a one dimensional sample box index

was used to assign ligands to sample boxes. This mapping is done dynamically

at each iteration based on each ligand’s current location. Counts and timings are

accumulated into an array of structures with each element holding counter and

timer statistics of one sample box2.

Ligand list reordering

In order to simulate the processing of ligands per WSB the linked list

of ligands is re-ordered to form sublists for each WSB. Each sublist contains all

ligands located within the corresponding WSB and are arbitrarily ordered with

respect to ligand location. These sublists are then concatenated in increasing order

of WSB index. The linked list re-ordering is done using only pointer manipulation,

leaving the locations of the ligand structures in the memory unchanged. Since a

linear traversal through this list during the MCell computation sequence would

be inefficient with regard to locality, the entire reordered list is copied into a

contiguous chunk of memory at the beginning of each iteration.

2In a later version of MCell when the SSVs are to be represented on a tetrahedral mesh, an alternate
mapping mechanism will be required to translate the SSV index into a corresponding sample box index
that retains a cartesian grid structure for the sample boxes.

36

Timing and Communication

During the execution of the core MCell computation loop (Figure III.1)

in which the entire linked list of ligands is linearly traversed, timers are placed

around the processing of each sublist, to obtain total execution times per sample

box. Timings required for the performance model (Chapter III) are thus accumu-

lated per WSB. Given that the observed costs for individual ligand communica-

tion in MCell-K were negligible in comparison to the total running time [1], ligand

communication between processors within and after each iteration, is ignored with

respect to timing. Ligand communication is implicit in the ligand linked list re-

ordering at the beginning of each iteration. Any ligands that have crossed sample

box boundaries in the previous iteration will be mapped to their new sample boxes.

The copying of the list into a contiguous chunk of memory emulates the storage of

each processor’s portion of the list on separate contiguous chunks of memory in a

parallel run.

Load Balancing

Once all counter and timer statistics have been obtained per sample box,

a mapping from sample box index to processor index is required to be able to com-

pute the total workload and running time per processor. This mapping depends on

the domain decomposition used. The load balancing algorithms are implemented

as functions that take in the three dimensional grid of sample box counts and times

and return a one dimensional mapping from sample box index to processor index.

Statistics are then accumulated over all sample boxes per processor and used for

further analysis.

A load imbalance estimator given by Equation IV.1 was used to compute

Wim, the load imbalance over all processors at all or a specific number of iteration

timesteps. This was used to make the load balancer adaptive by choosing to

perform a load balancing step only if the computed load imbalance Wim crossed a

predetermined threshold.

37

Load balancing via recursive co-ordinate bisection and a Hilbert space

filling curve were implemented. The recursive co-ordinate bisection method over-

decomposed the computational domain and used a many-to-one mapping between

partitions and processors. Recursion was terminated by placing an upper limit on

the allowed workload density per partition. Successive calls to this load balancer

involved a re-computation over the entire domain decomposition. The decomposi-

tion based on the Hilbert space filling curve used the overdecomposition provided

by the sample boxes and created a one-to-one mapping between partitions and

processors. The partitions were created using an average workload based binning

strategy that resulted in each processor holding a workload as near to the average

workload as allowed by the granularity of the sample boxes. Successive calls to

the space filling curve load balancer involved a one dimensional redistribution of

sample boxes between neighbouring processors.

The initial domain decomposition was computed based on information

specified in the MDL input. An artificial workload was generated across the grid

of sample boxes based on the location of release sites and the number of ligands

to be released from them in the first iteration.

Diagnostic Output

Counts and timings per processor for regular and adaptive domain de-

compositions, along with the number of sample boxes per processor were written

to a log file at each iteration. The number of sample boxes moved between pro-

cessors at each load balance step was monitored by comparing the old and new

sample box to processor mappings. The workload estimates over all sample boxes

were written to a file at specified iterations to be later loaded into ChomboVis3,

a three dimensional visualization application to monitor the spread of workload

concentration over the entire computational domain.

3http://seesar.lbl.gov/anag/chombo

38

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 5 10 15 20 25 30 35 40 45 50

W
or

klo
ad

 C
ou

nt

Epoch (50 timesteps)

(A) Processor Workload Variation - Regular Decomposition

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
on

ds
)

Epoch (50 timesteps)

(B) Parallel Running Times

unbalanced - max running time
average running time

Figure V.1: Validation of the parallel simulator : (A) Workload count per proces-

sor for each of the most heavily loaded processors using a regular decomposition.

(B)Maximum and average running times over all processors using a regular de-

composition.

V.B Verification

Verification tests were done with a static regular decomposition similar

to that used in MCell-K on the Chick Ciliary Ganglion simulation. The simulator

was run on a 2.2GHz processor.

Test with a static regular decomposition

Figure V.1.A shows the load per processor for the most heavily loaded

processors, as a function of iteration timestep for a simulated parallel run of the

Chick Ciliary Ganglion simulation. These trends show that the initial workload

distribution across processors rapidly changes as the ligands diffuse across proces-

sor boundaries resulting in a persistent high workload imbalance across processors.

These trends are similar to those observed in the MCell-K runs described in Chap-

ter II and Figure II.2.A in which a rapid movement of ligands between processors

quickly resulted in a high load imbalance that persisted for a long time.

Figure V.1.B shows the maximum running time over all processors as a

function of iteration timestep as compared to the average (ideal) running time

per processor. The most heavily loaded processor ran three times slower than the

39

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e
(s

ec
on

ds
)

Epoch (50 timesteps)

(A) Parallel Running Times

unbalanced - max running time
balanced - max running time

average running time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1 2 3 4 5 6 7

W
SB

 C
ou

nt

Iteration Number

(B) WSB Count on most heavily loaded processor

WSB count

Figure V.2: Validation of the load balancer : (A) Maximum and average running

times over all processors for unbounded diffusion with a regular decomposition and

load balancing. (B)Number of WSBs on the most heavily loaded processor for the

first 7 iterations of the unbounded diffusion simulation with load balancing.

average time per processor, indicating a persistent load imbalance. The parallel

running time obtained was 375 seconds with the regular decomposition and 114

seconds as the average running time over all processors. This trend is similar to

that observed in MCell-K (Figure II.2.B).

Load Balancer Test

The load balancing algorithms were then tested with the perfect instan-

taneous workload estimator, namely the actual measured running time per sample

box per iteration. The MCell simulation used MDL input corresponding to a sin-

gle release site located in the middle of the computational domain releasing 40,000

ligands that then undergo unbounded diffusion in free space.

The correctness of the load balancer can be judged via the plot in Fig-

ure V.2.A which shows the maximum running time over all processors with and

without load balancing, along with the average (ideal) load. The running times

for a run without load balancing were obtained based on a static regular domain

decomposition. The running times obtained with load balancing are seen to closely

track the target ideal curve. Since the actual measured running time per workload

40

sample box (WSB) was used to estimate the workload distribution for the load bal-

ancer, this trend shows that the load balancer is capable of achieving a near ideal

workload balance across processors. The total unbalanced running time was 402

seconds, the (ideal) average time was 124 seconds and the total balanced running

time (without load balancing costs) was 142 seconds resulting in a computational

speedup of 2.8.

The curve does not track the target ideal curve in the first few iterations.

This is because the size of the sample boxes limits the granularity of workload

redistribution. In the first few iterations most of the workload is concentrated

within one or two sample boxes, and cannot be distributed across all available

processors. Figure V.2.B shows the number of WSBs on the most heavily loaded

processor during the first few iterations. The total workload on this processor

greatly exceeded the average but there was no way to further divide and distribute

it among other processors.

These tests show that in the case of a perfect instantaneous workload

estimator, the load balancer was accurate and effective up to the granularity of

the sample boxes. The accuracy of the performance model under various simula-

tion conditions and the accuracy and efficiency of some adaptive load balancing

techniques are discussed in Chapter VI.

Chapter VI

Simulations and Results

The performance models discussed in Chapter III and the load balancing

algorithms discussed in Chapter IV were applied to some test runs of MCell. One

test case was that of Simple Unbounded Diffusion and the other included periodic

ligand releases that disrupt the load balance. The results were analyzed in terms

of the accuracy of the performance models and the efficiency of the load balancing

algorithms. A simulation run was then done on MDL input for a real data set cor-

responding to the Chick Ciliary Ganglion simulation and its results were analyzed

to estimate the performance and accuracy of these methods in the general case of

a real parallel MCell-K simulation.

VI.A Test Case : Simple Unbounded Diffusion

The Simple Unbounded Diffusion simulation consists of a single release

site located in the middle of the computational domain and releasing 40000 lig-

ands in the first iteration. The ligands are allowed to diffuse outward via a three

dimensional Brownian-dynamics random walk. This is the simplest type of MCell

simulation and has a spatial workload distribution that is initially concentrated in

space and then gradually spreads out.

41

42

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

No
rm

al
ize

d
Co

un
ts

 a
nd

 ti
m

es

Iteration timestep

(A) Counts for one WSB

Total Time
Total Ligand count

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

No
rm

al
ize

d
Co

un
ts

 a
nd

 ti
m

es

Iteration timestep

(B) Counts for one WSB

Total Time
Total Ligand count

Figure VI.1: Running time and workload estimate for the unbounded diffusion

simulation measured within (A) a WSB enclosing a release site and (B) an initially

empty WSB that ligands diffuse into. The instantaneous performance model using

the free ligand count to estimate the running time per WSB is seen to accurately

estimate the running time.

VI.A.1 Performance model

Since there are no mesh walls, the instantaneous model estimates the

running time from the number of free ligands. Figure VI.A.1 shows the measured

running time and the workload estimate for two WSBs, one containing a release

site and one that is initially empty. It can be seen that the free ligand count is an

accurate estimator of the total running time of this simple run.

VI.A.2 Load Balancing

The performance model was also tested via load balancing by using the

model to obtain workload estimates. A comparison was also made between the

Recursive Co-ordinate Bisection (RCB) and Space Filling Curve (SFC) algorithms

used for domain decomposition in the Unbounded Diffusion simulation. Runs

were performed with load balancing performed at each iteration, and compared to

runs with adaptive load balancing using Wim, the workload imbalance estimator.

The parallel running times were obtained as the maximum running time over all

43

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e
(s

ec
on

ds
)

Epoch (50 timesteps)

(A) Parallel Running Times

unbalanced - max running time
balanced - max running time

average running time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e
(s

ec
on

ds
)

Epoch (50 timesteps)

(B) Parallel Running Times

unbalanced - max running time
balanced - max running time

average running time

Figure VI.2: Unbounded diffusion : Maximum and average running times over

all processors with a regular decomposition and with (A) SFC load balancing (B)

SFC Adaptive load balancing using Wim.

processors. The unbalanced running time was based on a static regular domain

decomposition. The balanced running time was based on dynamic and adaptive

irregular domain decompositions. The ideal running time was computed as the

global average running time over all processors and served as a reference to as-

certain how accurate the load balancing was. The ideal parallel running time is

however not always attainable given the granularity of the WSBs. A WSB holding

more than the average workload of the system cannot be further partitioned to

distribute its workload.

Computation

Figure VI.2.A shows that the balanced parallel running time closely tracks

the ideal curve when load balancing was performed at every iteration timestep.

The instantaneous model used here is thus a valid estimate of the parallel running

time and leads to load balancing results similar to that obtained using the actual

running time as the workload estimate (Figure V.2).

The accuracy of the load imbalance estimator was tested by making the

load balancing adaptive. After each load balancing step, as the ligands diffused

out and the load imbalance increased, the running time of the maximally loaded

44

SFC SFC RCB RCB
continuous adaptive continuous adaptive

Unbalanced running time (sec) 407.45 403.71 401.69 403.99
Ideal running time (sec) 125.3 124.2 123.5 124.204
Balanced running time (sec)
(Only Computation)

157.78 157.59 154.67 155.52

Computational Speedup 2.5824 2.5618 2.5971 2.5977
Ratio of Balanced to Ideal run-
ning time

1.2592 1.2688 1.2524 1.2522

Number of Load Balancing
Steps

1000 158 1000 29

Time spent per load balance
step (sec)

0.062 0.061 0.127 0.104

Average number of WSBs to be
communicated per load balance
step

51.074 292.68 84.458 2105.9

Table VI.1: Unbounded Diffusion - Parallel Running times and speedups on 16

processors : The Space Filling Curve (SFC) and Recursive Co-ordinate Bisection

(RCB) domain decompositions resulted in similar ratios of total balanced to ideal

running time. Adaptive load balancing using Wim required a small number of

load balancing steps to achieve computational speedups and balanced to ideal

running time ratios comparable to the runs with load balancing performed at

every iteration. RCB based load redistribution was more expensive in terms of

computation and communication.

processor began to increase. The load balancer was called whenever the workload

imbalance estimator Wim (given by equation IV.1) crossed 1.2. This allows a

workload imbalance of up to 20% of the average load to be tolerated. Figure VI.2.B

shows that the balanced running time as a result of adaptive load balancing also

closely tracks the ideal curve. Table VI.1 compares total parallel running times for

simulation runs with and without load balancing using both RCB and SFC based

algorithms1.

1The timings were obtained from separate simulation runs. The difference of 3-6 seconds in the total
unbalanced running time is due to noise in the timings arising from external effects like memory and
disk accesses.

45

The following observations can be made.

1. The Space Filling Curve (SFC) and Recursive Co-ordinate Bisection (RCB)

domain decompositions resulted in similar ratios of total balanced to ideal

running time showing that they were both able to achieve a comparable

workload balance.

2. Adaptive load balancing using Wim required a small number of load balanc-

ing steps to achieve computational speedups and balanced to ideal running

time ratios comparable to the runs with load balancing performed at every

iteration.

3. RCB load balancing per iteration was more expensive than load balancing

based on the SFC algorithm. The dynamic RCB domain decomposition

however was more stable and required fewer load balancing steps than the

SFC.

4. The RCB decomposition required much more communication than the SFC,

even in the dynamic case where the RCB performed fewer load balancing

steps. This could be improved by making successive RCB decompositions

incremental. Also, the average number of WSBs communicated per load

balancing step was larger for the dynamic load balancing run. This is because

in the dynamic load balancing runs a larger imbalance has to be corrected

for at each step.

Communication

During each load balancing step communication between processors is

carried out in terms of WSBs. Communication counts for the Unbounded Diffu-

sion simulation using SFC and RCB domain decompositions were obtained. Figure

VI.3 shows the communication counts for the first 160 iterations with load balanc-

ing performed at every iteration and with adaptive load balancing. The entire

simulation ran for 1000 iteration timesteps, but in both cases, all significant WSB

46

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140 160

Co
un

ts

Iteration Number

(A) Load Balancing Communication Counts

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140 160

Co
un

ts

Iteration Number

(B) Load Balancing Communication Counts

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140 160

Co
un

ts

Iteration Number

(A) Load Balancing Communication Counts

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140 160

Co
un

ts

Iteration Number

(B) Load Balancing Communication Counts

Figure VI.3: Load Balancing Communication Counts - (top) Unbounded Diffu-

sion with load balancing at every iteration: (A) SFC, (B) RCB and (bottom)

Unbounded Diffusion with Adaptive load balancing:(A) SFC, (B) RCB.

communication during load balancing occurred within the first 160 iterations. Also

the maximum number of WSBs are communicated during the first few load bal-

ancing steps.

This demonstrates that the workload is initially very irregularly dis-

tributed and is highly dynamic in nature during the first 100 iterations after which

it is more naturally balanced and WSB communication becomes negligible. This

shows that load balancing communication costs could be large during the first few

hundred iteration timesteps during which load balancing is not only required more

frequently, but the number of WSBs and ligand lists to be communicated per load

balance step is much more than during the later iterations.

47

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

No
rm

al
ize

d
Co

un
ts

 a
nd

 T
im

es

Iteration Number

Running Time and Estimated Workload

Total time
Estimated time

Figure VI.4: Unbounded Diffusion with Periodic Ligand Releases: (A)Total mea-

sured running time and estimated running time using the instantaneous model.

Use of MDL input information

Information about periodic ligand releases obtained from the MDL input

can be used to predict when a load balancing step may be required, by using an

artificial workload estimate. The unbounded diffusion simulation was run with pe-

riodic ligand releases (Figure VI.4) and an artificial workload was used to perform

a load balancing step before each release. A small test run included 100 iterations

with two release sites, each releasing 1000 ligands every 10 iteration timesteps up

to iteration 40. The periodic releases result in the total serial running time profile

of Figure VI.4. Since there are no mesh walls, the free ligand count is an accurate

estimator of the total running time.

Figure VI.5 shows the maximum and average running times obtained

for a run with dynamic load balancing with and without prediction. Without

prediction, the instantaneous model can detect the releases only after they occur,

and there are periodic instances of high load imbalance at iterations 10,20,30 and

40 (almost equal to that of the unbalanced case) corresponding to ligand releases.

With prediction of the ligand releases, the balanced running times for iterations

10,20 and 30 reduce to half the balanced running time without prediction at those

iterations. The granularity of the WSBs prevented a better workload balance at

48

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 0.05

 0 20 40 60 80 100

Ti
m

e
(s

ec
on

ds
)

Iteration Number

(A) Parallel Running Times - Without Prediction

time - unbalanced
time - balanced

time - average
load balance flag

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 0.05

 0 20 40 60 80 100

Ti
m

e
(s

ec
on

ds
)

Iteration Number

(B) Parallel Running Times - With Prediction

time - unbalanced
time - balanced

time - average
load balance flag

Figure VI.5: Unbounded Diffusion with Periodic Ligand Releases - Adaptive Load

Balancing: (A) Maximum and average running times over all processors without

prediction. The balanced running time has high peaks at iterations 10,20,30 and

40 that correspond to ligand releases that result in a high load imbalance for

one iteration. (B) Maximum and average running times over all processors with

prediction. The balanced running time at iterations 10,20 and 30 reduce to half

the balanced running time of (A) at those iterations.

those iterations. Without prediction, load balancing was performed 31 times and

with prediction it was performed 33 times. The total running time reduced and

the ratio of the total balanced running time to the ideal running time decreased

from 1.2012 to 1.1732 with prediction, showing that a better overall load balance

was achieved.

Based on this simple run, it can be seen that prediction of ligand releases

can reduce the parallel running time. The effect of prediction will be more pro-

nounced if the load balancing is not limited by the granularity of the WSB grid.

Periodic releases described in the MDL input can be predicted by computing the

iteration numbers at which the releases are to occur. Releases that are triggered

by certain simulation variables can be predicted by monitoring the values of the

concerned variables. Ligand releases can also be designed to occur randomly, in

which case, prediction is almost always not possible and one iteration with a high

load imbalance must pass before being detected by the instantaneous model.

49

VI.B Test Case : Chick Ciliary Ganglion

The Chick Ciliary Ganglion MCell simulation was used as the main test

case in this analysis. The input to this simulation is a realistic structure recon-

structed using serial electron microscope tomography of a chick ciliary ganglion.

It consists of a complex set of mesh surfaces with several effector tiles and ligand

binding sites. Ligands released in the first iteration diffuse outward and can react

with mesh walls and change state, bind with effector sites, or decay. The simula-

tions were run for 2500 iterations on a 2.2GHz processor. There were 32 release

sites located near mesh walls, each releasing 1000 ligands during the first iteration.

A complete run would involve over 500 release sites, each releasing 5000 ligands

and would be repeated several times to ensure statistical accuracy of the results.

The simulations and results discussed in this section are based on one simulation

run. Repetitions of the runs gave almost identical results. The space filling curve

and recursive co-ordinate bisection based dynamic load balancers were both tested

in these runs.

VI.B.1 Performance Model

During the simulation, ligands released from sites located near mesh sur-

faces diffused out and began to interact with the mesh walls almost immediately.

Ligands began to bind to the effector tiles and the number of free ligands dropped

rapidly.

Parameters of the instantaneous model given by Equations III.1 and IV.1

were used to construct an estimate of the running time. Figure VI.6 shows the

running time profile over the entire computational domain along with the computed

workload estimate, scaled to the same magnitude as the observed running time. It

is seen that this workload estimate gives an accurate estimate of the total running

time, using spatially varying operation counts.

50

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

No
rm

al
ize

d
Ti

m
es

Epoch (100 timesteps)

Normalized Total and Estimated Running time

Total Time
Estimated Time

Figure VI.6: Normalized running time profiles and workload estimates for the chick

ciliary ganglion simulation with release sites located near mesh walls.

VI.B.2 Load Balancing

The performance model was also tested via load balancing simulations

that used the model to obtain workload estimates for the Chick Ciliary Ganglion

simulation. A comparison was made between RCB and SFC domain decomposition

algorithms on 16 processors. Comparisons were made between runs with load

balancing at each iteration, adaptive load balancing based on Wim the workload

imbalance estimator, and load balancing performed at every 10 iterations.

Computation

The parallel running time was obtained as before, as the maximum ob-

served running time over all processors per iteration. The ideal running time was

obtained as the average of the running times over all processors at each iteration.

The unbalanced parallel running time using a static decomposition, along with the

balanced and average (ideal) parallel running times observed with SFC and RCB

based load balancing performed at every iteration are shown in Figure VI.7. Par-

allel running times using SFC and RCB load balancing at every iteration, adaptive

load balancing using Wim and load balancing at every 10 iterations are summarized

in Table VI.2.

51

SFC SFC SFC RCB RCB RCB
conti- adaptive regular conti- adaptive regular
-nuous -nuous

Unbalanced running
time (sec)

335.78 336.71 381.24 335.27 335.7 381.4

Ideal running time (sec) 99.32 99.6 111.97 99.12 99.39 111.8
Balanced running time
(sec) (Only Computa-
tion)

141.47 141.21 164.32 150.6 151.03 176.67

Ratio of Balanced time
to Ideal time

1.424 1.41 1.46 1.52 1.51 1.57

Computational Speedup 2.37 2.38 2.32 2.23 2.22 2.16
Number of Load Balanc-
ing Steps

2500 2443 250 2500 2454 250

Time spent per load bal-
ancing step (sec)

0.062 0.061 0.062 0.102 0.102 0.101

Average number of
WSBs communicated
per load balancing step

20.7 15.310 75.42 69.4 51.235 127.59

Table VI.2: Parallel running time and costs for the chick ciliary ganglion test case

using SFC and RCB based load balancing. Adaptive SFC and RCB based load

balancing were done by performing load balancing steps whenever Wim crossed 0.3.

Regular load balancing was done by performing load balancing every 10 iterations.

The SFC domain decomposition resulted in a more balanced workload and hence

better speedups than the RCB. Load balancing at every 10 iterations achieved a

slightly poorer speedup, but given the number of load balancing steps performed,

would incur a lower total load balancing cost compared to the other methods. The

SFC based load balancer incurred less computational and communication costs.

52

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 5 10 15 20 25

Ti
m

e
(s

ec
on

ds
)

Epoch (100 timesteps)

(A) Parallel Running Times

unbalanced - max running time
balanced - max running time

average running time

 1

 10

 100

 0 5 10 15 20 25

Ti
m

e
(s

ec
on

ds
)

Epoch (100 timesteps)

(B) Parallel Running Times

unbalanced - max running time
balanced - max running time

average running time

Figure VI.7: Maximum and average running times with a static regular decompo-

sition and with SFC based load balancing at each iteration for the ciliary ganglion

simulation with release sites located near mesh walls. A computational speedup of

2.37 was obtained. (A) linear scale, (B) logarithmic scale.

The following observations can be made.

1. Figure VI.7.A shows that load balancing was most effective during the first

few hundred iterations during which the regular decomposition resulted in a

very high load imbalance. With a logarithmic scale (Figure VI.7.B) it was

seen that the accuracy of the performance model degraded slightly after the

first few hundred iterations, but this did not adversely affect the running

time during the later iterations which were inherently less compute intensive

than the initial iterations.

2. Table VI.2 shows that the SFC domain decomposition resulted in a bet-

ter computational speedup than the RCB domain decomposition. The runs

with the SFC domain decomposition gave lower ratios of the balanced to

ideal running times, showing that the workload distribution obtained using

the SFC algorithm was better balanced than the load distribution obtained

with the RCB algorithm. This can be explained by the fact that the SFC

decomposition is more fine grained and because it allows irregularly shaped

partitions per processor.

53

3. Runs with load balancing at every iteration were compared to runs with dy-

namic load balancing where load balancing steps were performed based on

a Wim threshold. The tight threshold of 1.3 on Wim did not result in any

benefit since the load balancer was invoked at over 2400 out of 2500 itera-

tions. The runs with load balancing performed every iteration incurred lower

total load balancing costs, but showed a slight degradation in load balanc-

ing accuracy and computational speedup. There were fewer load balancing

steps, but the number of WSBs to be communicated per load balance step

was higher.

4. The time spent per iteration on computing the new workload distribution

across processors was an order of magnitude higher for the RCB as compared

to the SFC. Communication costs were also observed to be higher for the

RCB decomposition.

It can therefore be seen that the Space Filling Curve based irregular

domain decomposition is a more efficient choice for dynamic load balancing. The

SFC based load redistribution is more efficient than the RCB with regard to both

computation and communication costs. The decomposition is more fine grained

and results in a more balanced workload at the end of each load balance step.

Higher computational speedups are observed as a consequence.

Communication

Load balancing communication counts in terms of the number of WSBs

to be communicated between processors for the chick ciliary ganglion simulation

using SFC load balancing are shown in Figure VI.8. The number of WSBs to be

communicated in the run with load balancing performed at every iteration is 66143

as compared to 56203 for the dynamic load balancing case. Also, the simulation

ran for 2500 iteration timesteps but all significant load balancing communication

was required only within the first 200 iterations.

54

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200

Co
un

ts

Iteration Number

(A) Load Balancing Communication Counts

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200

Co
un

ts

Iteration Number

(B) Load Balancing Communication Counts

Figure VI.8: Load Balancing Communication Counts for the first 200 iterations:

(A) SFC load balancing at all iterations (B) SFC Adaptive load balancing.

These observations suggest a trade-off between the computational versus

communication costs associated with load balancing while deciding when a load

balance step is to be performed. Runs with frequent load balancing incur more

computational costs but involve less communication. Runs with load balancing

performed every 10 iterations had considerably less computational overheads but

significantly larger communication costs. Also, most load balancing communica-

tion is required during the first few hundred iterations, which already comprises a

large fraction of the total computation and this may limit the speedup.

Use of MDL Input

Figure VI.9.A shows the workload distribution at the 20th iteration. It

can be seen that the workload is concentrated and irregularly distributed during

the first few iteration timesteps. Figure VI.9.B depicts a cross section of the

workload distribution at the 20th iteration that shows the varying workload density

profile within regions of high workload. The MDL description of the release site

locations and the number of ligands to be released from each release site during

the first iteration, was used to generate the initial domain decomposition. This

optimization resulted in a decrease in the time spent during the first few iterations

as compared to a run that began with a regular decomposition.

55

Figure VI.9: (A)Three dimensional plot of the workload distribution at the end of

the first 20 iterations (B) A Cross Section of the workload to display the irregular

density distribution.

Parallel Speedups

Parallel running times were obtained using a regular domain decomposi-

tion and SFC based load balancing on the chick ciliary ganglion simulation simu-

lated for 8,16,32 and 64 processors. Figure VI.10 shows the balanced parallel run-

ning times per iteration for simulations of 8,16,32 and 64 processors. The observed

speedups with the parallel running times obtained with regular decompositions

can be compared to the ideal speedup and that obtained after load balancing. The

running time on 8 processors was taken as the base case for speedup calculations.

Figure VI.10.B shows speedup plots for the ideal, unbalanced and balanced cases

and Table VI.3 summarizes the observed timings.

The following conclusions can be made.

1. The balanced simulation scales better than the unbalanced case, but does

not scale ideally. The precision of the performance model becomes more im-

portant as the number of processors is increased (note that load balancing

communication was not timed and the speedups have been computed based

only on the computational load per processor attributed to MCell computa-

tions.)

56

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
on

ds
)

Epoch (50 timesteps)

(A) Parallel Running Times

8 processors
16 processors
32 processors
64 processors

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70

Sp
ee

du
p

Number of Processors

(B) Parallel Speedup

Speedup - Ideal
Speedup - Unbalanced

Speedup - Balanced

Figure VI.10: (A)Load Balanced Parallel Running times on 8,16,32,64 processors

(B) Speedup Curves with unbalanced, balanced and ideal running times. Speedups

are relative to the running time on 8 processors.

8 procs 16 procs 32 procs 64 procs
Unbalanced Running Time 582.84 333.35 205.55 196.29
Speedup - Unbalanced 1.00 1.748 2.83 2.96
Ideal Running Time 198.32 98.78 49.02 24.56
Speedup - Ideal 1.00 2.01 4.04 8.07
Balanced Running Time (Only
Computation)

243.61 140.24 80.47 63.88

Computational Speedup 1.00 1.73 3.02 3.81
Balanced/Ideal 1.2284 1.4197 1.6416 2.6010

Table VI.3: Running times on 8,16,32 and 64 simulated processors. The 8 processor

timings are taken as the base case for computing parallel speedups

2. One factor that may limit the speedup on a large number of processors is

overdecomposition becoming an overhead during the latter half of the simu-

lation when the workload is rarified.

3. If the cost for load balancing is also factored in, as the number of processors

increases the load balancing communication becomes a global overhead and

the problem will not scale as well. This shows that efficient and scalable load

balancing operations will be required.

Chapter VII

Conclusion

This thesis involved a performance analysis of the MCell Monte-Carlo

Cellular Microphysiology simulator and the design and evaluation of an accompa-

nying performance model for MCell-K, a parallel implementation of MCell. The

model was validated by applying it to the problem of dynamic load balancing in

a parallel environment. A parallel simulator was implemented and used to test

the performance models on dynamic load balancing algorithms based on adaptive

irregular domain decomposition techniques.

Two components of the hybrid performance model were explored. An

instantaneous component that estimated the running time for an iteration based

on operation counts gathered during the previous iteration was derived from the

running time profile of all spatially varying computations. The instantaneous com-

ponent can also be obtained from actual running time measurements during the

previous iteration but will be subject to timer overheads and inaccuracies due to

limited timer resolution and noisy running time variations. A predictive compo-

nent was added to use prior information about the state of the system and the

mechanisms that drive it, to predict the running time of a future iteration. A

hybrid performance model that combined the instantaneous and predictive com-

ponents was used to estimate the dynamic spatial workload distribution in a typical

MCell-K run. An adaptive load balancer that used this workload estimate was able

57

58

to dynamically detect a load imbalance if it occured and trigger the redistribution

of workload among processors. The predictive component of the hybrid model was

effective at iterations where an accurate estimate could not be obtained from ret-

rospective information alone. The use of the hybrid performance model along with

dynamic load balancing algorithms resulted in a factor of two performance im-

provement in simulated parallel runs on 16 processors. The resulting computation

was also found to be scalable.

Load balancing algorithms explored were based on two adaptive domain

decomposition techniques, recursive co-ordinate bisection and a one dimensional

partitioning along a 3D Hilbert space filling curve. A few comparative performance

tests were performed to evaluate the two techniques in terms of accuracy, stability

and computational and communication costs. The load balancing tests revealed

that the space filling curve algorithm resulted in a more balanced workload distri-

bution and incurred less load balancing computation and communication costs.

Tests were performed on simulations of unbounded diffusion and periodic

ligand releases as well as a realistic sample MCell simulation with the complete

mesh microstructure and ligand diffusion and reactive properties of a chick ciliary

ganglion. These tests demonstrated the accuracy of the performance model and

load balancing techniques on the problems tested. The results showed that it is

possible to derive an accurate performance model for an MCell-K run. Although a

generic model may not be optimal for all types of simulations, custom performance

models can be constructed using information from the input model description.

MCell-K is currently being modified to handle an over-decomposition

of the computational domain and support a many-to-one mapping between sub-

domains and processors. The sub-domains that are created can be configured to

be the size of the workload sample boxes used to obtain the workload estimate in

the performance model. This will facilitate the implementation of a dynamic load

balancer into the framework of MCell-K.

Bibliography

[1] G.T. Balls., S.B. Baden. Kispersky, Tilman, Thomas M. Bartol, Terrence
J. Sejnowski. A large scale Monte Carlo simulator for cellular microphysiol-

ogy. Proceedings of the 18th International Parallel and Distributed Processing
Symposium. April 1982

[2] T.M. Bartol, J.M. Stiles. Monte Carlo Methods for Simulating Realistic Synap-

tic Microphysiology using MCell. E. DeSchutter,editor, Computational Neu-
roscience: Realistic Modeling for Experimentalists,CRC Press 2001.

[3] J.R.Pilkington, S.B. Baden. Dynamic Partitioning of Non-Uniform Structured

Workloads with Space Filling Curves. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(3):288–300, 1996.

[4] S.B. Baden, P.Collela, D. Shalit, B.V.Straalen. Abstract KeLP. Proceedings of
the Tenth SIAM Conference on Parallel Processing for Scientific Computing,
Portsmouth, Virginia, March 2001.

[5] S.B.Baden, S.R.Kohn. A comparison of load balancing strategies for particle

methods running on mimd multiprocessors.. In Proceedings of the Fifth SIAM
Conference on Parallel Processing for Scientific Computing, March 1991.

[6] F.D. Sacerdoti. A Cache-Friendly Liquid Load Balancer. M.S. Dissertation,
June 2002.

[7] S.B. Baden. Programming Abstractions for Dynamically Partitioning and

Coordinating Localized Scientific Calculations Running on Multiprocessors .
SIAM J. on Scientific and Statistical Computing, (pp. 145-157) January 1991.

[8] L.V. Kale The Virtualization Approach to Parallel Programming: Runtime

Optimizations and the State of the Art. LASCI, October 2002.

[9] J.E. Flaherty et al. Parallel Structures and Dynamic Load Balancing for Adap-

tive Finite Element Computation. Applied Numerical Mathematics, Volume
26, pp 241-263, January 1998.

[10] H. Casanova, T.M. Bartol, J.R. Stiles, F.Berman. Distributing MCell sim-

ulations on the grid. International Journal of High Performance Computing
Applications, 15:243-257, 2001.

59

60

[11] J. C. Phillips et al. NAMD:Biomolecular Simulation on Thousands of Proces-

sors. IEEE 2002

[12] C. Xu, Francis C.M.Lau. Load Balancing in Parallel Computers - Theory and

Practice. Kluwer Academic Publishers.

[13] M.J.Berger, S.H.Bokhari. A partitioning strategy for non-uniform problems on

multiprocessors. IEEE Transactions on Computers, vol C36,pp 570-580,May
1987.

[14] J.P.Singh, J.Holt, J.L Hennessy, A.Gupta. A parallel adaptive fast multipole

method. Supercomputing, pp 54-65, 1993.

[15] Office of Graduate Studies and Research. Instructions For Preparation and

Submission of Doctoral Dissertations and Masters’ Theses. University of Cal-
ifornia, San Diego. 1991.

