
Design of casa::TablePlot for Casapy

Urvashi Rau

18 Dec 2007

Abstract

This note describes the design of the casa::TablePlot classes and the control
flow through them for data access and plot creation. The use of the Matplotlib
plotting package is described, along with a performance analysis to quantify bot-
tlenecks.

Many thanks to S.D.Jaeger, G.Moellenbroek, and K.Golap for some bug-finding/fixing,
and helpful suggestions about design changes, during their development of the ap-
plication level classes that use casa::TablePlot. The work done on this code was
funded via a Graduate Student Research Assistantship.

1

Contents

1 Classes and control flow 4

1.1 Data Access . 4

1.2 Plotting . 5

1.3 User Interaction . 5

1.4 Flag Versions . 6

2 GUI and Python 7

2.1 Design Constraints . 7

2.2 C++ to Python binding (plotting) . 7

2.3 Python to C++ Callback binding (user interaction) 8

3 User Applications 8

4 Performance analysis 9

4.1 Timing and Memory Usage . 9

4.2 Optimization strategies . 10

5 Miscellaneous 11

5.1 Known problems . 11

5.2 Making changes . 11

6 Appendix A : Sample TaQL expressions 13

7 Appendix B : List of Plot Options 15

2

Figure 1: Flow of control through a set of classes that provide 2D plotting functionality
for data stored as casa::Table. Data is read from casa::Table and derived quantities
are computed and plotted (black arrows). User interaction with the plotted data via
queries and editing is accessible from the command line (maroon arrows) as well as from
the plotter GUI (blue arrows). Custom computations are allowed via optional callback
functions defined by the user application (light blue boxes). The pink and yellow layers
at the bottom control the C++ Python binding and plotting package specific code.

3

1 Classes and control flow

casa::TablePlot is a Singleton class that manages plot requests from multiple applica-
tions (casa::MSPlot,casa::PlotCal,casac::tableplot). It receives input in the form
of data Tables and Plot-Options for each plot and manages multiple panels on the plot
window with multiple plot layers per panel. It maintains and sends commands to a single
instance of a plotter GUI, and responds to user interaction both from the GUI and the
command line.

1.1 Data Access

1. Table Access : Columns from any kind of casa::Table can be plotted against each
other. Input tables can be Measurement Sets, MS Subtables, Calibration tables,
etc.., or reference sub-sets of Tables generated via any Table selection mechanism.
Multiple tables of different types can be opened simultaneously for plotting and
interactive editing. Data sets can be iterated through to generate a series of plots
from different subselections. Columns with finite and ordered values can be iterated
upon. Iteration rules follow that of the casa::TableIterator class. Iterations can
proceed only in one direction - forward.

2. Expression Evaluation : Expressions for derived quantities are written using
the TaQL1 syntax. For data from ArrayColumns, in-row selections within the
Array are done via TaQL indices (for example : AMPLITUDE(DATA[1:2,1:10:1])).
For sample TaQL strings, please refer to Appendix A. Quantities that cannot be
computed purely via TaQL expressions make use of conversion functions supplied
by the application in the form of callbacks casa::TPConvertBase.

3. Data extraction : casa::BasePlot is responsible for evaluating TaQL expres-
sions for X and Y axis data, performing conversions on the results, and storing
the data in arrays to be plotted. It provides a set of query functions that the
plotter class casa::TPPlotter will use to access data to be plotted. Derivatives
of casa::BasePlot can implement customized data access, but must provide the
same view of the final data to be plotted, in the form casa::Arrays and query
functions that casa::TPPlotter expects. casa::CrossPlot is one derivative, used
for plots where the X data comes from ArrayColumn Array indices (for example,
channel number), and not TaQL string evaluations. Other derivatives can be im-
plemented to read data without using TaQL expressions. Note that the rest of the
framework does not depend on how the data is accessed internal to casa:BasePlot.

4. Flag Handling : Flags are read using the same in-row selection as the data
itself, and stored in arrays. casa::TPPlotter uses the casa::BasePlot query
functions to check flags with data and select points for plotting according to on-
the-fly selection criteria (only unflagged, only flagged, every nth point, average
n points, points within a certain range of values). Interactive editing modifies
the flags in the casa::BasePlot flag storage arrays. The casa::BasePlot (or

1Aips++ Note 199 : http : //aips2.nrao.edu/stable/docs/notes/199/199.html

4

derivatives) are then responsible for writing these flags back to the Table, along
with any translations or flag-expansions (for plots of averaged values). It is always
ensured that the FLAG ROW column holds the logical AND of all flags per row in the
FLAG column. The flags are written to disk after every interaction, to allow all
currently visible plots using the same Table, to immediately reflect flag changes.
Columns to be used for flags can be user specified, and default to FLAG and FLAG ROW.

1.2 Plotting

1. Plot Parameters : casa::PlotOptions manages user input. It contains defaults
for all parameters, and functions to validate parameters and do error checking. Pa-
rameters are divided into those common to all layers on a panel (panel location, size,
axis labels..), and those that can vary across layers (plot colour, marker format...),
and stored in a wrapper casa::PanelParams class. For a list of plot parameters
and their functions, please refer to Appendix B.

2. Panel management : For each panel, casa::TablePlotmaintains an instance
of casa::PanelParams and a list of casa::BasePlots. Plots from multiple Tables,
and overplots can generate multiple layers per panel. This class iterates through
panels and layers and sends Vector<casa::BasePlot>, casa::PanelParams pairs
to a single instance of casa::TPPlotter for plotting.

3. Plotting : casa::TPPlotter performs two tasks. First, it receives a list of
casa::BasePlots, and queries each of them for the number of plot commands
to run, and the number of points per plot. For each plot command, it reads data
and flags through casa::BasePlot query functions, and assembles the selected
points into plotting-package-specific data format. Then, it reads plot options from
supplied casa::PanelParams, and constructs plot commands. Finally, the data
and plot commands are combined and sent to the plotting package.

1.3 User Interaction

The following functions allow the user to interact with any displayed plot. They are
accessible from the command line by directly calling casa::TablePlot functions as well
as from buttons on the GUI which internally call the same casa::TablePlot functions.
These functions operate on the stored Vector<casa::BasePlot>, casa::PanelParams

pairs per panel, and trigger refreshed plots, as well as the transfer of flags to and from
the Table on disk. A no-GUI mode of plotting has also been provided. In this mode, the
plots are created as described above, but are not rendered onto a plot window. Instead,
additional commands can be used to directly save a plot into a file on disk.

1. Mark Regions:
Rubber-band boxes can be drawn to mark rectangular regions on a plot. The same
effect can be reached by sending in world-coordinate box specifications from the
command line.

5

2. Zoom/Pan:
The matplotlib TkAgg GUI provides buttons for Zoom/Pan modes. (Note that
Matplotlib stores a full copy of all data points currently on the plot, in Double
precision, to enable Zoom/Pan modes directly from the GUI.) Command-line in-
teraction can be done via the plotrange plot option. This interface can be used
if a new plotting package does not hold all data points in memory for Zoom/Pan.

3. Flag/Unflag:
Buttons for flagging and unflagging have been added to the TkAgg matplotlib GUI.
Their callbacks trigger casa::TablePlot functions that modify values stored in
casa::BasePlot flag arrays, which then get transferred to the Table on disk. If
multiple views of the same data are plotted on different panels, flags from one
panel are reflected in the others. casa::TablePlot returns a flag summary as a
casa::Record which holds all information necessary for recreating each flag/unflag
command, and can be used to generate a flag history. Currently this information
is sent to the logger, but it can be returned as python records for scripting.

4. Locate:
A GUI button has been added for the operation of obtaining meta-data about se-
lected points. Table row indices are inferred from the selected data points, and val-
ues of specified Table Columns (or TaQL expressions) for only these rows are read
and displayed. One entry is produced per selected row. The control flow is the same
as for Flag/Unflag, and a record of meta-data is returned by casa::TablePlot for
the selected points.

5. Iter-Next:
A GUI button was provided to move to the next plot in an iteration series.

6. Quit:
The GUI has been provided with a button that triggers the destruction of the
plot window, as well as the clean-up of C++ data structures associated with all
currently visible plots. The X button on the GUI window has also been bound to
the same function to ensure the proper release of C++ allocated memory, when
the plotter GUI is shut.

For custom operations required by the applications, callback functions can be pro-
vided via the casa::TPGuiCallBackHooks and casa::TPResetCallBack classes. The
casa::TPLogger class handles all logging operations for the plotter classes. The plot
window can be accessed from the Casapy command line, for users to set custom labels,
markers and legends, and to overlay arbitrary plots on top of existing ones.

1.4 Flag Versions

casa::FlagVersion is a stand-alone class that manages flag versions by creating named
disk copies of FLAG, FLAG ROW columns from the main table. Flag versions can be saved
and restored along with options of merging multiple flag versions via boolean operators.
Flag version tables are currently created in a directory parallel to the parent Table.

6

2 GUI and Python

This section describes the C++ / Python interface used for plotting.

2.1 Design Constraints

The main constraints that drove this design were as follows.

1. Using Matplotlib : After implementing interfaces for PGPLOT and PLPLOT and
finding functionality restrictions, Matplotlib was chosen. It would have the added
advantage of being accessible and controllable from the casapy command-line.

2. Multiple Interfaces : We needed to attach the C++ classes directly to the casapy
python interpreter so that the GUI (and its event loop) could be controlled from
the C++ code as well as from the command line. The XML interface provides
control only from Python to C++ but not the other way around.

3. Memory Mapping : Direct memory mapping of C++ PyArrayObjects to python
variables was required, but not possible at the time via the XML C++ to Python
conversion interface. Therefore, instead of implementing a pure Python function
for all GUI handling, methods descibed for standard Python Extending and Em-
bedding 2 were used to implement direct C++ to Python binding with memory-
mapping of data arrays as variables in an internal view of the Casapy interpreter.
This binding however could not be done from within the casa namespace, so the
binding code was made global.This required an additional step to send signals to
classes within the casa namespace.

4. Enhanced GUI : The standard Matplotlib backend does not provide all the func-
tions we require, and needed to be augmented (add buttons for flagging and lo-
cating, and implement callbacks for rubber-band region marking). However, for
maintenance reasons, this had to be done without touching the standard Mat-
plotlib distribution code tree. A run-time patch to the GUI backend was therefore
developed.

2.2 C++ to Python binding (plotting)

1. casa::CasapyInterpreter uses the Python/C API to send python command
strings to an instance of a python interpreter. In this case, the interpreter is
the same as the casapy interpreter that the user sees as the command-line, but
with only pylab visible. casa::TPPlotter sends command strings to this class,
to be sent on to python.

2. PyBind implements the C++ to Python memory mapping required for data arrays
stored as PyArrayObject in casa::TPPlotter, to be visible as python variables
that can be used in Matplotlib plot commands.

2http://docs.python.org/ext/ext.html

7

The control flow for plotting is as follows : casa::TPPlotter sends plot commands ⇒
casa::CasapyInterpreter sends the commands to python ⇒ PyBind memory maps
the data arrays to python variables ⇒ Matplotlib plot commands are executed.

2.3 Python to C++ Callback binding (user interaction)

1. PlotFlag is a runtime python patch to the Matplotlib TkAgg backend. It adds
buttons to the GUI, and implements event handlers for these buttons that call
PyBind functions (PyBind is visible from the python interpreter). It also augments
the handlers for existing GUI buttons (Zoom/Pan/Forward/Back/Home), so that
they and the new buttons would work seamlessly together in the Tk event loop.

2. PyBind also implements Python to C++ callback functions that are triggered by
the GUI buttons via PlotFlag, and which transfer information into C++. How-
ever, PyBind is global and needs a way to access casa::TablePlot user interaction
functions.

3. casa::TPGuiBinder provides the link between PyBind and the casa namespace
by being global, but being instantiated from inside casa::TablePlot.

The control flow for event handling is as follows : GUI Button Press ⇒ PlotFlag Event
Handlers ⇒ PyBind python-to-C++ functions ⇒ TPGuiBinder for global to names-
pace::casa transfer ⇒ casa::TablePlot user interaction functions.

3 User Applications

Two applications currently use the casa::TablePlot classes.

1. casa::MsPlot, casac::msplot : Applies selections to Measurement Set Tables to
create subset Tables to pass on to casa::TablePlot for plotting, constructs TaQL
expression strings for a large number of commonly generated plots, implements
conversion functions for derived quantities that cannot be expressed as pure TaQL
strings and custom callbacks that are called at the end of each user-interaction
operation.

2. casa::PlotCal, casac::calplot : Applies selections to Calibration Tables, con-
structs TaQL strings for standard plots, and manages conversion functions and
cleanup callbacks for user-interaction.

The casac::tableplot tool provides a lightweight interface to the casa::TablePlot

class. All these applications communicate with a single instance of casa::TablePlot.

8

4 Performance analysis

4.1 Timing and Memory Usage

Timings and memory usage measurements are reported and discussed for the following
dataset. (Tests were run on ”ballista” in April 2007.)

700 MB dataset :
DATA column = 2 correlations x 7 channels x 1876352 rows = 26 million points.
= 200 MB (stored as Double or Complex)
= 115 MB (100MB for Y-axis data (Float) + 15 MB for X-axis data (Double))
Disk reads/writes of boolean flags (3MB) during user-interaction do not exceed 5 sec.

1. Disk read time: Measured 30 sec. Expected 10+ seconds ((200 MB on disk)/(20
MB/s raw disk read speed)). The DATA column is read row by row (random ac-
cess) followed by arithmetic operations on each Complex value "SQRT (REAL**2

+IMAG**2)" or "ABS". The time spent on reading by TaQL expression evalua-
tion was tested and found to be comparable to extracting Complex values row
by row and separately performing the evaluation. The bottleneck was in reading
row-by-row (20 sec for raw reads) versus reading the entire TableColumn at once
(sequential access : 7 sec for raw reads).
Problem : TaQL cannot be used in getColumn mode. It needs to be done row by
row. Faster data access mechanisms can be used as derivatives of casa::BasePlot.

2. Plotting Time: Measured 60 sec. Expected 52 sec ((26M points)*(500K points/s
for native matplotlib)). The break-up of the plotting time is as follows.
Transfer data from casa::Array to PyArrayObject : 8 sec
Matplotlib command pl.plot() : 12 sec
Matplotlib command pl.draw() : 40 sec
An attempt was made to eliminate the 8 seconds, by using MaskedArrays in
python (to handle flags), and doing memory-mapping between casa::Array and
PyArrayObject. The python plotting memory consumption went even higher since
it duplicated the flags for X and Y as Integers.

3. C++ Memory Usage: Measured 150 MB. Expected 115MB for data + few MB
for bookkeeping.
Total memory usage at startup of Casapy : 120 MB
Total memory usage while reading from disk : 120+150=270MB

4. Matplotlib Memory Usage: Measured 400MB. Expected 400MB (26M points)
*(double precision for X and Y). Total memory usage while plotting : 120+150+400
= 670MB. The bottleneck is that Matplotlib stores an extra copy of all X and Y
values in Double Precision (even if memory mapping is used between casa::Array

and PyArrayObject). This amounts to 400MB = 2 × 200MB for 26 million X and
Y values in Double precision.

The major bottlenecks are the Matplotlib rendering time and the Matplotlib backend
memory usage. The choice of a new plotting package must fix this !

9

4.2 Optimization strategies

1. Re-use of data : When a plot already exists, data is re-read from disk only
if there is a change in the data being plotted. Benign plot option changes (for
example, plot colour) between plot commands do not require re-reading data from
disk. Flags however, are re-read everytime a plot is made, but reading/writing the
entire column of Booleans is not expensive, and it provides the feature that all
plots from the same Table will immediately reflect flag edits done on any of the
plots. (Note : The current task interface in casapy over-rides this optimization
strategy by forcing a Table read for every plot. It does so,in order to conform to
the task format of opening and closing tools in every run.)

2. Numerical precision : Float is used for all data stored for plotting. Expression
evaluation and conversions are done per value in Double precision before converting
to Float. The X-axis data is always stored in Double precision, to allow for handling
MJD time values that require more than 7 significant digits in precision. When a
plot involves a single set of X values, for multiple Y values, (for example, amplitude
of 10 channels of data vs uvdistance), this is detected and only one instance of X
values are stored in memory.

3. Array to PyArrayObject : Data is stored in large Arrays in casa::BasePlot,
but are sent to Matplotlib in pieces, to minimize the amount of data being held
as a PyArrayObject copy. Direct memory mapping between casa::Array and
PyArrayObject was not done, because of the non-contiguous nature of points to
be plotted (flagged, unflagged, every nth point, etc). Tests were done with using
Python Masked Arrays (to handle flags) along with memory mapping, but Mat-
plotlib held duplicates of the flags as well and increased the memory usage beyond
the saving obtained via memory mapping.

4. Flagging: Flag commands update casa::Arrays of flags in memory, which are
written to disk only once after all flag regions have been serviced.

5. Locating : Meta data for selected points is obtained by accessing the Table on
disk only for rows corresponding to selected data points. The in-memory arrays
provide enough information to isolate this subset of rows.

6. Averaging : In case of data averaged within a row (channel averages), flag changes
must be reflected in the averaged data being plotted, and this re-evaluation is done
only for selected rows for which flags have changed, instead of re-reading everything
from disk. Since flag commands usually flag a very small fraction of the data, this
saves time. In case of data averaged across rows (time averages), the averaging is
done on-the-fly as part of data point selection while filling in PyArrayObjects. This
allows multiple average-intervals to be specified as a plot option, and be replotted
without having to re-read from disk.

10

5 Miscellaneous

5.1 Known problems

During the development of this set of classes, the requirements for the final product
have often changed. For the most part, the original design was able to handle the new
requests, but there are some known problems with the current implementation.

1. The extra memory copy in the matplotlib backend (in Double precision) is a bot-
tleneck for interactivity. This copy is stored mainly to allow Zoom/Pan functions
within the GUI. A different GUI that does not provide Zoom/Pan would solve this
problem, and Zoom/Pan can be implemented via the plotrange plot option.

2. casa::BasePlot tries to read all selected Table rows at once. A more efficient way
would be to iterate through the data (perhaps using casa::VisibilityIterator

for MeasurementSets). Alternatively, to store all flags in memory for efficient
interactivity while flagging, the use of casa::TempArray might be a better way to
reduce the memory footprint.

3. Scalar averaging across rows requires the pre-division of the main Table into sub-
tables on which it is appropriate to average across adjacent rows. For scalar time
averaging on a Measurement set, this requires the subdivision into a subtable for
each field, spectral window, scan, and baseline. This subdivision can get expensive.

4. Vector averaging across rows is not supported because this averaging is done on-the-
fly at plot-time, after the TaQL expressions have been evaluated. The TaQL expres-
sions force the data to be made Scalar, to conform to the data storage arrays. One
solution is pre-averaged data sets, which can be done via VisibilityIterator.

5. Iteration plots only move forward, following the casa::TableIterator functions.

5.2 Making changes

1. Different data source : Need to create a class that inherits from casa::BasePlot,
and either (a) fills in the casa::Arrays currently used to hold data, or (b) pro-
vides a set of query functions that casa::TPPlotter can use to access the data
and flags to be plotted. (a) will allow the existing Flag/Locate user interaction
to work without intervention, and will require functions that translate the final
flags when writing back to disk. (b) will allow data storage in a different format
(perhaps amenable to memory mapping for the plotting package) but will require
a casa::BasePlot level implementation of Flag/Locate operations. The rest of
the system should not need to know about the data access mechanism internal to
casa::BasePlot. The casa::TablePlot::createBP function decides which ver-
sion of casa::BasePlot to use for a particular Table. Adding functionality this
way, allows different types of Tables and access mechanisms to be used together to
create active plots of different kinds and have them appear simultaneously on the
plot window.

11

2. Different plotting package : Based on the above implementations of data access
and plotting operations and common functionality requests from users, the follow-
ing is a (minimal) list of requirements from any prospective plotting package.

(a) Draw scatter plots, lines, histograms and render them fast (maybe raster).

(b) Handle time formatting (and co-ordinates) for axis tick labels

(c) Configure multiple panels and handle overlays

(d) Draw rubber-band boxes and return region coordinates

(e) Customizable GUI for adding buttons.

(f) Allow memory mapping between casa::Array and the plotting package data
format

(g) Must not hold an extra copy of all the data being plotted

(h) Allow some way of accessing the plotter GUI from the Casapy command line.

Within the C++ code, one will need to replace a well defined set of plotting-
package specific functions in casa::TPPlotter. Currently, for Matplotlib, they
fill in PyArrayObject arrays and construct command strings for various functions.
These functions were originally written for PGPLOT, and were later modified for
PLPLOT and now Matplotlib.

3. Different Plot Style (histogram/3D plots) : The functions that construct the
plot commands can be augmented to generate histograms of data that is read in
via existing data access mechanisms.

12

6 Appendix A : Sample TaQL expressions

The TaQL 3 syntax is used to construct arithmetic expressions using Table column
names to compute values to be plotted. Any TaQL expression resulting in an Integer or
Double/Float Scalar or Array can be used. Expressions resulting in Complex or Boolean
values are invalid. Scalar and vector reduction functions are supported.

1. Sample expressions for a Measurement Set are shown below. Channel and corre-
lation selection is done via one-based TaQL indices.

uv distance : SQRT(SUMSQUARE(UVW[1:2]))

amp of data : AMPLITUDE(DATA[1:2,1:10:1])

amp of data averaged over chan/corr : MEAN(AMPLITUDE(DATA[1:2,1:10:1]))

amp of data averaged over chan only : MEANS(AMPLITUDE(DATA[1:2,1:10:1]),2)

2. For 2D X-Y plots separate TaQL strings need to be supplied for the X and Y axes.
The resultant data shapes for X:Y must be either 1:1 or 1:N or N:N.

1:N : ’SQRT(SUMSQUARE(UVW[1:2]))’,AMPLITUDE(DATA[1:2,1:10:1])’

1:1 : ’SQRT(SUMSQUARE(UVW[1:2]))’,MEAN(AMPLITUDE(DATA[1:2,1:10:1]))’

1:1 : ’TIME/86400.0+678576.0’,’AMPLITUDE(GAIN[1,5])’

N:N : ’REAL(DATA[1:2,1:10:1])’,’IMAG(DATA[1:2,1:10:1])’

3. For derived quantities that cannot be expressed as TaQL strings, a C++ interface
has been provided to specify any arbitrary conversion function. This conversion
function will be applied to the data extracted out via the TaQL queries.

Hourangle vs time :

TaQL X,Y pair : ’TIME/86400.0+678576.0’,’TIME’

X conversion function : NULL

Y conversion function : Use the raw MJD TIME values, the Measures classes

and field-centre locations to compute HA.

4. Values from an ArrayColumn can be plotted against cell row or cell column indices
(implemented in casa::CrossPlot). For a measurement set, this allows plots
of ” Amp(Data) Vs Frequency or Channel ”. TaQL X-Y pairs for such plots
need explicit specification for only Y-axis values. Zero based channel indices will
automatically be placed on the X axis. If frequency values are required, a C++
conversion function can be applied to the channel indices.

TaQL X,Y pair for Amp vs Channel: ’CROSS’,’AMPLITUDE(DATA[1:2,1:10])’

TaQL X,Y pair for Amp vs Frequency: ’CROSS’,’AMPLITUDE(DATA[1:2,1:10:1])’

X conversion function : Use channel numbers to index into the SPECTRAL WINDOW

subtable and read frequency values.

Y conversion function : NULL

3Aips++ Note 199 : http : //aips2.nrao.edu/stable/docs/notes/199/199.html

13

A plot option ”columnsxaxis=True/False” controls whether column or row indices
of the Array are plotted on the X-axis.

5. Scalar averaging within a Table row

Averaging across cells in an ArrayColumn can be done via the TaQL reduction
functions MEAN and MEANS.
Ignoring Flags : ’MEAN(AMPLITUDE(DATA[1:2,1:10]))’

Weighted averaging across cells in an ArrayColumn can be done via the TaQL
reduction functions SUM and SUMS.
Honouring Flags :

Weighted averaging with FLAG

’SUM(AMPLITUDE(IIF(FLAG[1,1:10],0.0,DATA[1,1:10]))) /SUM(IIF(FLAG[1,1:10],0.0,1.0))’

Weighted averaging with WEIGHT SPECTRUM

’SUM(AMPLITUDE(DATA[1,1:10])*WEIGHT SPECTRUM[1,1:10]) /SUM(WEIGHT SPECTRUM[1,1:10])’

Weighted averaging with IMAGING WEIGHT

’SUM(AMPLITUDE(DATA[1,1:10])*ARRAY(IMAGING WEIGHT[1:10],[1,10]))

/SUM(ARRAY(IMAGING WEIGHT[1:10],[1,10]))’

Weighted averaging with WEIGHT

’SUM(AMPLITUDE(DATA[1,1:10])*ARRAY(WEIGHT[1],[1,10]))

/SUM(ARRAY(WEIGHT[1],[1,10]))’

Weighted averaging with FLAG and IMAGING WEIGHT

’SUM(AMPLITUDE(IIF(FLAG[1,1:10],0.0,DATA[1,1:10]) *ARRAY(IMAGING WEIGHT[1:10],[1,10])))

/SUM(IIF(FLAG[1,1:10],0.0,1.0) *ARRAY(IMAGING WEIGHT[1:10],[1,10]))’

6. Vector averaging within a Table row. The vector reduction functions need to
be applied to the complex values before conversion to a scalar. Ignoring flags :

’AMPLITUDE(SUM(DATA[1,1:10]))’

Honouring flags : ’AMPLITUDE(SUM(IIF(FLAG[1,1:10],0.0,DATA[1,1:10]))

/SUM(IIF(FLAG[1,1:10],0.0,1.0)))’

7. Scalar averaging across Table rows. TaQL expressions cannot be written
for reduction operations that span multiple rows of the Table. Therefore, the
averagenrows plot option can be used to average the result of the Y-TaQL ex-
pression across rows. Flagged points are automatically ignored.

8. Vector averaging across Table rows : Not supported, because averaging across
Table rows is done after TaQL evaluations that force the values to be made scalar
before averaging. See the section on Known Problems for details.

14

7 Appendix B : List of Plot Options

1. nrows, ncols, panelindex (default = 1,1,1) : The Matplotlib syntax is used to
choose panel locations on the plot window. 1 <= panelindex <= nrows× ncols

2. plotrange = xmin,xmax,ymin,ymax (default = all) : The range of data to
be plotted. When the range chooses a subset of the data, points are plotted from
those stored in memory.

3. plotrangesset = xminSet,xmaxSet,yminSet,ymaxSet (default = none) : A
bitmask to indicate which data ranges to honour. To be used with plotrange.

4. timeplot (default = ’o’) : To set time-formatting for tick labels. Matplotlib
times are referenced to 01/01/0001. Therefore, the conversion TIME/86400.0 +
678576.0 must be applied to the MJD values stored in the Table. Options are
’x’:xaxis,’y’:yaxis,’b’:both,’o’:off to choose which axes to apply time formatting.

5. columnsxaxis (default = True) : Plots of data from only one ArrayColumn (Y-
TaQL) use X-TaQL as ’CROSS’ and use either column or row indices of the Array
cell for the x-axis. For a Measurement Set to get channel numbers on the x-axis,
set this parameter to True. False will place correlation indices on the x-axis.

6. overplot (default = False) : If True, make a new plot layer and place on top of the
current stack of plots. If False, all existing plots on the current panel are cleared
before drawing the new plot.

7. replacetopplot (default = False) : To be used along with ’overplot=True’. This
replaces only the top plot layer, but keeps all lower layers intact. (For example :
after making an overplot, the plotsymbol for the top-most layer is to be changed
without having to replot all existing layers)

8. removeoldpanels (default = True) : If True, follow Matplotlib convention of
clearing away plot panels if a new panel is about to overlap it. If False, all new
panels will be placed on top of existing ones even if they overlap. An explicit
’clearplot’ is required to clear panels.

9. fontsize (default = 12) : Matplotlib font size for the title. X and Y labels and
tick labels are 80% of this size.

10. xlabel, ylabel, title (default = none) : Label strings for the x-axis, y-axis and
the title. Multi-line labels need
n for every newline.

11. windowsize (default = 8.0) : GUI window width in cm (matplotlib convention)

12. aspectratio (default = 1.0) : Window height/width. Must be the same for all
panels.

15

13. doscalingcorrection (default = False) : Try not to use this. To be set to
True only if the ”MEAN” Array reduction function is used along with FLAGs or
WEIGHTs. It rescales the average to account for the fraction of data points not
used in the MEAN.

14. separateiter (default = ’none’) : To choose panel arrangement when multiple
iteration plots are setup for simultaneous iteration. ’none’ : multiple iteration
plots run in overplot mode. ’row/col’ : multiple iteration plots run in different
rows/columns of panels.

15. honourxflags (default = False) : To be used only with ”X-TaQL=CROSS” mode
with channel averaging, to decide how the average channel number is to be com-
puted. False : Compute the average x axis value as the middle of the range being
averaged. True : Compute the average x axis value accounting for flagged cell
rows/cols.

16. locatecolumns (default = none) : This is the list of Table columns that will get
sent into the ”locate” function when triggered by the GUI. It will be overridden
by anything specified in a DumpLocateInfoBase class.

17. plotsymbol (default = ’,’) : Matplotlib plot symbols

18. color (default=(1.0,0.4,0.2)) : Matplotlib colour string. Can be a predefined py-
lab colour ’brown’, or an html hex string ’#7FFF4e’, or ’(r,g,b)’. If specified
(length¿0), this takes precedence over the colour specified via PlotSymbol. If a
non-predefined colour is specified, multicolour is always False.

19. pointlabels (default = none) : A vector of text labels to be applied to the first N
data points. Flagged points and their labels will not appear.

20. markersize (default = 10.0) : Matplotlib point marker size.

21. linewidth (default = 2.0) : Matplotlib line-width.

22. multicolour (default = ’none’) : Optional multi-colouring of rows and columns
in an ArrayColumn. ’cellrow’ : Array cell rows get different colours, ’cellcol’ : Cell
cols get different colours, ’both’: rows and cols get different colours,’none’: rows
and cols get the same colour.

23. tablemulticolour (default = True) : When multiple Tables are sent in simulta-
neously into TablePlot, plot them in different colours.

24. showflags (default=False) : If True, plot only flagged points in the reserved colour
’magenta’.

25. flagversion (default=’main’) : Use flags from a specified flag-version while dis-
playing the data. Flag edits will write back to this flag version table.

26. skipnrows (default=1) : Start with the first point, and then plot only if npoints %
SkipNRows == 0. When plotting unflagged data, flagged points are not counted
while skipping.

16

27. averagenrows (default=1) : If larger than 1, average together every N rows. Ar-
rayColumn cell rows and columns are kept distinct. Averaging across ArrayColumn
cell rows/cols can be done directly via TaQL reduction functions.

28. connect (default=’none’) : Draw lines through data points along a specified axis.
’tablerow’ connects points across rows. ’cellcol’ connects points across ArrayCol-
umn cell columns (channels). ’cellrow’ connects points across ArrayColumn cell
rows (correlations).

17

