Wide-band imaging with the EVLA

- (1) Wide-band data and imaging 11
- (2) MS-MFS details 6
- (3) Examples on EVLA data 11
- (4) Self-calibration and continuum subtraction 3

Multi-Frequency Synthesis (MFS)

VLA C configuration UV-coverage

MFS: Combine all channels during imaging

- Better imaging fidelity
- Increased signal-to-noise ratio
- Higher angular resolution
- Sky brightness changes with frequency

Multi-Frequency Primary Beams

Spectral Index of PB

MS-MFS: as implemented in CASA

Sky Model: Collection of multi-scale flux components whose amplitudes follow a polynomial in frequency

$$I_{v}^{sky} = \sum_{t} I_{t} \left(\frac{v - v_{0}}{v_{0}} \right)^{t} \qquad I_{t} = \sum_{s} \left[I_{s}^{shp} * I_{s,t} \right]$$

User Parameters: - Set of spatial scales (in units of pixels): multiscale=[0,6,10]

- Order of Taylor polynomial : mode='mfs', nterms=3

- Reference frequency : reffreq = '1.5GHz'

Image Reconstruction: Linear least squares + Deconvolution (+ W-Projection)

Data Products: Taylor-Coefficient images

- Interpret in terms of a power-law : spectral index and curvature
- Evaluate the spectral cube (for non power-law spectra)

Runtimes reported by different people have ranged from 1 hr to several days.

Dynamic Range (vs) NTERMS (I=14.4 Jy/bm, alpha = -0.47, BW=1.1GHz at Lband)

Approximating a power-law with a Taylor-polynomial – error : O(n+1)

These plots are for a single point-source at the phase center, with very high signal-to-noise levels.

In practice, use more than nterms=2 or 3 only if there is sufficient signal-to-noise, and if you can see spectral artifacts in the image with nterms=2 or 3.

Accuracy of spectral-index vs frequency-range (and SNR)

Source	Peak Flux	L alpha	C alpha	LC alpha	True	
Bottom right	100 uJy	-0.89	-1.18	-0.75	-0.7	RMS
Bottom left Mid	100 uJy 75 uJy	+0.11 -0.86	+0.06 -1.48	+0.34 -0.75	+0.3 -0.7	5 uJy
Тор	50 uJy	-1.1	0	-0.82	-0.7	

=> To trust spectral-index values, need SNR > 50 (within one band), or SNR > 10 (across bands)

=> Error-bars follow standard polynomial-fitting rules.

Multi-Scale vs Point-Source model for wideband imaging

=> For extended emission, a multi-scale model gives a better spectral index maps

Comparison of MS-MFS with Single-SPW imaging

Data: 20 VLA snapshots at 9 frequencies across L-band + wide-band self-calibration

=> It helps to use the extra uv-coverage

VLA: M87 1.1-1.8 GHz spectral curvature

Data: 10 VLA snapshots at 16 frequencies across L-band

From existing P-band (327 MHz), L-band(1.42 GHz) and C-band (5.0 GHz) images of the core/jet

P-L spectral index : -0.36 ~ -0.45

L-C spectral index : $-0.5 \sim -0.7$

Moderately Resolved Sources

Can reconstruct the spectrum at the angular resolution of the highest frequency

Restored Intensity image

Spectral Index map

Very large spatial scales – without short-spacing data

The multi-frequency data do not constrain the spectrum at large scales

750 lambda at the middle frequency

4.5 arcmin

Artificially Steep Spectrum

Very large spatial scales – with short-spacing data

Extra short-spacing information can help constrain the spectrum

Wide-band imaging with the EVLA

(1) Wide-band data and imaging - 11

- (2) MS-MFS details 6
- (3) Examples on EVLA data 11
- (4) Self-calibration and continuum subtraction 3

MFS with a spectral model

Taylor Polynomial in frequency

$$I_{v}^{sky} = \sum_{t} I_{t}^{m} \left(\frac{v - v_{0}}{v_{0}} \right)^{t}$$

Power Law with varying index

$$I_{\nu}^{sky} = I_{\nu_0}^{sky} \left(\frac{\nu}{\nu_0}\right)^{\alpha + \beta \log(\nu/\nu_0)}$$

Solve...

$$\begin{bmatrix} H_{00} & H_{01} & H_{02} \\ H_{10} & H_{11} & H_{12} \\ H_{20} & H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} I_0^m \\ I_1^m \\ I_2^m \end{bmatrix} = \begin{bmatrix} I_0^{dirty} \\ I_1^{dirty} \\ I_2^{dirty} \end{bmatrix}$$

$$H_{ij} \rightarrow I_{ij}^{psf} = \sum_{\nu} \left(\frac{\nu - \nu_0}{\nu_0} \right)^{i+j} I_{\nu}^{psf}$$

$$I_{i}^{dirty} = \sum_{v} \left(\frac{v - v_{0}}{v_{0}} \right)^{i} I_{v}^{dirty}$$

Relate Taylor-coefficients and power-law parameters

$$I_0^{sky} = I_{v_0}^{sky} \qquad I_1^{sky} = I_{v_0}^{sky} \alpha \qquad I_2^{sky} = I_{v_0}^{sky} \left(\frac{\alpha (\alpha - 1)}{2} + \beta \right)$$

Repeat for multiple spatial scales, using cross-terms during peak-finding and updates

'CLEAN' Minor cycle – solves the convolution equation

Measurement Eqns : $V = [S][F]I^{sky}$

 $[H] = [F^T][S^T][W][S][F]$

Normal Eqns : $[H]I^{sky} = I^{dirty}$

 $I^{dirty} = [F^T][S^T][W]V$

'Multi-Frequency Minor Cycle

$$I_{\nu}^{sky} = \sum_{t} I_{t}^{sky} \left(\frac{\nu - \nu_{0}}{\nu_{0}} \right)^{t}$$

A linear-combination of convolutions......

Joint deconvolution....

Choices that effect errors

- Artifacts in the continuum image due to too few Taylor-terms.

 Very high signal-to-noise, point-sources: use a higher-order polynomial.

 Otherwise, use 2 or 3 terms to prevent over-fitting.
- Error in spectral index/curvature due to low SNR (over-fitting) Low signal-to-noise: use a linear approximation. Again, nterms=2 or 3 is safer for low signal-to-noise extended emission.
- Error propagation during the division of one noisy image by another.

 Extended emission: use multiple spatial scales to minimize this error

 Choice of scale sizes: by eye, and verifying that the total-flux converges (i.e. increasing the largest scale size no longer increases the total flux in the reconstruction).
- Flux-models that are ill-constrained by the measurements
 Choose scales/nterms appropriately. For very large scales, add short-spacing information.
- Wide-field errors: Time and Frequency-variability of the Primary Beam Use W-projection, A-projection along with MS-MFS (software in progress)

Positive things: Increased imaging sensitivity (over wide fields), high-fidelity high dynamic-range reconstructions of both spatial and spectral structure.

Choices that effect performance (MS-MFS implementation)

- Major Cycle runtime x $N_{\it taylor}$ (and size of dataset)
 - N_Taylor residual images are gridded separately; N_Taylor model images are 'predicted'.
 - Wide-field corrections are applied during gridding (A-W-Projection, mosaicing).
- Minor Cycle runtime x $N_{\it taylor}\,N_{\it scales}\,N_{\it pixels}$
- Minor Cycle memory $\times \left[0.5 \left(N_{taylor} N_{scales}\right)^2 + N_{taylor} + N_{taylor} N_{scales}\right] N_{pixels}$
- Rate of convergence : Typical of steepest-descent-style optimization algorithms : exponential. Can control 'loop gain', 'cleaning depth'

Some source structures will handle loop-gains of 0.3 to 0.5 or more (0.3 is safe).

Runtimes reported by different people have ranged from 1 hr to several days.

Positive things: Increased imaging sensitivity (over wide fields), high-fidelity high dynamic-range reconstructions of both spatial and spectral structure.

Effect of loop gain

An example with loop gains of 0.2, 0.4 and 0.8 with msmfs on Hercules-A X-band EVLA data (11% bandwidth)

The peak residual decreases logarithmically, as is typical of a steepest-descent algorithm.

Number of iterations to reach the same residual scales inversely with loop-gain.

For this image with complex multiscale structure, slight errors are visible only for the very high loop gain of 0.8.

Again – use with caution. This is only one example.

Wide-band imaging with the EVLA

- (1) Wide-band data and imaging 11
- (2) MS-MFS details 6
- (3) Examples on EVLA data 11
- (4) Self-calibration and continuum subtraction 3

Separating regions/sources based on spectral index structure

Initial results of a pilot survey (EVLA RSRO AB1345 : S.Bhatnagar, D.Green, R.Perley, Urvashi R.V., K.Golap)

=> Within L-band and C-band, can tell-apart regions by their spectral-index (+/- 0.2) if snr>100

Example: 3C286 field – wide-band PB correction

Verified spectral-indices by pointing directly at one background source.

 \rightarrow compared α_{center} with 'corrected' $\alpha_{off.center}$

Obtained $\delta \alpha$ = 0.05 to 0.1 for SNR or 1000 to 20

Also verified via holography observations at two frequencies

IC10 spectral-index : post-deconvolution wide-band PB-correction

Difference between spectral structure of a VLA-model beam and a Gaussian < 0.2 at HPBW.

3C465 wide-band wide-field image

Abell-2256 : wide-field issues + a way to display wideband images

Wide-band imaging with the EVLA

- (1) Wide-band data and imaging 11
- (2) MS-MFS details 6
- (3) Examples on EVLA data 11
- (4) Self-calibration and continuum subtraction 3

Wide-band (self) calibration

Goal: Maintain continuity of gain solutions across subbands.

- Flux/Bandpass calibration with an a-priori wide-band model
 - Perley-Taylor 1999 / Perley-Butler 2010 (evaluate spectrum)
 - Calibrator model images (fit and evaluate a spectrum ms-mfs)
 - Note: due to increased sensitivity need wide-field model images
- Use single-subband solutions to fit for polynomial bandpass solutions
 - simpler, doesn't require wide-band imaging, better for low snr?
- Self-Calibration with the result of MS-MFS
 - In CASA, 'clean' writes wide-band model visibilities to disk

Wide-Band Self-Calibration: M87

Continuum Subtraction

Goal: To separate narrow-band spectral lines from the underlying broad-band emission

Method:

- --- Do wide-band imaging (MS-MFS) on line-free channels
- --- Predict model visibilities for all channels (from Taylor coefficients)
- --- Subtract model visibilities from corrected-data

Old/current methods:

- 'imcontsub' single-channel imaging, image-domain subtraction
- 'uvcontsub' fits polynomials to the spectrum from each baseline separately, and subtracts these polynomials on a per-baseline basis.

Summary

Wide-band Data: more sensitivity => need to use all data together.

- Single channel/SPW vs MFS (polynomial spectrum) +/-
- Nterms vs residual artifacts / on-source errors (poly-fit) / SNR
- Use of multi-scale to minimize deconvolution error
- Use wide-band image model for self-cal and continuum subtraction.

MS-MFS: Newest algo that does wideband image-reconstruction along with wide-field corrections (A-W-Projection)

- Point sources -- OK.
- Extended emission OK upto a dynamic-range of few-1000
- Wide-band PB-correction OK upto ~50% of reference beam
- Time-varying wide-band PB-corrections (work in progress)
- Several performance bottlenecks (work in progress)