
SDM Binary Data Format
Version 1.0rc2

2008-03-07

Authors:

M. Pokorny, NRAO (EVLA)

J. Pisano, NRAO (ALMA)

1 INTRODUCTION..3
1.1 CONTEXT...3

2 HIGH-LEVEL ORGANIZATION ...5
3 ENUMERATIONS...8
4 DATA STREAM TYPES ... 11
5 BINARY COMPONENTS...12

5.1 TYPES..12
5.2 TREE STRUCTURE ..12
5.3 AXES ...12

5.3.1 Lists..13
5.3.2 Sizes ...13
5.3.3 List reduction ...14
5.3.4 Element ordering ...14

5.4 COMPONENTS..15
5.4.1 Data stream dependencies ...17

6 HEADER ELEMENTS ...18
6.1 MAIN DATA HEADER ..18

6.1.1 Data stream dependencies ...23
6.2 DATA SUBSET HEADER ...23

7 APPENDICES ..26
7.1 XML SCHEMATA..26
7.2 MIME FORMAT EXAMPLE..26
7.3 SCHEMATIC REPRESENTATION OF TIMES ..27
7.4 ALMA IMPLEMENTATION DETAILS ..27

7.4.1 Spectral data stream ..27
7.4.1.1 Binary component sizes ..27
7.4.1.2 Example of Full Resolution Data..30
7.4.1.3 Data rate..32

7.4.2 Channel average data stream ..32
7.4.2.1 Binary component sizes ..32
7.4.2.2 Example of Channel Average Data ...34
7.4.2.3 Data rate..36

7.4.3 Data capture information ..36
7.4.4 Data transmission..37

7.4.4.1 Overview ..37
7.4.4.2 Subscan start ...37
7.4.4.3 Sending data..37
7.4.4.4 Subscan end ..37

7.5 EVLA WIDAR IMPLEMENTATION...38
7.5.1 Data stream example ...38
7.5.2 Data rates ..38

7.6 REFERENCES ...39

1 of 39

2 of 39

1 Introduction
The format described in this document is part of the Science Data Model (SDM) being
used by the ALMA and EVLA projects. Each application (e.g., ALMA-B correlator data,
ALMA total power data, EVLA WIDAR correlator data) is expected to implement only a
part of the format described herein, and in that sense, this format is a generalization of
the specific formats used by all applications. The generic SDM binary format, and,
consequently, its application-specific variants, are all supported by the CASA post-
processing software through a CASA-provided measurement set filler.

Where necessary, notations in this document are used to provide application-specific
implementation features or details related to the subject under description.

An SDM dataset is composed of a set of tables with specified in-memory
representations, and representations as XML documents for data exchange and
persistence. The amount of actual data produced by various processors (correlators,
square law detectors, radiometers, etc.) being in general very large, data from these
sources are stored in binary blocks with unique labels for reference from the SDM
tables. These data, comprising the actual data (cross-correlations, auto-correlations),
auxiliary data (zero-lags) and associated meta-data (flags, etc.), are grouped into binary
large objects (BLOBs). Each processor produces data dumps sequentially in time as the
observations proceed, and the data flow is fed by a set of processors producing data
concurrently. A single BLOB may consist of a time series of dumps, or, alternatively, a
more complex object when the time axis is part of the data structure. The former case
is driven by the need to support data streaming; the latter case, by the need to provide
efficient storage with minimal overhead for those processors that regularly produce
smaller “chunks” of data, although possibly at a moderately high rate (e.g., the data
produced by ALMA's baseband-wide detectors).

Although the data format described in this document could support rather complex
data organizations, in practice, for both ALMA and EVLA, we are considering one BLOB
per processor per sub-scan. For the ALMA-B correlator the finest temporal granularity
of the SDM data is a sub-integration, whereas for the EVLA WIDAR correlator the finest
granularity is an integration. Therefore, for the purposes of this document, a BLOB
always contains data for the set of (sub-)integrations comprising a sub-scan for a given
set of antennas (i.e., subarray).

The specification of the data format as described by this document is, in itself,
incomplete. A complete specification is provided by the present document together
with the associated XML schemata (see section 7.1). All of the documents required for a
complete specification are maintained as a single project under a revision control
system. In an attempt to maintain a somewhat higher level of description in the present
document, some of the low-level details of the format that are specified by the XML
schemata are not provided here. An implementation that reads or writes data in this
format will necessarily require information about the XML parts of the format that are
best provided by the XML schemata.

1.1 Context
Here we present a short description of the context in which this data format is used by
each of the applications.

EVLA WIDAR note

The correlator output binary data format applies to the output data stream
of the WIDAR correlator backend. The data produced in the binary data
format are primarily spectral in nature, although supplemental, non-spectral
data are also a part of the format. Typically, the data stream is sent to the

3 of 39

EVLA archive and TelCal, while metadata are sent to MCAF for inclusion in
the science data model. Note that there may be other data products
produced by the correlator backend; however, their specification is not
addressed by the present document.

As of this writing, correlator backend will write its output data stream to a
shared filesystem. In the EVLA design, the backend consists of a cluster of
computers that accepts the correlator hardware-produced lag frames as
input, processes the lag sets, and writes the output data files. One node in
the cluster will have the role of the fast formatter, which will initialize the
output files prior to access by the other cluster nodes, provide output data
not available to individual nodes, and send the completed files to the EVLA
archive (the fast formatter node will also provide data to MCAF, but those
data are not of concern here.) Cluster nodes handling the lag frames will
write data to the output file(s) concurrently as needed. Of course, nothing in
this specification prohibits sending the data stream over a network rather
than being produced as a file.

ALMA note

The ALMA-B correlator produces lag results which are transferred (or
dumped) to the CDP (Correlator Data Processor) Node computers via physical
connections. The dump interval is programmable. The CDP nodes process
the lag data into raw spectra which are then transferred to the CDP Master
computer at each integration or sub-integration – there are an integral
number of sub-integrations per integration. The master computer organizes
these raw spectra according to the binary data format described in this
document and transfers them to a data distributor via a network connection
to the Archive, TelCal, and QuickLook Pipeline.

The ACA correlator software functions in a similar mode, except that ACA
correlator is an FX type generating spectra as its raw output and that the
dump interval is non-programmable.

4 of 39

2 High-level organization
In the binary data format, the data are organized hierarchically. While there is
considerable flexibility in the format, header fields are sufficient to describe the
organization of any instance of the format. The data are organized at the top level
using the MIME (Multipurpose Internet Mail Extensions) format. In the application of the
MIME format to the binary data format, it provides a hierarchically organized container
for data headers in XML format and binary data sections.

Although other applications of the format may vary, as an illustrative example, this
document will describe the high-level organization of the data as it is used for the
ALMA and EVLA correlators. The binary data format supports applications using an
organizational hierarchy with greater depth than is currently used by the
aforementioned correlators, but no such applications are known to exist, and the
format lacks some specification to fully support this feature. Applications with a lesser
hierarchy are supported fully (e.g., the ALMA total power data), but are not yet
illustrated with examples in this document. The specification of the hierarchy used to
organize the data in any instance of the binary data format is provided by the
dimensionality and/or numTimes header elements (which are described in section
6.1).

For the ALMA and EVLA correlators, a BLOB in the binary data format comprises
spectral data blocks for a single sub-scan. Each sub-scan contains all the spectral data
for all integrations for all baselines of a given set of antennas, all bins, all polarizations,
and APC (Atmospheric Phase Correction) data sets.

The parts of a MIME message in the binary data format are of three types: the main
data header, the data subset headers, and the binary data components. The main data
header contains general information about the sub-scan, and all properties shared by
the (sub-)integrations. The subset headers contain information specific to each
integration or sub-integration in the sub-scan. The binary data for the (sub-)integration,
grouped into several components, follow each subset header. Schematically, the data
are organized as follows (for the sub-scan-based grouping used by the ALMA and EVLA
correlators).

Data container (sub-scan)

Main data header (sub-scan-wide metadata)

Data subset container 1 (first (sub-)integration)

Data subset header ((sub-)integration metadata)

Binary component 1.1

Binary component 1.2

…

Binary component 1.n
1

Data subset container 2 (second (sub-)integration)

Data subset header ((sub-)integration metadata)

Binary component 2.1

…

Binary component 2.n
2

…

5 of 39

Data subset container N (Nth (sub-)integration)

Data subset header ((sub-)integration metadata)

Binary component N.1

…

Binary component N.n
N

Note that, in general, each additional level of hierarchy in the structure of the data
would introduce, in a nested fashion, an equivalent of the “data subset containers”
shown in the example above.

The schematic view represented above can be converted into the structure of a MIME
message by replacing each “container” with a multipart MIME message. We do not
reiterate here all of the relevant MIME specifications; instead we describe the
application of the MIME standards to the binary data format, noting only what is
specific to this application, including any exceptions to the MIME standards that are
allowed under this application. Further information regarding the MIME standards may
be found in references [RFC2045], [RFC2046], [RFC2387], and [RFC2557]. With the
overall MIME structure of the data format as background, we note the following
additional specifications for MIME messages that conform to the binary data format.

 The Content-Type header value of the top-level MIME message is
multipart/mixed.

 The Content-Type header value of the MIME messages corresponding to the
data subset containers is multipart/related.

 The top-level MIME Content-Description header value is of the form
telescopeName/processorType/processorName/spectralResolution.

EVLA WIDAR note

The top-level MIME Content-Description header value is
EVLA/CORRELATOR/WIDAR/FULL_RESOLUTION.

ALMA note

For ALMA, we have telescopeName = ALMA, processorType = CORRELATOR,
processorName = ALMA_ACA or ALMA_BASELINE or ALMA_BASELINE_ATF or
ALMA_BASELINE_PROTO_OSF, spectralResolution = CHANNEL_AVERAGE or
FULL_RESOLUTION

 To preclude scanning through large chunks of binary data before generating a
MIME boundary string, sequences of bytes that duplicate a MIME boundary
string are allowed to occur in the parts of the MIME message with a Content-
type of application/octet-stream. Because the sizes of these parts can be
determined from the data headers, true MIME boundary strings can be
differentiated from sequences of bytes in the binary parts that happen to match
a boundary string. Clearly, with this relaxation of the MIME standard, special
applications are required to read the binary format reliably; generic MIME
applications could, in theory, fail to parse these messages correctly. All other
standard requirements on MIME boundary string values apply to this format.

 The Content-Location header value of the top-level MIME message is the base
URI for the resolution of relative URIs in the descendant MIME parts. The value
is effectively the data object identifier (dataOID) of the data in the MIME
message.

 The Content-Location header value of the MIME parts for the main and subset
data headers is the relative URI of the header (with respect to the base URI given
in the Content-Location header value of the top-level MIME message). The
value consists of the relative project path for the data described by the header

6 of 39

and the term “desc.xml”, joined by a “/” character. The relative project path for
the main data header comprises the execution block number, the scan number
and the sub-scan number of the data in the MIME message, wherein these
numbers are joined by “/” characters. For the subset data headers, the relative
project path begins with the relative project path in the main data header, and
has appended to it a (sub-)integration number.

 The Content-Location header value of each of the MIME parts for the binary
components is similarly the relative URI for the binary component. The trailing
part of each of these URIs is a name derived from the type of the binary
component together with a “.bin” suffix, for example,
1/10/3/2/actualDurations.bin. The name in the header value is that of the
subset header element associated with the binary component type as described
in section 5.4.

Snippets of MIME messages that conform to the data format can be found in the
appendices.

7 of 39

3 Enumerations
Several enumerations are used by the data format to provide a semantic basis for
certain terms, and to create a bridge to the enumerations used in the other components
of the SDM. Enumeration values have both string and integer representations. In the
table below, enumeration values are presented in their proper order; however, the
integer values are not specified, because they are of no direct use.

Enumeration type Enumeration values Description

AP_UNCORRECTED uncorrected for atmospheric phase
b i

AP_CORRECTED corrected for atmospheric phase
b i

AtmPhaseCorrection

AP_MIXED
mixture of baselines with and without
atmospheric phase correction

TIM time

BAL baseline

ANT antenna

BAB baseband

SPW spectral window

BIN bin (e.g., pulsar phase, frequency
i hi)

APC atmospheric phase correction bin

SPP spectral point (channel)

POL polarization

AxisName

HOL holography

BB_1 baseband 1

BB_2 baseband 2

BB_3 baseband 3

BB_4 baseband 4

BB_5 baseband 5

BB_6 baseband 6

BB_7 baseband 7

BasebandName

BB_8 baseband 8

CROSS_ONLY cross-correlation data only

AUTO_ONLY auto-correlation data only CorrelationMode

CROSS_AND_AUTO
both cross-correlation and auto-
correlation data

8 of 39

ALMA_ACA

ALMA_BASELINE

ALMA_BASELINE_ATF

ALMA_BASELINE_PROTO_OSF

EVLA_WIDAR

HERSCHEL

IRAM_PDB

CorrelatorName

IRAM_30M_VESPA

INT16_TYPE 16-bit signed integer

IDL short, XMLW3C short, C/C++
short, Java short

SHORT_TYPE

UINT16_TYPE 16-bit unsigned integer

INT32_TYPE 32-bit signed integer

IDL int, XMLW3C int, C/C++ int, Java INT_TYPE

UINT32_TYPE 32-bit unsigned integer

UNSIGNED_INT_TYPE
IDL int, XMLW3C unsignedInt, C/C++
unsigned int, Java int

INT64_TYPE 64-bit signed integer

UINT64_TYPE 64-bit unsigned integer

LONGLONG_TYPE 64-bit signed integer

FLOAT32_TYPE
IEEE 754 single format floating point
number (32 bits)

PrimitiveDataType

FLOAT64_TYPE
IEEE 754 double format floating point
number (64 bits)

CORRELATOR digital correlator

RADIOMETER radiometer ProcessorType

SPECTROMETER multi-channel spectrometer

NOSB no sideband

USB upper sideband

LSB lower sideband
NetSideband

DSB double sideband

FULL_RESOLUTION high spectral resolution data

CHANNEL_AVERAGE lower spectral resolution data SpectralResolutionType

BASEBAND_WIDE data applying to the whole baseband

9 of 39

RR right-right polarization product

RL right-left polarization product

LR left-right polarization product

LL left-left polarization product

XX X-X polarization product

XY X-Y polarization product

YX Y-X polarization product

StokesParameter

YY Y-Y polarization product

Table 1: Enumerations

10 of 39

4 Data stream types
The binary data are classified according to the “mode” under which the data processor
has produced the data. The binary data format supports a concept of mode under
which the data format varies slightly according to this mode. Because the data formats
are somewhat different for the different modes, we classify a sequence of files (i.e.,
MIME messages) in the binary data format produced under a given mode (by a single
data processor) by the term data stream. A data stream is parameterized by two values,
one of type CorrelationMode, and one of type SpectralResolutionType. Any given data
processor will likely produce data in only a small subset of the nine possible types of
data streams.

The specification of a data stream type affects the binary data format by restricting the
set of allowed binary components, as well as their structures. Effects are also present in
the main data header and the data subset headers as a consequence.

EVLA WIDAR note

The EVLA WIDAR correlator backend produces a single data stream per
subarray. For this stream, the CorrelationMode value is CROSS_AND_AUTO,
and the SpectralResolutionType value is FULL_RESOLUTION. Note that the
data stream may be smoothed or averaged by the correlator backend —
setting the SpectralResolutionType to FULL_RESOLUTION is done simply to
match the ALMA convention, where this means “highest available spectral
resolution”.

ALMA note

For ALMA, CorrelationMode = CROSS_ONLY is not allowed.

To highlight the dependencies in the format on the data stream type, small grids filled
with one-letter annotations are used whenever some aspect of the format that varies
with data stream type is being described. These grids appear in the left margin of the
page, adjacent to the presentations of elements, attributes, and components as needed.
The following table shows the structure of these marginal grids; the grids themselves
appear without row headers, column headers, or grid lines.

SpectralResolutionType

FULL_RESOLUTION
(F)

CHANNEL_AVERAGE
(C)

BASEBAND_WIDE
(B)

undefined
(U)

CROSS_ONLY (C) M/O/X M/O/X M/O/X M/O/X

AUTO_ONLY (A) M/O/X M/O/X M/O/X M/O/X CorrelationMode

CROSS_AND_AUTO
(B)

M/O/X M/O/X M/O/X M/O/X

Table 2: Key to format variation marginal grids. Symbols: M - mandatory, O - optional, X –
excluded. The letters in parentheses are the abbreviated forms of the table headers used in the
marginal grids.

 F C B U
C O O O O
A X X X X
B M M O O
EXAMPLE

For example, the grid in the margin to the left shows that the element named
“EXAMPLE” is optional whenever the CorrelationMode value of the data stream is
CROSS_ONLY, or the CorrelationMode value is CROSS_AND_AUTO and the
SpectralResolutionType value is undefined or has the value BASEBAND_WIDE; excluded
(that is, prohibited) whenever the CorrelationMode value is AUTO_ONLY; and
mandatory whenever the CorrelationMode value is CROSS_AND_AUTO and the
SpectralResolutionType value is either FULL_RESOLUTION or CHANNEL_AVERAGE.1

1 A format change to be adopted soon will define zeroLags for both full resolution and channel
average, so the SpectralResolutionType will become meaningless and will be dropped.

11 of 39

5 Binary components

5.1 Types
Seven types of binary components are supported by the binary data format. The set of
binary component types is meant to be extensible, but for the purposes of the present
version of the format described in this document, the following list shall be considered
exhaustive. The descriptions in the following list of binary component types are merely
brief summaries; for more detailed information, refer to section 5.4.

FLAGS

flagging information

ACTUAL_TIMES

time centroid associated with data

ACTUAL_DURATIONS

total amount of time used in deriving the data

WEIGHTS

data weights

ZERO_LAGS

zero lags

CROSS_DATA

cross-correlation data

AUTO_DATA

auto-correlation data

EVLA WIDAR note

The EVLA correlator backend is able to produce all of the above binary
component types.

ALMA note

The ALMA CDP does not produce WEIGHTS. The ACA correlator produces
neither WEIGHTS nor ZERO_LAGS.

5.2 Tree structure
The data in the binary components are organized in a tree structure, in which the trees
are of uniform depth, and the nodes are ordered. Data elements are associated with the
leaf nodes of the tree, and the in-memory and persistent representations of the data
correspond to an in-order traversal of the leaf nodes of the tree. Each level of the tree
corresponds with a data axis along which the data are indexed. Each axis in an ordered
list corresponds with a level in the tree structure of the binary data, the levels
descending the tree as the axis list is traversed in order.

5.3 Axes
The axes that can be used to index the binary data components are listed in Table 1
under the AxisName enumeration type. Note that the order of the axes given in Table 1
is significant for the binary components; although not all axes are required for a binary
component, the axes that are used must be ordered as given by the table. For example,
if the Nth level of a tree is indexed by the SPW axis, the N+1st level may be indexed by

12 of 39

any one of the BIN, APC, SPP, or POL axes, but not the TIM, BAL, ANT or BAB axes. The
axis ordering therefore imposes a hierarchy on the data structure of all binary
components. As an example, the number of spectral windows may depend on the
baseband, but not on the set (or list) of polarizations.

EVLA WIDAR note

The bin axis, BIN, is used primarily for pulsar phase binning.

The atmospheric phase correction axis, APC, initially will have a size of one;
the single element having a value of AP_UNCORRECTED.

ALMA note

The bin axis is used for nutator or frequency switching.

An important exception to the hierarchical nature of the axes named by the AxisName
enumeration type is that the BAL and ANT axes are at the same level. This means that
the when the sequence “BAL, ANT” is given in a list of axes: 1) the ANT nodes are to be
considered as equivalent to a baseline of length zero; 2) the “true” baseline-based (i.e.,
non-zero baseline length) data appear before the antenna-based data when traversing
the tree nodes in order; and 3) both types of nodes appear at a single level of the tree.

5.3.1 Lists
The structure of a binary component is thus greatly dependent upon the axes used for
indexing the data in the component. Metadata for each binary component specifies an
ordered list of axes along which the data are indexed. Applications of this format may
restrict the set of allowed axes lists for the various binary components, but such
restrictions are not a part of the format specification.

5.3.2 Sizes
The size (or length) of an axis is equal to the number of children of a node at the level
corresponding to that axis. For a generic tree, each node at any given level could have a
different number of children, but in the binary data format, the number of children at
various nodes in a tree may be constrained.

The sizes of the axes of a binary component tree are specified in various ways, as
follows.

 TIM: Size is set by the numTimes element of the main data header, if present;
otherwise, the axis size is one.

EVLA WIDAR note

The size of the TIM axis is one in the EVLA WIDAR format (for sub-band
cross- and auto-correlations), meaning that each data subset contains data
associated with a single time (that being all the data within one integration
interval).

ALMA note

The size of the TIM axis is one in the ALMA-B correlator format (for sub-band
cross- and auto-correlations), meaning that each data subset contains data
associated with a single time (that being all the data within one integration
interval).

 BAL: Size is determined by the value of the numAntenna element of the main
data header. If the value of numAntenna is represented by N

a
, the size of this

axis is N
a
(N

a
-1)/2.

 ANT: Size is set by the numAntenna element of the main data header.

 BAB: Size is equal to the number of baseband elements in the main data header.

13 of 39

 SPW: Size is equal to the number of spectralWindow elements within a
baseband element (hence, the axis size may vary with baseband).

 BIN: Size is set by the numBin attribute of a spectralWindow element (hence,
the axis size may vary with spectral window).

ALMA note

numBin is common to all spectral windows defined in a baseband.

 APC: Size is equal to the number of enumerators appearing in the (list) value of
the apc attribute of the dataStruct element of the main data header.

 SPP: Size is set by the numSpectralPoint attribute of a spectralWindow
element of the main data header (hence, the number of spectral points may vary
with spectral window).

 POL: For AUTO_DATA and CROSS_DATA binary components, the axis size is
equal to the number of enumerators in the (list) value of the sdPolProduct and
crossPolProduct attributes, respectively, of a spectralWindow element. For
the FLAGS binary component, the size of this axis depends on whether the
flagging is done on the basis of polarizations or polarization products. In the
case of polarization-based flagging, this means that if the sdPolProduct or
crossPolProduct lists have more than two items, the POL axis size is two,
otherwise, it is one. For WEIGHTS, ACTUAL_TIMES and ACTUAL_DURATIONS
binary components, the size of the axis can be 1, 2, 3 or 4.

5.3.3 List reduction
Generally, a tree can always be indexed with its complete set of axes. However, when
the size of an axis is one (in all tree branches), and the logical node value on that axis is
constant in all tree branches, that axis may be omitted from the list of axes. Reducing
the axis list in this way has no impact on either the number of elements in the tree, or
on the structure of elements in the tree. The only effect of axis list reduction is on the
description of the tree. Note the requirement that for list reduction the logical node
value on the axis must be constant on all tree branches; this means that, for example, if
on one tree branch the POL axis has data for the single value XX, no other tree branch
has data on the POL axis for a different value of the StokesParameter enumeration.

5.3.4 Element ordering
Ordering of index values along an axis depends on the axis as follows.

ANT

Integer order (e.g., 1, 2, 5, 10, 12)

ALMA note

ALMA antennas are alphanumeric strings and ordered accordingly, e.g.,
A01, A02, A10, D1, D3.

BAL

In a matrix formed by labelling rows and columns with antenna indexes, and
where each matrix element is the pair (row antenna index, column antenna
index), the ordering of the BAL axis corresponds to the column-major traversal
of the matrix’s upper triangle. This ordering allows baselines introduced
through the addition of a new antenna to appear at the end of the list.

For example, for antennas in the set {1, 2, 4, 7}, the order of baselines is (1, 2),
(1, 4), (2, 4), (1, 7), (2, 7), (4, 7).

14 of 39

Note that for the special case in which the axis list contains the sequence “BAL,
ANT”, in the previous example, the complete list of antenna “pairs” along the
unified “BAL, ANT” axis is (1, 2), (1, 4), (2, 4), (1, 7), (2, 7), (4, 7), (1, 1), (2, 2), (4,
4), (7, 7).

Finally, note that the order of the correlation products recorded in the binary
must agree with the order of antennas in each baseline. For example if the
baseline is (1, 2), the product must be 1 * 2, not 2 * 1.

BAB

Order of BasebandName type values (see Table 1)

SPW

Order of spectralWindow elements within a baseband element in the main
data header

BIN

Integer order

APC

Order of AtmPhaseCorrection type values (see Table 1)

SPP

Integer order

EVLA WIDAR note

The WIDAR correlator can produce either frequency or lag spectra. The
conversion from integer SPP axis values to frequency or lag number is
provided by the SDM metadata.

ALMA note

For upper sidebands, the frequency order decreases with increasing
channel number and for lower sidebands, the frequency order increases
with increasing channel number.

POL

Order of StokesParameter type values (see Table 1)

5.4 Components
The data in each binary component type are described below in terms of the quantity
represented, the units used to express that quantity, and the type used to represent the
data. Additionally, for each binary component type, the name of the element in the
main or subset data header that provides metadata for the binary component is
identified. Finally, because the presence or absence of a binary component is
meaningful, a description of such meaning is also given where relevant.

FLAGS F C B U
C O O O O
A O O O O
B O O O O

FLAGS

 datum: occurrence of flag conditions

 units: N/A, bitfield

 data type: 32 bit integer (INT32_TYPE)

 header element: flags

 Absence of this component means that no flag conditions occurred during data
acquisition. Note that the flag conditions are application specific.

15 of 39

ACTUAL_TIMES

 datum: centroid of (MJD) time interval associated with data subset, allowing for
blanking

 units: nanoseconds

 data type: 64 bit integer (INT64_TYPE)

 header element: actualTimes

 If this component is absent, then no data blanking has occurred during the time
interval, and the time stored in the data subset header (by the time element) is
to be used for the time associated with the data subset.

ACTUAL_DURATIONS

 datum: total amount of time used in deriving the data subset, allowing for
blanking. Proportional to the number of valid samples.

 units: nanoseconds

 data type: 64 bit integer (INT64_TYPE)

 header element: actualDurations

 If this component is absent, then no data blanking has occurred during the time
interval, and the duration stored in the data subset header (by the interval
element) is to be used for the exposure time associated with the data subset.

ZERO_LAGS

 datum: lag zero value (real-valued)

 data type: single format IEEE 754 floating point number (FLOAT32_TYPE)

 header element: zeroLags

ALMA note

For the ALMA-BL correlator, data are always present for
FULL_RESOLUTION. The ACA correlator does not produce ZERO_LAGS.

AUTO_DATA

 datum: auto-correlation value (real- or complex-valued)

 data type: 1 or 2 * single format IEEE 754 floating point number
(FLOAT32_TYPE)

 header element: autoData

CROSS_DATA

 datum: cross-correlation value (complex-valued)

 data type: 2 * single format IEEE 754 floating point number (FLOAT32_TYPE),
integer (INT_TYPE), or short integer (SHORT_TYPE) (specified in the data subset
header crossDataType element)

 header element: crossData

EVLA WIDAR note

Initially EVLA will use 2 * FLOAT32_TYPE.

ALMA note

 F C B U
C O O O O
A O O O O
B O O O O

ACTUAL_TIMES

 F C B U
C O O O O
A O O O O
B O O O O

ACTUAL_DUR'NS

 F C B U
C O O O O
A O O O O
B O O O O

ZERO_LAGS

 F C B U
C X X X X
A M M M M
B M M M M

AUTO_DATA

 F C B U
C M M M M
A X X X X
B M M M M

CROSS_DATA

ALMA uses scaled 16- or 32-bit signed integers. See [Scott].

16 of 39

WEIGHTS F C B U
C O O O O
A O

 datum: data weight lookup table index (lookup table is located in weights
element of main data header) O O O

B O O O O
WEIGHTS

 data type: variable, a word of N bits to encode 2N lookup table index values

 header element: weights

EVLA WIDAR note

Initially, the number of bits allowed for the weights will be small multiples
of 8; eventually, other values will be accommodated.

ALMA note

ALMA does not use weights.

5.4.1 Data stream dependencies
The following table lists the mandatory and optional binary components as a function
of data stream type (specifically, the value of a CorrelationMode parameter only).

CorrelationMode

Binary component type CROSS_ONLY AUTO_ONLY CROSS_AND_AUTO

FLAGS O O O

ACTUAL_TIMES O O O

ACTUAL_DURATIONS O O O

ZERO_LAGS O O O

AUTO_DATA X M M

CROSS_DATA M X M

WEIGHTS O O O

Table 3: Mandatory and optional binary components. Symbols: O - optional, X - excluded, M -
mandatory

17 of 39

6 Header elements
The parts of a MIME message in the binary data format that contain header information
are represented as XML elements. The following sections provide an overview of these
elements, their content, and their attributes. Further detailed, technical information
about these elements, such as the formats and/or types of attribute values, can be
found in the XML schemata associated with this document (see section 7.1).

6.1 Main data header
The main data header appears once in every binary data format BLOB (that is, once per
sub-scan). The header itself has the name sdmDataHeader, and it has the following
attributes:

 xmlns, a string which defines the SDM binary schema namespace with the fixed
value: “http://TBD/XSDM/sdmBin”. Note that 'TBD' must be defined for the
appropriate archive repository.

 xmlns:xsi, the namespace of the schema instance which has the fixed value of
“http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xlink, which has a fixed value of "http://www.w3.org/1999/xlink";

 xmlns:xvers, which has a fixed value of "http://TBD/XVERSION" Note that
'TBD' must be defined for the appropriate archive repository.

 xsi:schemaLocation, the location of the schema.

ALMA note

This value is "http://TBD/XSDM/sdmbin 0/sdmDataObject.xsd".
Note that 'TBD' must be defined for the appropriate archive
repository.

 xvers:schemaVersion, the version number of the XML schema to which the
XML header elements in the BLOB conform and has the form of
"http://TBD/XVERSION";Note that 'TBD' must be defined for the appropriate
archive repository.

 xvers:revision the schema revision number.

ALMA note

This value is related to the CVS version of the schema.

 mainHeaderId, which has a fixed value of “sdmDataHeader”;

 byteOrder, the endianness of the binary data elements;

ALMA note

This value is “IEEE_Low_Endian”

 projectPath, a string that identifies the data in the BLOB by execution block
number, scan number and sub-scan number (see section 2 for a description of
these strings).

The content of the sdmDataHeader element is composed of a sequence of the following
eight elements.

startTime

The time at which the acquisition of the data in the BLOB was started, as an MJD value
in nanoseconds.

18 of 39

dataOID

The URI of the BLOB; may be used as a reference to the BLOB from the SDM. The
element is empty (in the XML sense), and has the following attributes:

 xlink:type, which has a fixed value; "locator"

 xlink:href, the URI of the BLOB (the same as the top-level MIME X-uid header
value); and

 xlink:title, a user-defined, descriptive name for the BLOB.

EVLA WIDAR note

The xlink:title attribute has a fixed value of “EVLA WIDAR Visibility
Data”.

ALMA note

The xlink:title attribute has a values of “ALMA BL Correlator Spectral
Data”, “ALMA BL Correlator Channel Average Data”, “ALMA ACA Correlator
Spectral Data”, “ALMA ACA Correlator Channel Average Data”

dimensionality or numTimes

The choice between these two elements depends on the data structure. The
dimensionality element must be used for data streams that produce a sequence of
subsets in a time series of data dumps. The use of the dimensionality element allows
a BLOB to contain a structured hierarchy of data subsets. Alternatively, if the data
acquired sequentially in time are blocked into chunks, with one chunk per subset, the
numTimes element must be used.

When the data that are described by the main data header comprise a series of data
subsets, the dimensionality element is applicable. In this case, the element specifies
the axes along which the data subsets are ordered, with each axis corresponding to a
level (or MIME multi-part section) in the high-level structure of the document.

 When the data that are described by the main data header comprise a single data
subset in which the data are ordered by time, the numTimes element is applicable. In
this case, the element specifies the size of the time axis in the binary parts.

The dimensionality element has a single attribute:

 axes, the list of names of axes along which the data subsets are ordered (using
AxisName enumeration values from Table 1).2

EVLA WIDAR note

For the EVLA WIDAR format (for sub-band cross- and auto-correlations), this
element is fixed to be “<dimensionality
axes='TIM'>1</dimensionality>”.

ALMA note

For the ALMA-B correlator format (for sub-band cross- and auto-
correlations), this element is fixed to be “<dimensionality
axes='TIM'>1</dimensionality>”.

The numTimes element has no attributes, and its content is an integer specifying the
size along the TIM axis of the data in the binary parts.

2 Note that, currently, only the TIM axis is supported by the known implementations of the format.

19 of 39

execBlock

Defines the execution block information for the data in the BLOB. It is the starting point
of an outbound link to the execBlock SDM dataset. This element has the following
attributes:

 xlink:href, the execution block URI is of the form: "uid://X1/2/3/4"; and

 xlink:type, which has a fixed value. "simple"

numAntenna

The number of antennas used to obtain data in the BLOB. Typically, this is the number
of antennas in the (sub-)array.

correlationMode

One of the two elements that defines the data structure (or format variant) of the BLOB;
it is a required element. Its content is a value of the CorrelationMode enumeration type.

EVLA WIDAR note

Content has fixed value of CROSS_AND_AUTO.

ALMA note

Content can be AUTO_ONLY or CROSS_AND_AUTO.

spectralResolution

One of the two elements that defines the data structure (or format variant) of the BLOB;
it is an optional element because data processors are not required to support the
concept of SpectralResolutionType. Its content is a value of the SpectralResolutionType
enumeration type.

EVLA note

Content has fixed value of FULL_RESOLUTION.

ALMA note

Content can be FULL_RESOLUTION or CHANNEL_AVERAGE

dataStruct

Provides the description of the data structure. This element must be typed at the
instance level by selecting a type in a type hierarchy. The range of element types is
constrained by the context set primarily by the correlationMode element but also, for
refinements, by the spectralResolution element.

The contents and attributes of this element depend on the type of the element (defined
by the value of the required xsi:type attribute). In the following descriptions of all
possible child elements and attributes of the dataStruct element notations of the
context in which each may or must appear are provided.

There are two possible attributes of the dataStruct element:

 xsi:type, the type declaration; and

 apc, the AtmPhaseCorrection value(s) of the data on the APC axis (the attribute
is present if and only if cross-correlations are in the data stream).

 F C B U
C M M M M

X A X X X
B

The value of the xsi:type attribute must be consistent with the type of the data
stream in which the dataStruct element appears, as shown in Table 4. M M M M

apc

20 of 39

spectralResolution correlationMode
FULL_RESOLUTION CHANNEL_AVERAGE BASEBAND_WIDE undefined

CROSS_ONLY CrossDataFull-
Resolution

CrossDataChannel-
Average

N/A CrossData

AUTO_ONLY AutoDataFull-
Resolution

AutoDataChannel-
Average

AutoDataBaseband-
Wide

AutoData

CROSS_AND_AUTO CrossAndAuto-
DataFullResolution

CrossAndAutoData-
ChannelAverage

N/A CrossAndAutoData

Table 4: Values of dataStruct.xsi:type attribute as a function of data stream type.

EVLA WIDAR note

The EVLA WIDAR correlator data stream only uses the
CrossAndAutoDataFullResolution type; the others may be ignored.

ALMA note

Data stream can be FULL_RESOLUTION: AutoDataFullResolution or
CrossAndAutoDataFullResolution or CHANNEL_AVERAGE:
AutoDataChannelAverage or CrossAndAutoDataChannelAverage. The ACA
correlator

The allowed child elements are baseband, flags, actualTimes, actualDurations,
crossData, autoData, zeroLags, and weights. The occurrence of these child
elements may depend on the declared type of the dataStruct element; see the
following sections for details.

baseband

A named group of spectral windows. At least one of these elements appears in every
dataStruct element, and may appear multiple times. Each baseband element has a
single attribute:

 F C B U
C M M M M
A M M M M

 name, the baseband name, a value of type BasebandName.

The content of a baseband element is a sequence of spectralWindow elements.

spectralWindow

Metadata describing the binary data structure for a spectral window. The element is
empty, and the attributes that may appear depend on the type of the dataStruct
element of which the spectralWindow is a descendant. The possible attributes,
together with the context in which they may or must appear, are the following:

 numSpectralPoint, the number of spectral points (or channels) (i.e., length of
the SPP axis), required;

 numBin, the number of bins (i.e., length of the BIN axis), required;

 crossPolProducts, the ordered list of polarization products produced for each
cross-correlation (i.e., the StokesParameter names of the points on the POL axis);

 scaleFactor, the scaling factor for visibilities recorded as integers;

 sdPolProducts, the ordered list of polarization products produced for single
dish data (i.e., the StokesParameter names of the points on the POL axis);

B M M M M
numSpectralPoint

 F C B U

C M M M M
A M M M M
B M M M M

numBin

 F C B U
C M M M M

X X X X A
B M M M M

crossPolProducts

 F C B U
C O O O O

X X X X A
B O O O O

scaleFactor

 F C B U
C X X X X
A M M M M
B M M M M

sdPolProducts

21 of 39

 F C B U id, a unique identifier for the spectral window across all basebands whose value
is of the form spw_N where N is an integer;

 image, for double sideband receivers, this identifies the image sideband of this
spectral window whose value is of the form spw_N where N is an integer; and

 sideband, the sideband type whose value is of type NetSideBand, required .

EVLA WIDAR note

id and image are not used, and sideband always has the value NOSB.

flags, actualTimes, actualDurations, crossData, autoData, zeroLags, weights

Each of these elements provides metadata for the structure of binary components of a
particular type in the BLOB3. The associations of these elements with the types of
binary components is given in section 5.4, and the table in the following section shows
which of these elements may appear in a BLOB of a given of data stream type. Each of
these elements has the following attributes:

 size, the maximum number of primitive data type values in the binary
component within all data subsets (note that this number is not necessarily the
number of elements in the component because two primitive data type values
are used to represent a complex number); and

 axes, the list of axes for the binary component (as described in Section 5.3).

flags

Associated with FLAGS binary component. Attributes as shown above.

actualTimes

Associated with ACTUAL_TIMES binary component. Attributes as shown above.

actualDurations

Associated with ACTUAL_DURATIONS binary component. Attributes as shown above.

crossData

Associated with CROSS_DATA binary component. Attributes as shown above.

autoData

Associated with AUTO_DATA binary component. Attributes as shown above.

zeroLags

Associated with ZERO_LAGS binary component. Attributes as shown above.

weights

Associated with WEIGHTS binary component. Attributes as shown above. This element
contains the lookup table for the data elements in the binary component. The size of
the lookup table must be an integral power of two. The content of this element is the
ordered list of lookup table values as single precision floating point numbers.

3 Whereas these elements with a main data header provide metadata for the binary components, the
similarly named elements that exist within the subset data headers provide references to particular instances
of the binary components for the given data subset.

 F C B U
C M M X M
A M M O M
B M M X M

flags

 F C B U
C M M X M
A M M O M
B M M X M

actualTimes

 F C B U
C M M X M
A M M O M
B M M X M

actualDurations

 F C B U
C M M X M
A X X X X
B M M X M
crossData

 F C B U

C X X X X
A M M M M
B M M X M
autoData

 F C B U

C M X X O
A M X X O
B M X X O
zeroLags

 F C B U

C O O X O
A X X X X
B O O X O

weights

C O O O O
A O O O O
B O O O O
id, image

 F C B U

C M M M M
A M M M M
B M M M M
sideband

22 of 39

6.1.1 Data stream dependencies

spectralResolution correlationMode

FULL_RESOLUTION CHANNEL_AVERAGE BASEBAND_WIDE

CROSS_ONLY

crossData
flags
actualTimes
actualDurations
weights
zeroLags

crossData
flags
actualTimes
actualDurations
weights

AUTO_ONLY

autoData
flags
actualTimes
actualDurations
zeroLags

autoData
flags
actualTimes
actualDurations

autoData
flags
actualTimes
actualDurations

CROSS_AND_AUTO

crossData
autoData
flags
actualTimes
actualDurations
weights
zeroLags

crossData
autoData
flags
actualTimes
actualDurations

weights

Table 5: Mandatory and optional header elements by data stream. Optional elements are italicized.

6.2 Data subset header
The data subset header appears once for every (sub-)integration in a binary format
BLOB.. The XML header element, sdmDataSubsetHeader, is also typed at the instance
level, with the range of element types being determined by the data stream type.

The contents of this element depend on the type of the element, defined by the value of
the required xsi:type attribute. The element has the following two attributes:

 xsi:type, the type declaration (required); and

 projectPath, a string that identifies the data in the (sub-)integration by
execution block number, scan number, sub-scan number, integration number,
and, if applicable, sub-integration number (see section 2) (required).

The value of the xsi:type attribute must be consistent with the type of the data
stream in which the dataRef element appears, as shown below in Table 6.

spectralResolution correlationMode

FULL_RESOLUTION CHANNEL_AVERAGE BASEBAND_WIDE undefined

CROSS_ONLY BinaryCrossDataFull-
Resolution

BinaryCrossData-
ChannelAverage

N/A BinaryCrossData

AUTO_ONLY BinaryAutoDataFull-
Resolution

BinaryAutoData-
ChannelAverage

BinaryAutoData-
BasebandWide

BinaryAutoData

CROSS_AND_-
AUTO

BinaryCrossAnd-
AutoData-
FullResolution

BinaryCrossAndAuto-
DataChannelAverage

N/A BinaryCrossAnd-
AutoData

Table 6: Values of sdmDataSubsetHeader.xsi:type attribute as a function of data stream type.

23 of 39

EVLA WIDAR note

The only type used by the EVLA WIDAR correlator is
BinaryCrossAndAutoDataFullResolution; the others may be ignored.

ALMA note

ALMA correlators support BinaryCrossAndAutoDataFullResolution,
BinaryAutoDataFullResolution, BinaryCrossAndAutoDataChannelAverage,
BinaryAutoDataChannelAverage.

The content of the sdmDataSubsetHeader element is composed of a sequence of the
following elements. The first two elements described below are required in all cases,
whereas the remaining elements are mandatory, optional or excluded depending on the
type of the data stream in which the sdmDataSubsetHeader element appears.

schedulePeriodTime

The scheduled time and duration of the time interval associated with the data in the
current data subset, to be used as fallback metadata when the ACTUAL_TIMES and/or
ACTUAL_DURATIONS binary components are absent from the data subset. These
values are given by the content of the following two child elements of the
schedulePeriodTime element:

 time

the time at the midpoint of the interval, as an MJD value in nanoseconds; and

 interval

the duration of the interval, in nanoseconds.

dataStruct

A reference to the main data header that describes the structure of the binary
components in the current subset. The element itself is empty, but it has the following
attribute:

 ref, a reference to the main data header (i.e., the mainHeaderId attribute value
of the referenced element).

 F C B U abortObservation

If a subscan is prematurely ended, this element appears together with the
schedulePeriodTime and dataStruct elements as the only children of the
sdmDataSubsetHeader element. No flags, actualTimes, actualDurations,
crossData, autoData, zeroLags, or weights elements should exist in the same
sdmDataSubsetHeader element with an abortObservations element. An
abortObservation element is written anytime a subscan is aborted, i.e., by user
intervention or by a detected software error. This element contains two required child
elements:

 stopTime, the time at which the subscan is stopped. This time is as an MJD
value in nanoseconds; and

 reason, a string providing a description of the reason for the aborted subscan.

The remaining seven child elements of the sdmDataSubsetHeader element provide the
relative URIs of the binary components in the data subset. In all cases, the elements
have the attribute xlink:href, which specifies the URI of the associated binary
component (i.e., the Content-location header value of the MIME part containing the
binary component); any additional attributes are described below for each element
individually.

C O O O O
A O O O O
B O O O O

abortObservation

24 of 39

 F C B U flags

Provides the URI of the FLAGS binary component.

actualTimes

Provides the URI of the ACTUAL_TIMES binary component.

actualDurations

Provides the URI of the ACTUAL_DURATIONS binary component

crossData

Provides the URI of the CROSS_DATA binary component. It has one additional required
attribute:

 type, the primitive data type used to represent the cross-correlation data in the
referenced binary component. Its value is one of the following
PrimitiveDataType enumeration values: SHORT_TYPE, LONG_TYPE, INT16_TYPE,
INT32_TYPE, FLOAT32_TYPE.

ALMA note

Currently, ALMA only supports SHORT_TYPE and LONG_TYPE.

autoData

Provides the URI of the AUTO_DATA binary component.

zeroLags

Provides the URI of the ZERO_LAGS binary component.

weights

Provides the URI of the WEIGHTS binary component.

C O O X O
A O O O O
B O O X O

flags

 F C B U
C M M X M
A M M M M
B M M X M

actualTimes

 F C B U
C M M X M
A M M M M
B M M X M

actualDurations

 F C B U
C M M X M

X X X X A
B M M X M
crossData

 F C B U

C X X X X
A M M M M
B M M X M
autoData

 F C B U

C M X X O
A M X X O
B M X X O
zeroLags

 F C B U

C O O X O
X X X X A

B O O X O
weights

25 of 39

7 Appendices

7.1 XML schemata
XML schemata for the binary data format may be found in the same repository and
project under which the master copy of the present document exists.

REPOSITORY ACCESS INSTRUCTIONS GO HERE

7.2 MIME format example
MIME-Version:1.0
Content-Type: multipart/mixed; boundary=”ABCDE01234”; type="text/xml"
Content-Description: EVLA/CORRELATOR/WIDAR/FULL_RESOLUTION
Content-Location: uid://X1/2/3/4

--ABCDE01234
Content-Type: text/xml; charset=”UTF-8”
Content-Transfer-Encoding: 8bit
Content-Location: sdmDataHeader.xml

[MAIN DATA HEADER]

--ABCDE01234
Content-type: multipart/related; boundary=”abcd”;type="text/xml";
Content-description: data and metadata subset

--abcd
Content-Type: text/xml; charset=”UTF-8”
Content-Location: 1/10/3/1/desc.xml

[DATA SUBSET HEADER]
--abcd
Content-Type: application/octet-stream
Content-Location: 1/10/3/1/actualTimes.bin

[ACTUAL_TIMES binary data]
--abcd
Content-Type: application/octet-stream
Content-Location: 1/10/3/1/actualDurations.bin

[ACTUAL_DURATIONS binary data]
--abcd
...
--abcd--

--ABCDE01234
Content-type: multipart/relate; boundary=”efgh”
Content-description: data subset

--efgh
Content-Type: text/xml; charset="UTF-8"
Content-Location: 1/10/3/2/desc.xml

[DATA SUBSET HEADER]
--efgh
Content-Type: application/octet-stream
Content-Location: 1/10/3/2/actualTimes.bin

[ACTUAL_TIMES binary data]
--efgh
...
--efgh--
--ABCDE01234--

26 of 39

7.3 Schematic representation of times
Data blanking implies that part or all of the data in an integration is ignored. This
affects the actual times and durations of the integration. The following diagram
schematically presents how actual times and durations for a baseline are determined.

7.4 ALMA implementation details

7.4.1 Spectral data stream

7.4.1.1 Binary component sizes

Here we discuss the sizes of the binary attachments in bytes. The number of
basebands, Nbb, corresponds to the number of baseband nodes in the sequences; the
number of spectral windows per baseband, N

sw
(bb), corresponds to the number of

spectral window nodes, children of a baseband node. These are defined as sequences in
the schema with the XML header setting the actual order of the data given common to
all baselines.

In the formulas used to determine the size of the arrays, one must take into account
the following possible cases as indicated by the value of the SDM item, correlationMode:

• N
ant

 = 0 and N
bl
 > 0 if correlationMode = CROSS_ONLY

• N
ant

 > 0 and N
bl
 = 0 if correlationMode = AUTO_ONLY

• N
ant

 > 0 and N
bl
 > 0 if correlationMode = CROSS_AND_ AUTO

27 of 39

When the correlationMode = CROSS_AND_ AUTO, the number of polarization products,
N

pp
, may not be the same for the auto-correlation (single-dish) and cross-correlation

(interferometric) data. For this reason, a superscript is added.
o
ppN

is used for the auto-

correlation data and
oo
ppN for the cross-correlation data. The following constraints

apply:

• if correlationMode = CROSS_ONLY:
oo
ppN = 1, 2, or 4 and

o
ppN is undefined

• if correlationMode = AUTO_ONLY:
oo
ppN is undefined and

o
ppN is 1, 2, or 3

• if correlationMode = CROSS_AND_ AUTO:
oo
ppN = 1, 2, or 4 and

o
ppN =

⎪
⎪
⎩

⎪⎪
⎨

⎧ ≤

)(=N

)(=N

N,N

oo
pp

oo
pp

oo
pp

o
pp

mode standard-non

mode standard

4if2,

4if3,

2if

Note that when
o
ppN = 3, the data are in a set of two real values plus a complex value

for the polarization cross products. Else, when
o
ppN ≤ 2, the data consist of

o
ppN real

values.

The term N
apc

 derives from the sequence of SDM enumerations: AP_UNCORRECTED,
AP_CORRECTED, or AP_MIXED. N

apc
 is simply the number of items in this sequence.

Error! Bookmark not defined.FLAGS

These data are long unsigned 32-bit integers and are antenna based. The number of
elements is computed as such:

 (i)(i)NNN o

pp

bb

ant bin
N

 i
∑
= 1

ACTUAL_TIMES

The size of the actual integration time stamp (centroid) for each baseline, bin,
polarization product, and baseband. This is the intersection of the 2 antennas (self or
cross) of a baseline taking into account any gaps due to blanking in either antenna. The
number of elements is computed as such:

() () () ()iNiNN+iNiNN pp

bbN

=i
binantpp

bbN

=i
binbl

o

1

oo

1
∑∑

ACTUAL_DURATIONS

The actual integration duration (exposure) for each baseline, bin, polarization product,
and baseband. This is the intersection of the 2 antennas of a baseline taking into
account any gaps due to blanking in either antenna. The number of elements is
computed as such:

)()()()(
11

iNiNNiNiNN o
pp

N

i
binant

oo
pp

N

i
binbl

bbbb

∑+∑
==

ZERO_LAGS

28 of 39

The size of the zero lag values for each antenna, spectral window, polarization product
and baseband. The number of elements is computed as such:

))(()()(
1

iNfiNiNN ppsw
N

i
binant

bb

∑
=

with

1)(1)(2

1)(1)(1
)(

>>

==
=

iNoriNif

iNoriNif
Nf

oo
pp

o
pp

oo
pp

o
pp

pp

CROSS_DATA

The size of the cross correlation spectral data for each cross baseline, spectral window,
polarization product, bin, and baseband. These data are complex values. The number of
elements is computed as such:

() ()
()

()∑ ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
×

bbN

=i

iswN

=j
spppbinblapc jNiNiNNN

1 1

002

where a factor of 2 is due to complex visibilities.

AUTO_DATA

The size of the auto correlation spectral data. Note that the data can be a mixture of
real and complex values due to the cross polarization products when using full
polarization. The number of elements is computed as such:

() ()()
()

()∑ ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛bbN

=i

iswN

=j
spppbinant jNiNfiNN

1 1

where for pure auto-correlation data, i.e., correlationMode = AUTO_ONLY

⎪⎩

⎪
⎨
⎧ ≤

3if,4

2if

=(i)N

(i)N(i),N
=(i))f(N

o
pp

o
pp

oo
pp

pp

and for correlationMode = CROSS_AND_AUTO

⎪
⎪
⎩

⎪⎪
⎨

⎧ ≤

)re,e(i=(i)N

)im,+ree(i=(i)N(i),N

)=(i)Nre=(i)Nree(i(i)N(i),N

=(i))f(N
o
pp

oo
pp

oo
pp

oo
pp

oo
pp

oo
pp

oo
pp

pp

mode standard-non

mode standard

2..2if2,

13..4if

2if21,if1..2if

Note that in order to support the non-standard mode case, one needs to add a boolean
item to the SDM and to the XML header – This is currently a TBD item.

Binary component Data type Data
Size

Min.
Quantity

Max. Quantity
(size in bytes)

FLAGS unsigned long
integer

4 1
(4)

133,120
(532,480)

ACTUAL_TIMES SDM::Time 8 1
(8)

133,120
(1,064,960)

ACTUAL_DURATIONS SDM::Time 8 1
(8)

133,120
(1,064,960)

ZERO_LAGS float 4 1
(4)

131,072
(524,288)

29 of 39

Binary component Data type Data
Size

Min.
Quantity

Max. Quantity
(size in bytes)

CROSS_DATA scaled
short/long
integer

2/4 0
(0)

1,056,964,608
(4,227,858,432)

AUTO_DATA float 4 256
(1024)

8,388,608 (33,554,432)

Total size in bytes 1,048 ~4 GB
(4,264,599,552)

7.4.1.2 Example of Full Resolution Data

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="MIME_boundary-1"; type="text/xml";
Content-Description: ALMA/CORRELATOR/ALMA_BASELINE/FULL_RESOLUTION
Content-Location: uid://X1/1/0/0

--MIME_boundary-1
Content-Type: text/xml; charset="UTF-8"
Content-Transfer-Encoding: 8bit
Content-Location: sdmDataHeader.xml

<?xml version="1.0" encoding="UTF-8"?>
<sdmDataHeader
 xmlns="http://TBD/XSDM/sdmbin"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xvers="http://TBD/XVERSION"
 xsi:schemaLocation="http://TBD/XSDM/sdmbin 0/sdmDataObject.xsd"
 xvers:schemaVersion="0"
 xvers:revision="0.0.96"
 mainHeaderId="sdmDataHeader"
 byteOrder="IEEE_Low_Endian"
 projectPath="3/1/2/">
 <startTime>4647257068000000000</startTime>
 <dataOID xlink:type="locator"
 xlink:href="uid://X1/1/0/0"
 xlink:title="ALMA BL Correlator Spectral Data"/>
 <dimensionality axes="TIM">1</dimensionality>
 <execBlock xlink:href="uid://X1/1/0/1" xlink:type="simple"/>
 <numAntenna>2</numAntenna>
 <correlationMode>CROSS_AND_AUTO</correlationMode>
 <spectralResolution>FULL_RESOLUTION</spectralResolution>

30 of 39

 <dataStruct xsi:type="CrossAndAutoDataFullResolution" apc="AP_UNCORRECTED">
 <baseband name="BB_1">
 <spectralWindow id="spw_2" sdPolProducts="XX" crossPolProducts="XX"
scaleFactor="3225.523213" numSpectralPoint="7680" numBin="1" sideband="NOSB"/>
 <spectralWindow id="spw_1" sdPolProducts="XX" crossPolProducts="XX"
scaleFactor="3225.523213" numSpectralPoint="7680" numBin="1" sideband="NOSB"/>
 <spectralWindow id="spw_3" sdPolProducts="XX" crossPolProducts="XX"
scaleFactor="3225.523213" numSpectralPoint="7680" numBin="1" sideband="NOSB"/>
 <spectralWindow id="spw_4" sdPolProducts="XX" crossPolProducts="XX"
scaleFactor="3225.523213" numSpectralPoint="7680" numBin="1" sideband="NOSB"/>
 </baseband>
 <baseband name="BB_3">
 <spectralWindow id="spw_5" sdPolProducts="XX" crossPolProducts="XX"
scaleFactor="3225.523213" numSpectralPoint="7680" numBin="1" sideband="NOSB"/>
 <spectralWindow id="spw_6" sdPolProducts="XX" crossPolProducts="XX"
scaleFactor="3225.523213" numSpectralPoint="7680" numBin="1" sideband="NOSB"/>
 <spectralWindow id="spw_7" sdPolProducts="XX" crossPolProducts="XX"
scaleFactor="3225.523213" numSpectralPoint="7680" numBin="1" sideband="NOSB"/>
 <spectralWindow id="spw_8" sdPolProducts="XX" crossPolProducts="XX"
scaleFactor="3225.523213" numSpectralPoint="7680" numBin="1" sideband="NOSB"/>
 </baseband>
 <flags size="6" axes="BAL ANT BAB"/>
 <actualTimes size="6" axes="BAL ANT BAB"/>
 <actualDurations size="6" axes="BAL ANT BAB"/>
 <crossData size="122880" axes="BAL BAB SPW SPP"/>
 <autoData size="122880" axes="ANT BAB SPW SPP"/>
 <zeroLags size="16" axes="BAL BAB SPW"/>
 </dataStruct>
</sdmDataHeader>
--MIME_boundary-1
Content-Type: multipart/related; boundary="MIME_boundary-2";type="text/xml";
Content-Description: data and metadata subset
--MIME_boundary-2
Content-Type: text/xml; charset="UTF-8"
Content-Location: 3/1/2/1/desc.xml

<sdmDataSubsetHeader
 xsi:type="BinaryCrossAndAutoDataFullResolution"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 projectPath="3/1/2/1/">
 <schedulePeriodTime>
 <time>4647257073120000000</time>
 <interval>10240000000</interval>
 </schedulePeriodTime>
 <dataStruct ref="sdmDataHeader"/>
 <flags xlink:href="3/1/2/1/flags.bin"/>
 <actualTimes xlink:href="3/1/2/1/actualTimes.bin"/>
 <actualDurations xlink:href="3/1/2/1/actualDurations.bin"/>
 <crossData xlink:href="3/1/2/1/crossData.bin" type="SHORT_TYPE"/>
 <autoData xlink:href="3/1/2/1/autoData.bin"/>
 <zeroLags xlink:href="3/1/2/1/zeroLags.bin"/>
</sdmDataSubsetHeader>
--MIME_boundary-2
Content-Type: application/octet-stream
Content-Location: 3/1/2/1/flags.bin

[BINARY DATA HERE]
--MIME_boundary-2
Content-Type: application/octet-stream
Content-Location: 3/1/2/1/actualTimes.bin

[BINARY DATA HERE]
--MIME_boundary-2
Content-Type: application/octet-stream
Content-Location: 3/1/2/1/actualDurations.bin

[BINARY DATA HERE]
--MIME_boundary-2
Content-Type: application/octet-stream

31 of 39

Content-Location: 3/1/2/1/crossData.bin

[BINARY DATA HERE]
--MIME_boundary-2
Content-Type: application/octet-stream
Content-Location: 3/1/2/1/autoData.bin

[BINARY DATA HERE]
--MIME_boundary-2
Content-Type: application/octet-stream
Content-Location: 3/1/2/1/zeroLags.bin

[BINARY DATA HERE]
--MIME_boundary-2--
--MIME_boundary-1--

7.4.1.3 Data rate

The quantity of correlator spectral data can vary greatly. A minimal header and data for
a single antenna is about 2 KB. For all 64 antennas the data can extend to over 2 GB for
all four basebands. With an integration period of 1 second this exceeds the SSR-
specified maximum peak data rates, consequently the SSR values of 6 MB/sec average
and 60 MB/sec peak are used.

7.4.2 Channel average data stream

7.4.2.1 Binary component sizes

FLAGS

These data are long unsigned integers. The number of elements is computed as such:

() () () ()iNiNN+iNiNN pp

bbN

=i
binantpp

bbN

=i
binbl

0

1

00

1
∑∑

ACTUAL_TIMES

The size of the actual sub-integration time stamp (centroid) for each baseline, bin,
polarization product, and baseband taking into account any blanking, see appendix
Error! Reference source not found. for details. The number of elements is computed
as such:

() () () ()iNiNN+iNiNN pp

bbN

=i
binantpp

bbN

=i
binbl

0

1

00

1
∑∑

ACTUAL_DURATIONS

The actual sub-integration duration (exposure) for each baseline, bin, polarization
product, and baseband. This is the intersection of the 2 antennas of a baseline taking
into account any gaps due to blanking in either antenna. Error! Reference source not
found.The number of elements is computed as such:

() () () ()iNiNN+iNiNN pp

bbN

=i
binantpp

bbN

=i
binbl

0

1

00

1
∑∑

CROSS_DATA

32 of 39

The size of the cross correlation channel averages. These data are complex values. The
number of elements is computed as such:

()
()

()∑ ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
×

bbN

=i

iswN

=j
spppbinbl jNiNNN

1 1

02

where a factor of 2 is due to complex visibilities.

AUTO_DATA

The size of the auto correlation channel averages. Note that the data can be a mixture
of real and complex values due to the cross polarization products when using full
polarization. The number of elements is computed by the following formula. For full
polarization:

() ()()
()

()∑ ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛bbN

=i

iswN

=j
spppbinant jNiNfiNN

1 1

0

where for pure auto-correlation data, i.e., correlationMode = AUTO_ONLY

()()
⎪⎩

⎪
⎨
⎧ ≤

34

2

=(i)Nif

(i)Nif(i)N
=iNf

o
pp

o
pp

o
pp

pp

and for correlationMode = AUTO_AND_CROSS

⎪
⎪
⎩

⎪⎪
⎨

⎧ ≤

)re,e(i=(i)N

)im,+ree(i=(i)N(i)N

)=(i)Nre=(i)Nree(i(i)N(i)N

=(i))f(N
o
pp

oo
pp

oo
pp

oo
pp

oo
pp

oo
pp

oo
pp

pp

mode standard-non2..2if2

mode standard13..4if

2if21,if1..2if

Using these mapping rules and the header information, the sizes of data are shown in
the following table with the number of bytes is shown in parentheses.

Binary component Data type Data Size Min.
Quantity

Max. Quantity (size
in bytes)

FLAGS Unsigned long
integer

4 1
(4)

133,120
(532,480)

ACTUAL_TIMES SDM::Time 8 1
(8)

133,120
(1,064,960)

ACTUAL_DURATIONS SDM::Time 8 1
(8)

133,120
(1,064,960)

CROSS_DATA scaled short /
integer

2/4 0

20,643,840
(82,575,360)

AUTO_DATA float 4 1
(4)

327,680
(1,310,720)

Total sizes 4 (24) (~86 MB)
(86,548,480)

33 of 39

7.4.2.2 Example of Channel Average Data

ME-Version: 1.0
ntent-Type: multipart/mixed; boundary="MIME_boundary-1"; type="text/xml";
ntent-Description: ALMA/CORRELATOR/ALMA_BASELINE/CHANNEL_AVERAGE
ntent-Location: uid://X1/1/0/0

l

 encoding="UTF-8"?>
n"

01/XMLSchema-instance"
ink"

xmlns:xvers="http://TBD/XVERSION"
mbin 0/sdmDataObject.xsd"

0000</startTime>
or" xlink:href="uid://X1/1/0/0" xlink:title="ALMA BL

>
mensionality>

://X1/1/0/1" xlink:type="simple"/>

E</spectralResolution>
ge" apc="AP_UNCORRECTED">

 sdPolProducts="XX" crossPolProducts="XX"
1"/>

oducts="XX"

w_3" sdPolProducts="XX" crossPolProducts="XX"

ts="XX"

ts="XX"

ts="XX"
25.523213" numSpectralPoint="8" numBin="1"/>

w_7" sdPolProducts="XX" crossPolProducts="XX"

ts="XX"

MI
Co
Co
Co

--MIME_boundary-1
Content-Type: text/xml; charset="UTF-8"
Content-Transfer-Encoding: 8bit
Content-Location: sdmDataHeader.xm

<?xml version="1.0"
<sdmDataHeader xmlns="http://TBD/XSDM/sdmbi
 xmlns:xsi="http://www.w3.org/20
 xmlns:xlink="http://www.w3.org/1999/xl

 xsi:schemaLocation="http://TBD/XSDM/sd
 xvers:schemaVersion="0"
 xvers:revision="0.0.96"
 mainHeaderId="sdmDataHeader"
 byteOrder="IEEE_Low_Endian"
 projectPath="3/1/2/">
 <startTime>464725706800000
 <dataOID xlink:type="locat
Correlator Channel Average Data"/
 <dimensionality axes="TIM">1</di
 <execBlock xlink:href="uid
 <numAntenna>2</numAntenna>
 <correlationMode>CROSS_AND_AUTO</correlationMode>
 <spectralResolution>CHANNEL_AVERAG
 <dataStruct xsi:type="CrossAndAutoDataChannelAvera
 <baseband name="BB_1">
 <spectralWindow id="spw_1"
scaleFactor="3225.523213" numSpectralPoint="7" numBin="
 <spectralWindow id="spw_2" sdPolProducts="XX" crossPolPr
scaleFactor="3225.523213" numSpectralPoint="7" numBin="1"/>
 <spectralWindow id="sp
scaleFactor="3225.523213" numSpectralPoint="7" numBin="1"/>
 <spectralWindow id="spw_4" sdPolProducts="XX" crossPolProduc
scaleFactor="3225.523213" numSpectralPoint="7" numBin="1"/>
 </baseband>
 <baseband name="BB_3">
 <spectralWindow id="spw_5" sdPolProducts="XX" crossPolProduc
scaleFactor="3225.523213" numSpectralPoint="8" numBin="1"/>
 <spectralWindow id="spw_6" sdPolProducts="XX" crossPolProduc
scaleFactor="32
 <spectralWindow id="sp
scaleFactor="3225.523213" numSpectralPoint="8" numBin="1"/>
 <spectralWindow id="spw_8" sdPolProducts="XX" crossPolProduc
scaleFactor="3225.523213" numSpectralPoint="8" numBin="1"/>
 </baseband>
 <flags size="6" axes="BAL ANT BAB"/>

34 of 39

 <actualTimes size="6" axes="BAL ANT BAB"/>
 <actualDurations size="6" axes="BAL ANT BAB"/>
 <crossData size="112" axes="BAL BAB SPW SPP"/>
 <autoData size="112" axes="ANT BAB SPW SPP"/>

undary-2";type="text/xml";

/xml; charset="UTF-8"
/1/2/1/1/desc.xml

oDataChannelAverage"
/www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

 <time>4647257068256000000</time>

/2/1/1/flags.bin"/>
ctualTimes.bin"/>

/1/1/actualDurations.bin"/>
/2/1/1/crossData.bin" type="SHORT_TYPE"/>

ta.bin"/>

.bin

in

 </dataStruct>
</sdmDataHeader>
--MIME_boundary-1
Content-Type: multipart/related; boundary="MIME_bo
Content-Description: data and metadata subset
--MIME_boundary-2
Content-Type: text
Content-Location: 3

<sdmDataSubsetHeader xsi:type="BinaryCrossAndAut
xmlns:xlink="http:/
instance" projectPath="3/1/2/1/1/">
 <schedulePeriodTime>

 <interval>512000000</interval>
 </schedulePeriodTime>
 <dataStruct ref="sdmDataHeader"/>
 <flags xlink:href="3/1
 <actualTimes xlink:href="3/1/2/1/1/a
 <actualDurations xlink:href="3/1/2
 <crossData xlink:href="3/1
 <autoData xlink:href="3/1/2/1/1/autoDa
</sdmDataSubsetHeader>
--MIME_boundary-2
Content-Type: application/octet-stream
Content-Location: 3/1/2/1/1/flags.bin

[BINARY DATA HERE]
--MIME_boundary-2
Content-Type: application/octet-stream
Content-Location: 3/1/2/1/1/actualTimes

[BINARY DATA HERE]
--MIME_boundary-2
Content-Type: application/octet-stream
Content-Location: 3/1/2/1/1/actualDurations.b

[BINARY DATA HERE]
--MIME_boundary-2
Content-Type: application/octet-stream
Content-Location: 3/1/2/1/1/crossData.bin

[BINARY DATA HERE]
--MIME_boundary-2
Content-Type: application/octet-stream
Content-Location: 3/1/2/1/1/autoData.bin

[BINARY DATA HERE]
--MIME_boundary-2--
--MIME_boundary-1--

35 of 39

7.4.2.3 Data rate

Assume that the channel average integration header is ~2KB bytes. Note that the size of
the channel data in the maximum case can be huge. This, of course, violates the
maximum data rate specified by the SSR. A typical maximum rate would be ~500KB per
sub-integration interval.

Data Description Data
Quantity
(bytes)

Instances per
transmission

Transmission
Interval

(seconds)

Data Rate
(average/peak)

Channel Aver. Bulk
Data (1 antenna)

2KB 1 0.5 2/4 KB/sec

Channel Aver. Bulk
Data (64 antennas)

11 MB 1 0.5 11/22 MB/sec

Table 7 – Channel average data flow

7.4.3 Data capture information
After each subscan, a CORBA binary structure is sent to the Data Capture component
for a given subarray. This structure contains identifiers from Control and run-time
information from Control and Correlator.

The function is defined in ICD/OFFLINE/idl/DataCapture.idl as:

void sendSubScanCorrelatorData(in string arrayId,
 in Correlator::subScanCorrelatorData subScanData)
raises(DataCaptureExceptions::DataErrorEx, DataCaptureExceptions::TableUpdateErrorEx);

Where Correlator::subScanCorrelatorData is defined in
ICD/CORR/ws/idl/CorrDataCapture.idl as

struct SubScanCorrelatorData
{
 long totalIntegrations;
 long numberSubIntegrationsPerIntegration;
 boolean flagRowIntegrations;
 boolean flagRowSubIntegrations;
};

The SDM has one row in the table for all integrations and one row for all sub-
integrations. Thus we need to send the total number of integrations in the subscan and
the total number of sub-integrations in each integration. Finally a row flag for the
integrations and sub-integrations. Note that the data OIDs are delivered to DataCapture
via the Control subsystem at the beginning of a subscan.

The data items produced by the correlator are:

 totalIntegrations, the total number of integrations in the subscan

 numberSubIntegrationsPerIntegration, the total number of sub-integrations in
each integration

 flagRowIntegrations, general flag set by correlator to flag entire row of
integrations with TRUE = ‘bad’, FALSE = ‘good’.

 flagRowSubIntegrations, general flag set by correlator to flag entire row of sub-
integrations with. TRUE = ‘bad’, FALSE = ‘good’.

Data flow rates are minimal as at most four sets of SubScanCorrelatorData would be
sent simultaneously at the end of each subscan resulting in tens of bytes per second.

36 of 39

7.4.4 Data transmission
This section describes how data will be transferred from the CDP master computer
which organizes the binary data to the Archive and other data receivers.

7.4.4.1 Overview

The general approach is that for each subscan, the CDP master sends startSend() and
send() commands to the BulkData Distributor which contains header information
regarding all of the data to be sent in the subscan. At each integration, the CDP master
sends the SDM subset headers and binary data via the send() command. At the end of
the subscan, the CDP master sends a stopSend() command signaling the receiver that no
more data is coming for this subscan. The current design has a separate pair of flows
per subarray, one for the integrations and one for the sub-integrations. Throughout this
discussion, the term “sub-integration” can replace “integration”.

7.4.4.2 Subscan start

When a startSubScan() command is received by the CDP master, it constructs the SDM
data header and calculates the maximum expected data size of text and binary data.
This header information is sent via the startSend() and send(). Note that the actual data
may be less than the maximum due to the baselineFlags , actualTimes, and
actualDuration attachments not being sent.

7.4.4.3 Sending data

For each integration, the CDP master sends integration subset data as currently defined.

7.4.4.4 Subscan end

At the end of a subscan, the CDP master invokes the stopSend() function which signals
the receivers that no more binary data for this subscan will be sent. Note that the
stopSend() function is sent even if the subscan is ended prematurely, i.e., before the
expected number of bytes defined in the startSend() function are sent. The CDP master
also invokes the sendSubScanCorrelatorData() on the DataCapturer.

37 of 39

7.5 EVLA WIDAR implementation

7.5.1 Data stream example
No example is available yet. One will appear in this section shortly after the WIDAR
backend software is capable of producing a file in the BDF format.

7.5.2 Data rates
TBD

38 of 39

7.6 References
[RFC2045] N. Freed, N. Boorenstein, “Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies”, IETF RFC 2045, November 1996

[RFC2046] N. Freed, N. Boorenstein, “Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types”, IETF RFC 2046, November 1996

[RFC2387] E. Levinson, “The MIME Multipart/Related Content-type”, IETF RFC 2387,
August 1998

[RFC2557] J. Palme, A. Hopmann, N. Shelness, “MIME Encapsulation of Aggregate
Documents, such as HTML (MHTML)”, IETF RFC 2557, March 1999

[Scott] S. Scott,”Specifications and Clarifications of ALMA Correlator Details”, February
2003.

39 of 39

	1 Introduction
	1.1 Context

	2 High-level organization
	3 Enumerations
	4 Data stream types
	5 Binary components
	5.1 Types
	5.2 Tree structure
	5.3 Axes
	5.3.1 Lists
	5.3.2 Sizes
	5.3.3 List reduction
	5.3.4 Element ordering

	5.4 Components
	5.4.1 Data stream dependencies

	6 Header elements
	6.1 Main data header
	6.1.1 Data stream dependencies

	6.2 Data subset header

	7 Appendices
	7.1 XML schemata
	7.2 MIME format example
	7.3 Schematic representation of times
	7.4 ALMA implementation details
	7.4.1 Spectral data stream
	7.4.1.1 Binary component sizes
	7.4.1.2 Example of Full Resolution Data
	7.4.1.3 Data rate

	7.4.2 Channel average data stream
	7.4.2.1 Binary component sizes
	7.4.2.2 Example of Channel Average Data
	7.4.2.3 Data rate

	7.4.3 Data capture information
	7.4.4 Data transmission
	7.4.4.1 Overview
	7.4.4.2 Subscan start
	7.4.4.3 Sending data
	7.4.4.4 Subscan end

	7.5 EVLA WIDAR implementation
	7.5.1 Data stream example
	7.5.2 Data rates

	7.6 References

