When in the course of human events, it becomes necessary to look at neat signals floating around your radio, you go to a hamfest and buy that $50 o-scope. Now what? This two part article will attempt to explain basically how an oscilloscope works, operator functions, basic measurements, and some advanced applications. An o-scope is a powerful tool in any shack – even a real “cheapie” with limited bandwidth.

HOW AN OSCILLOSCOPE WORKS

A block diagram of a typical o-scope is shown in Fig. 1. The test probe usually plugs into the scope via a BNC connector, then passes through a switch to determine whether the input signal will be dc or ac coupled (to remove any dc component). Often this switch will have a “ground” position for setting the zero-volts reference. Next is the input attenuators. The vertical input amplifier is quite sensitive, designed for 20-50mV of input. For larger input voltages, the signal is applied to attenuators comprised of simple voltage dividers. This is the first area of concern for cheap o-scopes, as the input attenuators may not be very linear or accurate. For example, if you apply a 10Vpp signal on the 10v/division setting, the signal should be 1 division high. Switching to 1v/div., the signal should be 10 divisions (usually full-scale) high. If it is not exactly 10 divisions, the attenuator for that setting needs adjusting. Some scopes have internal adjustments for fine-tuning each attenuator setting.

Following the attenuators, the signal is applied to the first vertical amplifier, which converts the input to a differential signal. This differential signal is amplified up to high voltages for the oscilloscope deflecting plates – moving the beam up and down (in the vertical axis).

The sweep generator is usually a constant current source charging a capacitor to make a sawtooth waveform that eventually deflects the beam in the horizontal axis. The frequency of the sawtooth determines how fast the beam travels from the left to the right side of the tube, and is controlled by the sweep control, usually calibrated in seconds, milli-seconds or micro-seconds per division. This is the second area of concern for an oscilloscope – how linear the sawtooth waveform is generated. For example, a sawtooth with a nonlinear ramp will cause the signal displayed in the central portion of the tube to be expanded or compressed compared to the signal at the ends.

The sawtooth ramp is amplified to high voltages, applied to the oscilloscope tube, to deflect the beam from left to right. An important task of an oscilloscope is when the horizontal deflection begins. Normally a switch labeled “Trigger Source” determines what initiates the sawtooth ramp. In the "Internal" position, a sample of the input signal (in the vertical amplifiers) is sampled, with a variable resistor setting the level. When the input signal exceeds the “Trigger Level,” a pulse is generated to start the sawtooth ramp and hence the horizontal sweep. The purpose of triggering is to keep the input waveform synchronized to the sweep so it appears stationary on each sweep. The trigger source usually has a "Line" position, which simply triggers the sweep off of 60Hz from the power supply. This synchronizes the sweep to the AC power frequency and is useful for checking television signals, which are synchronized to the power mains. Also, an "External" position may be present, which connects an external input signal (via a BNC connector) to trigger the sweep generator.

Other features your o-scope may have are two vertical channels for dual trace operation, various modes to display both waveforms (alternate, chopped, A+B added, etc.), delayed sweep features, dual sweep time bases, built in calibrators, etc.

CALIBRATING YOUR OSCILLOSCOPE

The first thing you should do upon acquiring an o-scope is to check its calibration.

The vertical amplifiers can be checked with a known voltage source or 9v transistor radio battery. Measure the output voltage of the battery with an accurate voltmeter. Let’s say it just happens to be +9v exactly. Set the input coupling to ground (0v) and move the trace to the bottom division. Switch the input coupling to DC and set the attenuators to 1v/div. The deflection should be 9
divisions. Switching to 10v/div., deflection should be 0.9 divisions. Internal to the oscilloscope (or perhaps accessible from the outside) are adjustments for the vertical amplifier gain. Adjust this for 9 divisions of deflection in the 1v/div. range. Procedure can be repeated with a 1.5v flashlight battery (assuming you know the exact voltage from a DVM).

The horizontal amplifiers should be checked/calibrated using a signal generator. For example, a 1MHz signal has a period of 1uS. Setting the sweep rate to 1.0uS/div., a 1MHz signal should take exactly 1 division per cycle. Set the horizontal width control properly to ensure the beam starts at the first division and ends at the last division. If the sweep rate appears incorrect, an internal adjustment (Sweep gain or similar) can be set for proper display of the test signal.

The main operator controls are:
- **Intensity** - controls the brightness of the beam. **NOTE:** Too bright a beam can damage the CRT tube!
- **Focus** - adjusts the beam for the thinnest and sharpest display.
- **VERT & HOR Position** - controls the vertical and horizontal position of the display respectively
- **VERT V/div** - controls the vertical sensitivity of the display, i.e., how many volts (or mV) per division.
- **HOR Sweep Speed** - sets the horizontal sensitivity, i.e., how many mS or uS per division.
- **VERT & HOR vernier** - allows the vertical and horizontal sensitivity settings to be varied in small steps.

Other adjustments you may find on your scope are:

Astigmatism - With the scope intensity and focus properly set, this adjustment compensates for the curvature of the CRT tube by making it in-focus across the sweep. If your trace is out-of-focus in certain areas, but in-focus elsewhere, the astigmatism needs to be adjusted. See Fig. 2.

Trace Rotation - is a small coil around the CRT that skews the trace to ensure it is perfectly horizontal. On scopes without this adjustment, the trace is leveled by physically rotating the CRT to align the trace to the graticle grid. See Fig. 2.

DC BAL (DC Balance) - is a dc offset in the vertical amplifiers that causes a shift in the trace baseline when changing vertical scales. It is most obvious when measuring ac voltages. For example, you are displaying a 10Vpp sine wave, centered on the center graticle, at 2v/div. Changing to 5v/div, the sine wave shifts off the center graticle... that is, it assumes a dc bias error. The DC BAL is adjusted until the shift no longer occurs when changing vertical scales.

HV ADJ. - is the high voltage that controls the intensity of the trace. Turn up the **Intensity** control to its brightest position, then adjust the HV ADJ for a trace slightly brighter than normal intensity. The **Intensity** control now has the proper range. The HV ADJ might have to be re-adjusted to acquire proper focus.

NOTE: Very bright trace displays can cause permanent damage to the CRT, particularly on a well-used scope.

LET’S MAKE SOME MEASUREMENTS

It is assumed you have your scope relatively calibrated and familiar with the front panel controls. The sample o-scope displays are based on eight vertical and ten horizontal divisions on the CRT screen, typical to most oscilloscopes. Most waveforms are actual displays of the signal cited, photographed from my trusty Tektronix 475 oscilloscope.

First ... a word on TRIGGERING.
Most oscilloscopes have a knob or two for “Triggering.” This tells the oscilloscope when to start the sweep. When the **Triggering Slope** is placed in the (+) position, the scope will begin its trace when the input signal goes positive. Likewise, when (–) triggering is selected, the trace will begin when the input signal goes negative, as shown in Fig. 3. Often there will be the option to chose the **Triggering Source**, such as “CH.1” or “LINE.” Line means the scope is triggered off the 60Hz line voltage, and is useful when synchronizing on television signals or looking at 60Hz power supply noise. CH.1 or CH.2 means the scope will trigger off the signal on channel 1 or 2 respectively. **Trigger Level** is at what voltage of the input signal triggering begins. For example, if set high, triggering may not begin until the input signal reaches several volts. When set around zero, it will trigger the moment the signal goes positive (if set for (+) triggering). This setting can be troublesome if noise exists on the signal. Adjust for stable triggering.
DC Voltages.
Say you want to check the transmit-receiver (T-R) switch in your QRP rig, or other digital signal. See Fig. 4. The key line is the input to the HCT240 inverter to form the 0V TX– on key- down and the 0V RX– on key- up. This switches the rig between transmit and receive (T-R Switch). It is a logic function, that is, a voltage to represent ON or OFF.

Place the scope lead on pin 13 at 10v/div. and you should see the waveform like the top trace in Fig. 4 ... about +6v on key-up and 0v on key down. Move the scope lead to pin 7 and you should see 0v on key-up and about +8v on key-down (bottom trace). If the output does not go "HI" (+8v) on key-down, or does not go to a solid "LO" (<1v) on key-up, the inverter is not working properly. (It’s bousticated). Many shortwave receivers use similar schemes for switching filters or attenuators.

While this test could be done with a DVM, the integration time is slow, requiring long key-downs to get the voltages. A scope will also show you how clean the switching is, or if there is an ac voltage (or RF noise) riding on the T-R voltage.

Scopes are thus good dc voltmeters, with about a 5% reading accuracy.

AC Voltages.
Here is where an oscilloscope pays for itself by making AC voltage (and frequency) measurements. You must remember, AC voltages are displayed on a scope as **peak-to-peak voltages**, while a voltmeter measures in **rms**. RMS voltages are about 1/3 the p-p voltage read on a scope, or specifically:

\[
V_{\text{rms}} = \frac{1}{2} \sqrt{0.707 \times V_{\text{pp}}} = 0.354 \times V_{\text{pp}}
\]

For example, let’s measure the output voltage and frequency from the sidetone oscillator in your QRP rig. Place the scope lead on the audio amplifier output. On key-down, you get the waveform shown in Fig. 5. The transmit sidetone audio is 1.9Vpp.

AC Frequency Measurement.
With this waveform, we might as well see what frequency our sidetone or transmit-offset frequency is. Most operators prefer the sidetone to be about 700–750Hz. Trigger the scope for a stable waveform and set the time-base (sweep) to display 2 or 3 cycles, as shown in Fig. 6. Center the waveform between two horizontal divisions so zero volts on the waveform is on a graticle line, then move the horizontal position so the first "zero– crossing" is also on a division line.

Measure the time it takes to make one complete sine wave from one zero-crossing to the next. In this example, it is 1.5 divisions, at 1mS per division, or 1.5mS. Frequency is simply the reciprocal of time, such that the sidetone frequency is:

\[
f = \frac{1}{t} = \frac{1}{1.5\text{mS}} = 667 \text{ Hz}
\]

For some, this may be about right. For others, this may be a little low to your liking. To raise it to 700Hz, calculate the time period of 700Hz (1/700 = 1.4mS). At 1.0mS/div, you can adjust your sidetone or transmit offset until zero-crossings for a single sinewave is 1.4 divisions. This will be about 700 Hz. (Sidetone may not be adjustable on some rigs).

All frequency measurements are made in this fashion, by measuring the distance between zero-crossings (or from one peak to the next) and converting the time period to frequency. This should emphasize the importance of ensuring your sweep speed is calibrated: as any error in the time base will cause a corresponding error in the accuracy of your time or frequency measurements.
Measuring Phase Shifts.

- Referenced triggering.
- Ensure accuracy.
- Input to the output will be the gain in dB. In our example of using eight divisions for full-scale, then four divisions would be 6dB, 2 divisions 12dB, etc. as shown in Fig. 9. You may want to add your own dB scale along your scope display to remind you of this relationship. Note: this is voltage gain \(\text{Av}=20\log \left(\frac{\text{Vout}}{\text{Vin}} \right) \). In this example, with 4Vpp output and 1Vpp input \(\text{Av}=4 \), then the gain is dB=20log(4) = 20(0.602) = 12dB, or as shown directly on the CRT tube. Since this is a relative measurement, the absolute Vin or Vout voltage does not need to be determined.

Insertion Loss.

- In some circuits, such as filters or attenuators, the loss in the circuit needs to be measured, and like circuit gain – expressed in dB. The loss through a circuit is called the insertion loss. It is determined in the same way as amplifier gain just presented, except start with the input (the highest AC voltage) as the full-scale or reference display, then measure the output AC voltage (the lowest level). The **ratio is the insertion loss in dB**.

For example, with a signal generator connected to your receiver, you want to measure the insertion loss through the IF crystal filter. At the filter input, you can just barely squeak out 2 divisions of input signal on your scope at its most sensitive setting. The output from the crystal filter is 1.5 divisions. The insertion loss would be 20log(1.5/2.0 div.) = –2.5 dB. If the output were only 1.0 division (50% reduction), the insertion loss would be 6dB.

Measuring Phase Shifts.

- Phase relationships between two signals at the same frequency can be measured with 2-5° accuracy with a scope, although more suited for a dual-trace scope. The reference signal is applied to CH. 1 and the signal to be measured to CH. 2. For proper phase measurements, ensure your dual trace display is in the **chopped** mode, not **alternate** mode for proper phased referenced triggering.

There are many methods to do this. One is to stretch out the signal so it takes 4 horizontal divisions, such that each division is 90° of phase, as shown in Fig. 10. By measuring from a common point on one signal (zero-crossing or from peak-to-peak) to the next, the phase can be measured. For example, say you are making a phased-array antenna in which one feedline must cause a 90° delay. You calculate the electrical length for a ¼λ \(\text{L}=(246/f) \times \text{Velocity Factor} \) and cut the coax to that length. You are now working on blind faith that you have exactly 90°. With a scope, you can measure it fairly accurately by injecting a signal into one end with a signal generator (at the frequency of interest) and a 50Ω load on the other. Connect the scope CH.1 to the coax (signal) input and CH.2 to the load end and measure the phase. In the Fig. 10 example, the CH.2 signal is delayed by 1.6 divisions, at 90°/div is 145°. **Your delay line is too long!** Cut off an inch or two at a time until the CH.2 signal is 90° from CH.1 for precise tuning of the delay.
line. (While departing from o-scopes for a moment, the sharp null of a phased array is astounding when exactly 90° delay is achieved. More than 10-15° in error causes a very "mushy" null with little difference over a single vertical antenna. Most errors in achieving exactly 90° by the "measure-and-cut" method are due to uncertainties in the stated velocity factor of the coax).

Another method is to superimpose the two signals on top of each other. Make one signal larger than the other so you know which one is what, as shown in Fig. 11. In this example, the smaller signal lags the larger signal by about 100°, estimated by where they cross. For more accurate determination, use the time base to measure the time period of one cycle (T1), then the time period one signal lags (or leads) the other (T2). The phase shift is then \[\theta = (T2/T1) \times 360^\circ. \]

Phase measurements can be made on a single trace scope as well. First, connect the reference signal, using a BNC "T," to both the external trigger and the normal vertical input. Adjust the trigger level so the zero-crossing occurs at the beginning of the trace (left-hand graticle). Remove the reference from the vertical input, but not the external trigger, and apply the signal to be tested to the vertical input – without altering the time base or trigger level. The distance of zero-crossing of the test signal is from the left-hand graticle can now be measured to determine the phase, though with slightly less accuracy than using a dual-trace scope.

An interesting experiment is to measure the phase shift of the audio signal at different frequencies as it travels through the stages in a CW, SSB or AM active filter. What is the phase shift of the wanted vs unwanted frequencies?

Measuring Rise and Fall Times

In digital circuits, it is sometimes important to know the rise and fall times of a signal through a gate. In amateur radio transceivers, this same interest could be applied to how fast the T-R switch switches. On key-down, if the transmitter turns on slightly before the receiver is turned off, it can produce an annoying "thump" in the receiver. Rise and fall times are measured by triggering on the edge of the signal of interest, then increase to a faster sweep speed to measure the time it takes the signal to reach 90% of its final level. The signal to be measured is shown in Fig. 12 on the top trace, and the expanded version on the bottom. For proper rise times, the signal being measured should be well within the bandwidth of your scope and using a low capacity probe.

For example, in Fig. 12 (bottom trace), the rise time is about 1/4th of a division. If the sweep speed is 100nS/division, the rise time would then be about 25nS.

Using Limited Bandwidth Scopes

Today’s scopes have 200–500MHz bandwidths. Likely your scope is much less than that. A limited bandwidth scope is still very useful to the amateur or homebrewer. Say the bandwidth of your scope is 5MHz. This does not mean you can't see 7MHz signals. It just means the peak-to-peak value has lost meaning, and will likely be very weak, since it is beyond the bandwidth of the scope. (Like other bandwidth measurements in electronics, the “bandwidth” of a scope is usually based on the “3dB bandwidth.” That is, at the maximum bandwidth, you are already at the –3dB point, or a 25% reduction in the peak-to-peak voltage display). You can still resolve individual cycles higher than the cited bandwidth to a certain degree and make gain and phase measurements, since they are based on ratios.

Most of the examples in this article explore many regions of a communications receiver or ham transceiver without the benefit of any great bandwidth. Experiment with your scope to learn its limitations. Use a good scope probe and make measurements with a good ground to get the most out of the bandwidth you have.

For the homebrewer building circuits in the HF bands, a 50 MHz scope with good calibration will yield fairly accurate measurements up to 30 MHz with little concern for accuracy. The old 465 or 475 series of Tektronix scopes, with 100/200 MHz bandwidths, make an excellent oscilloscope for the amateur or experimenter. They can often be found at hamfests today for $100–150, and tend to maintain a fairly good calibration almost regardless of how much use they have seen.

In Part 2 - we’ll probe (bad pun) into some advanced measurement techniques, even with a simple scope ... such as measuring sideband rejection, filter responses, VCO phase noise, etc. (and what it all means).

72, Paul NA5N

na5n@zianet.com

pharden@nrao.edu

Colophon:
Article prepared by NA5N using CorelDraw 11