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MS-MFES : as implemented in CASA

Sky Model : Collection of multi-scale flux components whose amplitudes
follow a polynomial in frequency

L=) 0
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V=V,

It: Zs [Izhp*IS,t]

Vo

User Parameters : - Set of spatial scales (in units of pixels) : multiscale=[0,6,10]
- Order of Taylor polynomial : mode="'mfs', nterms=3
- Reference frequency . reffreq = '1.5GHZ'

Image Reconstruction : Linear least squares + Deconvolution (+ W-Projection)

Data Products : Taylor-Coefficient images

- Interpret in terms of a power-law : spectral index and curvature
- Evaluate the spectral cube (for non power-law spectra)

Runtimes reported by different people have ranged from 1 hr to several days.



Dynamic Range (vs) NTERMS ( 1=14.4 Jy/bm, alpha =-0.47, BW=1.1GHz at Lband )

NTERMS =1 NTERMS =2
Rms : Rms :
9 mJy -- 1 mJy _ 1 mJy -- 0.2 mJy
DR : ' ' DR :

1600 -- 13000 10,000 -- 17,000

NTERMS =3 NTERMS = 4
Rms :

: . Rms
0.2 mJy -- 85 udy

0.14 mJy -- 80 udy

DR :

. DR .
65,000 -- 170,000

>110,000 -- 180,000



Peak Off-source Residuals

Approximating a power-law with a Taylor-polynomial —

Peak Off-source Residuals
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error : O(n+1)

Absolute Error in Peak Flux

These plots are
for a single point-
source at the
phase center,
with very high
signal-to-noise
levels.

In practice, use
more than
nterms=2 or 3
only if there is
sufficient signal-
to-noise, and if
you can see
spectral artifacts
in the image with
nterms=2 or 3.




Accuracy of spectral-index vs frequency-range (and SNR)

Source Peak Flux Lalpha C alpha LC alpha  True
Bottom right 100 udy -0.89 -1.18 -0.75 -0.7 RMS
Bottom left 100 udy +0.11 +0.06 +0.34 +0.3
Mid 75 udy -0.86 -1.48 -0.75 -0.7 o udy
Top SIORIN)Y, -1.1 0 -0.82 -0.7
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=> To trust spectral-index values, need SNR > 50 (within one band), or SNR > 10 (across bands)

=> Error-bars follow standard polynomial-fitting rules.



Multi-Scale vs Point-Source model for wideband imaging

MFS
Intensity Image a A

multi-scale point-source

Turn-over x=—2

Average Spectral Index Gradient in Spectral Index

=> For extended emission, a multi-scale model gives a better spectral index maps



Comparison of MS-MFS with Single-SPW imaging

Data : 20 VLA snapshots at 9 frequencies across L-band + wide-band self-calibration

MS-MFS Spectral Index

- Shows imaging fidelity due to
~ multi-scale deconvolution
"~ - Shows expected structure with
errors < 0.2

- Limited to resolution of the lowest
s« frequency
‘290 - Shows effect of insufficient
single-frequency uv-coverage

C.Carilli et al, Ap.J. 1991.

(VLA A,B,C,D Array at L and C band) => |t helps to use the extra uv-coverage



VLA : M87 1.1-1.8 GHz spectral curvature

Data : 10 VLA snapshots at 16 frequencies across L-band
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Moderately Resolved Sources

Can reconstruct the spectrum at the angular resolution of the highest frequency

Restored Intensity image
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Very large spatial scales — without short-spacing data

The multi-frequency data do not constrain the spectrum at large scales

Amplitude (vs) Spatial Frequency
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Very large spatial scales — with short-spacing data

Extra short-spacing information can help constrain the spectrum

Amplitude (vs) Spatial Frequency

Flat spectrum + [E \ 2
source & I - R
Q.6
= 7 0.5
g 8 - 04 T
Data RN i 0.3 g
% B 0.2 éf
R —
0.1
42' = -
4]
40%9' [ @ = —00
T 5 O o2
19h5ams0 407 38° 30 5% 207 15 107 :
Amplitude vs UV-dist T gerenme
48
Reconstructed . ©
as a flat =05
spectrum source o Ot
Data £ —08 %
+ g 083
Model 5oz . ]
42!
-1.2
40%49"
-1.4

19"59m507 40 35 a0 2HT 207 15T 107
J2000 Right Azcension

1000
uvdist (lambda)




Wide-band imaging with the EVLA

(1) Wide-band data and imaging - 11

(2) MS-MFS details - 6

(3) Examples on EVLA data - 11

(4) Self-calibration and continuum subtraction - 3

Urvashi R.V. (NRAO) NRAO SOC, Socorro,NM 21 Jul 2011



MFS with a spectral model

Taylor Polynomial in frequency Solve... -
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'CLEAN' Minor cycle — solves the convolution equation

Measurement Eqns :  V=[S]|[F |I" [H|=[F'][S"|[W][S][F]

Normal Eqns : [H]ISky:Idirty




'‘Multi-Frequency Minor Cycle

A linear-combination of convolutions

Joint deconvolution....




Choices that effect errors

- Artifacts in the continuum image due to too few Taylor-terms.

Very high signal-to-noise,point-sources : use a higher-order polynomial.
Otherwise, use 2 or 3 terms to prevent over-fitting.

- Error in spectral index/curvature due to low SNR (over-fitting)

Low signal-to-noise : use a linear approximation.
Again, nterms=2 or 3 is safer for low signal-to-noise extended emission.

- Error propagation during the division of one noisy image by another.

Extended emission : use multiple spatial scales to minimize this error
Choice of scale sizes : by eye, and verifying that the total-flux converges (i.e. increasing
the largest scale size no longer increases the total flux in the reconstruction).

- Flux-models that are ill-constrained by the measurements
Choose scales/nterms appropriately. For very large scales, add short-spacing information.

- Wide-field errors : Time and Frequency-variability of the Primary Beam
Use W-projection, A-projection along with MS-MFS (software in progress)

Positive things : Increased imaging sensitivity (over wide fields), high-fidelity
high dynamic-range reconstructions of both spatial and spectral structure.



Choices that effect performance (MS-MFS implementation)

- Major Cycle runtime X I\ (and size of dataset)

taylor

— N_Taylor residual images are gridded separately; N_Taylor model images are 'predicted'.
— Wide-field corrections are applied during gridding (A-W-Projection, mosaicing).

- Minor Cycle runtime x N mylorN scales NV pixels

2
N taylor N scales +N taylor +N taylor N scales N pixels

- Minor Cycle memory x [0,5

- Rate of convergence : Typical of steepest-descent-style optimization
algorithms : exponential. Can control 'loop gain', 'cleaning depth’

Some source structures will handle loop-gains of 0.3 to 0.5 or more (0.3 is safe).

Runtimes reported by different people have ranged from 1 hr to several days.



JZ2000 Declinatian

Effect of loop gain

Convergence Plot

Peak residual
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An example with loop gains
of 0.2, 0.4 and 0.8 with ms-
mfs on Hercules-A X-band

EVLA data (11% bandwidth)

The peak residual decreases
logarithmically, as is typical of
a steepest-descent algorithm.

Number of iterations to reach
the same residual scales
inversely with loop-gain.

For this image with complex
multiscale structure, slight
errors are visible only for the
very high loop gain of 0.8.

Again — use with caution.
This is only one example.
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Separating regions/sources based on spectral index structure

ab pul
J2000 Fig

Initial results of a pilot survey (EVLA RSRO AB1345 : S.Bhatnagar, D.Green, R.Perley, Urvashi R.V., K.Golap )

=> Within L-band and C-band, can tell-apart regions by their spectral-index ( +/- 0.2 ) if snr>100



Only MS-Clean
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MS-Clean +
W-Projection
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MS-MFS +
W-Projection
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Max sampled spatial scale : 19 arcmin (L-band, D-config)
Angular size of G55.7+3.4 : 24 arcmin

'
MS-Clean was able to reconstruct total-flux of 1.0 Jy
MS-MFS large-scale spectral fit is unconstrained.
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Example : 3C286 field — wide-band PB correction

Without PB Correction

Total Intensity Image 44
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|IC10 spectral-index : post-deconvolution
wide-band PB-correction

After PB-correction Before PB-correction
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Wide-band (self) calibration

Goal : Maintain continuity of gain solutions across subbands.
- Flux/Bandpass calibration with an a-priori wide-band model

- Perley-Taylor 1999 / Perley-Butler 2010 (evaluate spectrum)
- Calibrator model images (fit and evaluate a spectrum - ms-mfs)

- Note : due to increased sensitivity - need wide-field model images

- Use single-subband solutions to fit for polynomial bandpass solutions

- simpler, doesn't require wide-band imaging, better for low snr ?

- Self-Calibration with the result of MS-MFS

- In CASA, 'clean' writes wide-band model visihilities to disk



Wide-Band Self-Calibration : M87
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Continuum Subtraction

Goal : To separate narrow-band spectral lines from the underlying broad-
band emission

Method :
--- Do wide-band imaging (MS-MFS) on line-free channels
--- Predict model visibilities for all channels (from Taylor coefficients)
--- Subtract model visibilities from corrected-data

Old/current methods :
"Imcontsub ' — single-channel imaging, image-domain subtraction

"uvcontsub ' — fits polynomials to the spectrum from each baseline
separately, and subtracts these polynomials on a per-baseline basis.



Summary

Wide-band Data : more sensitivity => need to use all data together.
— Single channel/SPW vs MFS (polynomial spectrum) +/-
— Nterms vs residual artifacts / on-source errors (poly-fit) / SNR
— Use of multi-scale to minimize deconvolution error
— Use wide-band image model for self-cal and continuum subtraction.
MS-MFS : Newest algo that does wideband image-reconstruction along
with wide-field corrections (A-W-Projection)
— Point sources -- OK.
— Extended emission — OK upto a dynamic-range of few-1000
— Wide-band PB-correction — OK upto ~50% of reference beam

— Time-varying wide-band PB-corrections (work in progress)
— Several performance bottlenecks (work in progress)



