Wide-field Imaging

Sept. 16th, 2011

S. Bhatnagar
Plan

- What do we mean by wide-field?
- Projection algorithms to correct for various wide-field effects
 - Relation with minor cycle algorithms
- Algorithms “unification scheme” :-)
 - Similarity between various wide-field algorithms
- Algorithms
 - For W-term correction
 - W-Projection, Multi facet Imaging
 - For PB corrections
 - A-Projection: Low and high frequency
 - AW-Projection at low frequency bands

- Connection with Mosaicking:
 - Generalization of single pointing
What do we call Wide-field?

- Imaging that requires invoking any of the following:
 - Corrections for non co-planar baseline effects
 - Corrections for the rotational asymmetry of the PB
 - Imaging beyond 50% point, mosaicking
 - Corrections for the frequency or polarization dependent effects
 - PB, ionosphere/atmosphere

- Noise limited imaging at “low” bands (L, S and probably C Band)
 - Because of the radio brightness distribution

- Noise limited imaging of structure comparable to the PB beam-width

\[I_{\text{Continuum}} = \int PB(\nu) \left[I_0(\nu/\nu_o)^{\alpha(\nu)} \right] d\nu dt = \int I_0(\nu/\nu_o)^{\alpha_{pb}(\nu,t)+\alpha(\nu)} d\nu dt \]

- Mosaicking
 - By definition, imaging on scales larger than the PB beam-width
Why wide-field?

- Primarily due to improved continuum sensitivity

- E.g. a 1% PSF side lobe due to a source away from the center is now significantly above continuum thermal noise limit
 - This is largely independent of the total integration time

- Due to large bandwidth, EVLA is sensitive farther out in the FoV

- E.g. @L-Band, PB gain ~1 deg. away can be up to 10%
 - In the EVLA sensitivity pattern, VLA sensitivity is achieved at the location of VLA-null!
 - No null in the EVLA sensitivity pattern
Wide-field Issues

- For the same integration time, EVLA is sensitive to emission farther out

\[\Delta S = S(R) \times PB(R) \times PSF(R) \]

- R = 1°, S(R)=1Jy, \(\Delta S = 1\, mJy - 100\, \mu Jy \)

Wide-field Issues
Effects of the W-Term

![Diagram showing effects of the W-Term with two images comparing J2000 Right Ascension and Declination. The left image shows a complex pattern, while the right image shows a simpler distribution of points.]
Non co-planar baseline: The W-term

- 2D FT approximation of the Measurement Equation breaks down
 - \(\frac{\lambda}{B_{\text{max}}} \leq \theta_f^2 \) \(\theta_f = \text{Angular distance from the phase center} \)

- We measure:
 \[V_{12}^o = \langle E_1'(u,v,w \neq 0) E_2^*(0,0,0) \rangle \]

- We interpret it as:
 \[V_{12} = \langle E_1(u,v,w=0) E_2^*(0,0,0) \rangle \]

- We should interpret \(E_1 \) as \([E_1' \times \text{Fresnel Propagator}] \)
PB Effects
PB Effects: Rotation asymmetry

- Only average quantities available in the image domain
- Asymmetric PB rotation leads to time and direction dependent gains

\[\Delta I^R = \sum_\psi \left[PSF(\psi) - \text{avgPSF} \right] \ast \left[(PB(\psi) - \text{avgPB}) I^0 \right] \]
PB Effects: Error Propagation

\[\Delta I^R = \sum_\psi \delta \text{PSF}(\psi) \times [\delta \text{PB}(\psi) I^o] \]

\[\delta \text{PB}(\psi) \quad \text{E.g. } 5 \times 10^{-3} \]

\[\delta \text{PSF}(\psi) \quad \text{E.g. } 2 \times 10^{-2} \]
Frequency dependence of the PB

- Assume linear scaling with the frequency
Algorithms: CS Clean recap

- Compute residual using original data
 - Needs Gridding and de-Gridding during major-cycle iterations

- Most commonly used algorithm
- Every major cycle access the entire data base
 - Significant increase in I/O and computing load
- Assumes, co-planar, time- and freq-independent Measurement Equation

Cannot account for wide-field wide-band and time variability issues
Deconvolution as ChiSq Minimization

- \[V^M = A I^M + AN \]
- \[V_{ij} = \text{deGrid}_{ij} \text{FT}(I) \]

- Non-linear solver, to solve for the Model Image
 - Compute residuals:
 \[V^{\text{Obs}} - AI^M \quad \text{(data domain)} \]
 \[I^d - BI^M \quad \text{(image domain)} \]
 - Make Residual Image \(I_{\text{res}} \)
 - Find update direction: Steepest Descent Algorithm
 \[I^c = \max \left(-2[I^{\text{Res}}] \frac{\partial \chi^2}{\partial \text{Param}} \right) \]
 - Update model:
 \[I^M_i = T(I^M_{i-1}) \quad \text{for our discussions this is} = I^M_{i-1} + \alpha * I^c_i \]

- Since Major Cycle does model subtraction without averaging, variable terms can be included in that step
Algorithms “unification scheme”

- Incorporates direction dependent effects as part of the gridding function
 - ME: \(V_{ij} = A_{ij}I^o + N_{ij} \)
 - Construct \(D \), such that \(\frac{D_{ij}^T A_{ij}}{D_{ij}^T D_{ij}} \approx 1 \)
 - Compute residuals (major cycle): \(D_{ij} \) for forward and \(D_{ij}^T \) for reverse transform

- W- and A-Projection construct \(D \) differently
 - A-Projection has additional normalization issues:
 - Flat-noise vs. flat-sky normalization

- Mosaicking: (more in K. Golap's talk in Thursday Lecture Series)
 - The Fourier transform shift theorem
 \[
 I^{Mosaic} = \sum_k I(l_o - l_k)
 \]
 Use \(D_{ij} e^{i[(l_o - l_k) \cdot u_{ij}]} \) where \(D_{ij} \) can be \(A_{ij}, W \), or \(A_{ij} \ast W \)
 - The Fourier transform shift theorem

[https://safe.nrao.edu/wiki/pub/Software/Algorithms/WebHome/Mosaicking_aoc.pdf]
Algorithms “unification scheme”

- “Single polarization” case: Single element of the Mueller Matrix

- Imaging

\[V^{Grid} = CF \ast V^{obs} \]

\[I' = FFT \left[V^{Grid} \right] \]

- Prediction (de-gridding):

\[V^{Grid} = FFT^{-1} \left[I^M' \right] \]

\[V^M = CF^T \ast V^{Grid} \]

- CF can be A-term, W-term, AW-term, wide- or narrow-band
Projection algorithms

- Direction-dependent ("image plane") effects as convolutional terms in the visibility domain
- ME entirely in the visibility domain: $V_{ij}^O = A_{ij} I^M = M_{ij} F I^M = M_{ij} [V^M]$

$$
\begin{bmatrix}
V_{pp}^O \\
V_{pq}^O \\
V_{qp}^O \\
V_{qq}^O
\end{bmatrix}
= \begin{bmatrix}
M_{11} & M_{12} & M_{13} & M_{14} \\
M_{21} & M_{22} & M_{23} & M_{24} \\
M_{31} & M_{32} & M_{33} & M_{34} \\
M_{41} & M_{42} & M_{43} & M_{44}
\end{bmatrix}
\ast
\begin{bmatrix}
V_{pp}^M \\
V_{pq}^M \\
V_{qp}^M \\
V_{qq}^M
\end{bmatrix}
$$

- Diagonal: "pure" poln. products
- Off-diagonal: Include poln. leakage

$M_{pq} = J_{p,i} \ast J^*_{q,j}$

- $V_{pp}^O = M_{pp} \ast V_{pp}^M + M_{p \ p2q} \ast V_{pq}^M + M_{q \ p2q} \ast V_{qp}^M + M_{p2q \ p2q} \ast V_{qq}^M$

Generalization of the direction-independent ME
- Replace functions by complex numbers $M_{ij} = g_i g_j^*$
- Replace convolution (\(\ast\)) by complex product
W-Projection

- **W-Projection:** (CASA Imager: ftmacine=”wproject”)

\[D = FT\left[e^{2\pi i \sqrt{w-1}} \right] \]

- **\(D^T A = 1 \)** by construction
 - Potentially fully corrects for the effects of the W-term
 - In practice, D is computed at a finite \(w \)-resolution, with interpolation in between

- **D is non-hermitian**
 - Post deconvolution correction is not possible
 - Same as: “corrections for antenna based phase errors cannot be corrected for post-deconvolution”

[Cornwell, Golap & Bhatnagar, 2008]
W-Projection + Multi-faceting

- Multi-facet imaging (CASA Imager: facets > 1)

- Split the sky into multiple, smaller tangent-plane images

- A linear approximation of this image-plane operation is possible in the visibility plane: \(I(\mathbf{C} \mathbf{l}) \rightarrow |\text{det}(\mathbf{C})|^{-1} \mathbf{V}(\mathbf{C}^{-1} \mathbf{u}) \)
 - Advantage: leads to a single combined image in the minor cycle

- Combination of W-Projection and Multi-facet imaging possible:
 - Reduces the no. of w-planes and number of facets
A-Projection

- **A-Projection**: $D = \text{Auto-correlation of Aperture illumination function}$

- Function of time, frequency and polarization

- Since image is averaged over time and frequency, time- and frequency-dependence cannot be corrected for post-deconvolution
 - Same issue as non Hermitian nature of antenna based phase, W-term

Bhatnagar, Cornwell, Golap & Uson, 2008
A-Projection: Stokes-I Before
A-Projection: Stokes-I After
A-Projection: Stokes-V Before
A-Projection: Stokes-V After
Imaging at high frequencies

- Definition: Frequency at which the array is co-planar for the required FoV

- To the first order, aperture illumination may linearly scale with frequency (or at least with in a certain range in frequency)

- Wavelength much smaller than the physical reflecting structures
 - Geometrical ray-tracing models might be sufficient

- Can be computed once per SPW, rotated in time, and scale in frequency during imaging
 - Significantly reduces memory footprint, at the cost of computing
 - Can be computed efficiently on GPUs
Imaging at low frequencies

- Definition: Frequency at which the array is non co-planar for the required FoV

- PB variations with time
- Even D-array is non co-planar
- BW ~400 MHz

Need: Wide-band AW-Projection
Wide-band AW-Projection

- \(D(\nu) \neq (A*W)(\nu/\nu_o) \)

- Full-polarization case requires:

 - Can be configured for optimal usage for:
 - High frequency: A-Projection, scaling with frequency
 - Low frequency: AW-Projection
 - Heterogeneous array
Physics of “unification”

- Physics of DD terms go into the construction of D
- Multiple DD terms become “convolution of convolution functions”
 \[W \ast \text{<convolved}> \ast A \]

- E.g. form of the phase of A-term accounts for mosaicking, pointing corrections, etc.
- Wide-band, full-pol., low-freq. Mosaic can be done naturally
 - Complexity goes in the construction of the CFs
 - Rest of the imaging / calibration framework remains oblivious