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ABSTRACT

I have analyzed microsecond-scale structures, “microbursts,” in sin-

gle giant pulses from the Crab pulsar and found rapid variability in microburst

flux, width, energy, and dispersion measure. Flux, widths, and energies vary

over 2 orders of magnitude for bursts recorded at similar frequencies. Width

measurements reveal the existence of a variable and shallow pulse broadening

power law that acts in addition to steeper interstellar scattering. Plots of mi-

croburst flux and width contain an upper limit at all frequencies that may be

related to a maximum microburst energy. I find that microburst energies are

variable in both the observed and emitted frames. Simultaneous two-frequency

observations reveal that microburst bandwidths are < 4GHz, and both high-

and low-frequency microburst energies and widths are well correlated; spectral

indices of individual bursts vary greatly but as a group are roughly consis-

tent with average profile measurements. Giant pulse dispersion measure (DM)

follows the same trend as average profile DM over long time scales, but on

shorter scales of minutes to hours, giant pulse DM varies randomly. The ran-

dom variation is much greater in Crab interpulses than in main pulses. This

suggests that a variable dispersion occurs in the magnetosphere. Furthermore,

the interpulse DM has a slight frequency dependence (after dedispersion) which



suggests a non-cold-plasma dispersion process. I compare my data with two

models from the literature, but find that neither model describes my data well.

I have also found a new Crab pulse echo event in data from 1996; my observa-

tions constrain the event lifetime to < 4 days. I analyze this event in addition

to previously studied giant pulse echoes from 1997. Both echo events are vis-

ible as microbursts that trail the primary burst by 40 to 120µs; echo flux,

widths, and energies correlate well with the respective primary burst charac-

teristics. I suggest that this short lifetime event may be a result of refraction

from Crab nebula wisps—evolving structures near the star associated with the

pulsar wind.
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CHAPTER 1

INTRODUCTION TO THE CRAB PULSAR

1.1 Pulsar Basics

The first pulsating source of radio emission, pulsar, was serendipi-

tously discovered by Hewish et al. (1968). The object was unusual for its

short and regular pulse period. In the following year more pulsars were dis-

covered; each, like the first, had short and steady pulse periods. Gold (1968)

proposed that rotating, magnetized neutron stars were the source of the reg-

ular pulsations—that a magnetic field threading a neutron star would imply

a corotating plasma extending out to some distance from the star; the coro-

tating plasma density was later quantified by Goldreich & Julian (1969). This

relativistic plasma might produce radiation and thus appear as a “rotating bea-

con”. The rotation period would be very stable due to the high mass density of

the star. Remarkably, the model proposed by Gold (1968) less than a year after

the first pulsar observation is still the foundation of pulsar theory today, some

40 years later. In the intervening time over 1700 pulsars1 have been discovered

in our galaxy and its globular clusters, and more are being found by archive

search programs.

1Derived from the current number of entries in the Australia Telescope National Facility
Pulsar Catalogue (Manchester et al., 2005):
http://www.atnf.csiro.au/research/pulsar/psrcat/
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Pulsars are produced by some (but not all) supernova explosions.

In these supernovæ, the core of the star is compressed by self gravitation to

pressures exceeding the electron degeneracy pressure, which results in catas-

trophic core collapse. When this happens, protons and electrons combine

to form a dense star supported by neutron degeneracy. A neutron star is a

very small astrophysical object of approximately 10 km radius with a mass of

1.4 M! < Mns < 3 M!.

The short, regular period of pulsation is the defining observational

characteristic of pulsars. Apart from this, all other observational character-

istics vary among different sources. Although various trends exist within the

known pulsar population, the great diversity of observational properties makes

studying this group of sources as a whole a challenging endeavor.

Known pulsars have periods, P , ranging from 1ms to 11 s, and period

derivatives, dP/dt, ranging2 from −2×10−17 to 4×10−10 s/s. The rotating bea-

con pulsar model interprets the period derivative as a change in the rotational

speed of the neutron star. This implies a change in the rotational energy of the

star. When dP/dt > 0 the energy lost by the star is called spin-down energy.

The pulsar spin-down provides the energy for all radiation of the pulsar sys-

tem: both pulsed and continuous emission from the pulsar3; particle emission

in the form of a pulsar wind; and emission from the surrounding nebula, if it

2A small fraction of pulsars have a decreasing pulse period, often caused by mass accretion
from a companion star. These pulsars are thus spinning up rather than down. Apparent spin
up can occur for pulsars in globular clusters or near the galactic center; in these cases the
spin up is a Doppler shift effect rather than an increase in the rotational frequency of the
star.

3The thermal emission from the neutron star surface is an exception.



3

exists. The pulsed radiation observed from the pulsar accounts for only a small

fraction of the total spin-down energy4. It is a standard assumption of pulsar

theory to attribute the spin-down process to magnetic dipole radiation. This

assumption then gives the magnetic field strength in terms of P and dP/dt

(Carroll & Ostlie, 1996),

B =
1

2πR3 sin αB

(
6 c3IP

dP

dt

)1/2

, (1.1)

where R is stellar radius, αB is the angle between the magnetic and rotation

axes, and I is the neutron star moment of inertia. The magnetic field strength

is a fundamental variable used in the pulsar magnetosphere models of the next

subsection. It should be noted that some theorists attribute a substantial part

of the spin-down energy to the pulsar wind outflow.

1.1.1 A Simple Magnetospheric Model

A simple and useful model of the magnetosphere was described by

Goldreich & Julian (1969). In this model, the pulsar is assumed to be com-

posed of a perfectly conducting neutron star containing a magnetic dipole field

aligned with the stellar rotation axis. The region exterior to the star is initially

assumed to be vacuum. The effect of the rotation of the conducting star is to

produce an electric field at the stellar surface with a nonzero radial component.

The magnitude of the electric field is a function of the magnetic field strength;

most models assume the force of the electric field exceeds the gravitational and

4The Crab nebula synchrotron emission is equivalent to 10% to 20% of the pulsar spin-
down energy.
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surface binding forces, thus pulling particles from the star’s surface. Goldre-

ich & Julian (1969) concluded it is likely that pulsar magnetospheres are not

vacuum, but are filled with plasma.

Goldreich & Julian (1969) assume the conductivity of the magneto-

spheric plasma is infinite, that the plasma particle inertia is insignificant, and

that the plasma along closed magnetic field lines adjusts itself to create an

electric field

E = −(Ω× r)×B/c (1.2)

where Ω is the pulsar rotational velocity, and r is the position of the plasma

relative to the center of the star. This electric field allows the charge density to

corotate with the star. The charged plasma density necessary to support this

electric field is

Ne = 7× 10−2 BzP
−1 [cm−3], (1.3)

where Bz is the component of the magnetic field pointing the in the direction

of the rotational and magnetic axes. This is known as the Goldreich-Julian,

or corotation, charge density, and is used as a canonical value for comparison

with more complex models5.

Corotation of the magnetic field and plasma is confined by the fact

that the tangential speed must be less than the speed of light in vacuum. The

surface at which the tangential speed of corotation equals the speed of light in

vacuum is called the light cylinder of radius rLC = cP/2π. Closed magnetic

5The Goldreich-Julian density says nothing of the particle number density in the mag-
netosphere; it is possible that electrons and positrons both are present, one particle being
more abundant and producing the non-zero charge density.
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field lines and corotational plasma cannot extend beyond this radius; in fact

relativistic effects near the inside of the light cylinder can greatly distort the

dipole field (Arendt & Eilek, 1998). Open field lines are those that would, in the

absence of rotation, extend beyond the light cylinder; instead, open field lines

pass through the light cylinder and take on a toroidal component (Meszaros,

1992). Eventually, the open field lines reconnect to the background magnetic

field of the ISM.

A brief review of the common elements of pulsar magnetosphere mod-

els is given by (Eilek et al., 2002); I summarize these common elements here.

The regions where open field lines intersect the neutron star surface are called

the polar caps; extending radially outward from the polar caps, the open field

line regions form polar flux tubes, which are believed to be important to the

pulsed emission we observe. Within a polar flux tube and near to the stellar

surface the plasma density is believed to differ from the Goldreich-Julian den-

sity [for example see Ruderman & Sutherland (1975)]. This density variation

results in a strong electric field that accelerates charges; the charges are either

pulled from the stellar surface or are generated by pair production from high-

energy background photons. These particles quickly obtain relativistic energies

at which point they radiate high-energy photons. If the radiation occurs close

enough to the polar cap, the photons will pair produce a “second generation”

of particles; these second generation particles are subsequently accelerated pro-

ducing more high-energy photons. A pair cascade continues, moving outward

from the stellar surface until the particle energies decrease below the pair gen-

eration threshold and the polar flux tube electric field is quenched.



6

The energetic particles produced by the pair cascade continue moving

outward from the magnetic pole with relativistic velocity. It is this energetic,

outward-moving plasma that is believed to be responsible first for the pulsed

emission and later for the pulsar wind.

For the Crab pulsar, single pulses contain components of emission

that vary in duration from fractions of a nanosecond to (possibly) many mi-

croseconds6. These components are believed to be radiation from variably-sized

plasma groups. Careful study of components will likely give insight into emis-

sion physics (Crab microsecond-scale components are the subject of Chapter

2).

How the plasma energy is converted to electromagnetic radiation is

not well understood; several models exist but without consensus among pulsar

theorists (Eilek et al., 2002). Ruderman & Sutherland (1975) describe pulse

emission as resulting from “sparks” near the polar cap that generate narrow,

relativistically beamed plasma outflow; the plasma emits curvature radiation

as it moves out along open field lines. Petrova (2004) describes pulsar radiation

as stimulated emission; a maser process in which small variations in the local

physical conditions produce large variations in emitted power. Several authors

(Lyutikov, 2003, 2006; Sheckard et al., 2009) have drawn an analogy between

pulsar emission and solar flares; magnetic reconnection is the direct radiating

mechanism.

6Measuring the longest duration components is complicated by pulse scattering in the
interstellar medium; strong short-duration components are sometimes observed despite in-
terstellar scattering.
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1.2 The Crab Pulsar and Nebula

1.2.1 Crab Pulsar

One of the more outstanding sources within the pulsar population is

the Crab pulsar. The Crab pulsar is a young, isolated star residing approxi-

mately in the center of the Crab nebula supernova remnant, 2 kpc from Earth.

The supernova that created the Crab pulsar was observed in 1054 A.D. by an-

cient astronomers. Some observational and derived characteristics of the Crab

pulsar and nebula are contained in Table 1.1. The Crab pulsar has been ob-

served at frequencies as low as 23MHz (Popov et al., 2006), at energies as high

as several TeV (γ-rays), and has been observed at infra-red, optical, ultraviolet,

and X-ray wavelengths. The Crab pulsar exhibits two strong pulses for each

rotational period, the main pulse and interpulse. Figure 1.1 shows average

profiles of the full Crab rotational period across a wide range in frequency; the

prominent main and interpulse are highlighted with vertical dashed lines7. It

is conventionally believed that the main pulse and interpulse originate from

plasma outflows above the two magnetic poles of the star. As shown in Table

1.1, the main pulse and interpulse are not separated by 180◦ of rotational phase;

the main-to-interpulse phase difference is between 135◦ and 145◦; the frequency

dependence of the phase difference is clearly seen in Figure 1.1. Neither the

cause of the < 180◦ phase difference, nor the cause of the frequency depen-

dence is precisely known. It may be that the magnetic field is not a dipole, or

7Other pulsed emission includes a low frequency main pulse precursor and two components
at high radio frequency (Moffett, 1997; Moffett & Hankins, 1996). This emission, which has
a narrower bandwidth than the main pulse and interpulse, is not discussed in this study.
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Table 1.1: Characteristics of the Crab Pulsar and Nebula
Period 0.0330 s
Period derivative 4.23× 1013 s/s
Distance1 2 ± 0.5 kpc
Magnetic Field Strength 3.78× 1012 G
Light cylinder radius 1600 km
Main-to-interpulse separation2 135 to 145◦

Spin-down energy3 5× 1038 erg/s
Nebula size 4× 3 kpc
1Cordes & Lazio (2002)
2Moffett & Hankins (1996)
3Bietenholz et al. (2004)

it may be that both pulses originate above one magnetic pole very high in the

magnetosphere where the field lines direct the emission in different directions.

Main pulse and interpulse flux magnitudes each vary in different ways

with frequency. Furthermore, the flux in each pulse is strongly variable from

one rotational period to the next8; stronger pulses are less frequent than weaker

pulses. Pulses for which the maximum flux exceeds the average integrated pulse

flux by more than a factor of a few are called giant pulses. The Crab pulsar is

one of only seven pulsars for which giant pulses have been claimed (Soglasnov

et al., 2004); only in the Crab pulsar and the millisecond pulsar do giant pulses

occur often enough to allow for a statistical analysis (Popov & Stappers, 2007).

The large flux of giant pulses allow for high-time-resolution observations, like

those reported here.

8Note that pulse flux magnitude is dependent on time resolution; higher time resolution
observations record pulses with higher flux.
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Figure 1.1: Crab average profiles recorded over a wide range of frequencies;
from Moffett & Hankins (1996). The vertical dashed lines show the main pulse
(left) and interpulse (right).
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1.2.2 Crab Nebula

The Crab nebula is a supernova remnant that appears on the sky as

a roughly oval shape with semi-major and semi-minor axes of approximately

7 and 5 arcminutes, respectively, at 5GHz; at 2 kpc distance, this corresponds

to linear dimensions of 4 and 3 kpc, respectively. The nebular radio emission

is predominantly synchrotron and has a power law spectrum, F ∝ να with

spectral index α = −0.299 between 1 and 35GHz (Baars et al., 1977).

The Crab nebula is expanding at an accelerating rate. Observations of

synchrotron radiation reveal the presence of relativistic particles and a magnetic

field. The power required to accelerate expansion of the nebula, relativistic

particles, and magnetic field is equal to the rotational power loss of the neutron

star, ∼ 5 × 1038 erg s−1 (Carroll & Ostlie, 1996). The rotational spin-down of

the star is the power supply for the whole nebula. The mechanisms by which

energy is transferred from the star to the nebula are assumed to be magnetic

dipole radiation and magnetic drag of the charged particles from the pulsar

wind.

A composite image of the Crab nebula using infrared, optical, and

X-ray observations is shown in Figure 1.2. The nebula has an intricate spatial

and spectral structure. Closest to the pulsar are knot-like structures visible in

optical and wisp-like structures visible in radio and optical. The inner knot

appears to be as close as 1500 AU to the pulsar (Hester et al., 1995). The

wisps evolve on timescales of days, moving outward from the star. The knots

and wisps are believed to be produced by the pulsar wind shock—the interface

between the pulsar and the surrounding nebula.
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Figure 1.2: Composite image of Crab nebula combining infrared (shown here
as red), optical (green), and X-ray (blue). The white dot at the center of
the X-ray emission is the pulsar. The sides of the image are 7.8 arcminutes in
length. This image was obtained from the Chandra X-ray Observatory web site
at http://chandra.harvard.edu/photo/2006/crab/. This image is credited
to the following organizations and authors: NASA, CXC, ASU, J. Hester et al.
(X-ray image); NASA, ESA, ASU, J. Hester & A. Loll (optical image); NASA,
JPL-Caltech, Univ. Minn., R. Gehrz (infrared image).
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Coincident with the wisps is the inner edge of a torus of high energy

plasma visible most prominently in X-rays (Weisskopf et al., 2000) and con-

centric about the pulsar. A jet, also visible in X-rays, extends outward from

the pulsar, perpendicular to the torus. The jet is aligned with the elongated

dimension of the optical and radio nebula. The X-ray torus and jet are both

visible in the composite image of Figure 1.2.

The optical nebula is approximately centered on the pulsar and is

almost twice as large as the X-ray torus and jet. Near its outer boundary lie

chemically rich filaments produced by the supernova. The radio nebula extends

further beyond the bounds of the optical nebula, and is a synchrotron radiator

at lower frequencies.

1.3 Propagation Effects

Investigation of pulsar emission physics is complicated by the fact that

the emitted radiation interacts with charged particles between the emitter and

Earth. The important effects of this interaction, with regard to the observations

and analysis presented in this work, are pulse dispersion, scatter broadening,

and scintillation.

1.3.1 Pulse Dispersion

The interstellar medium (ISM) is filled with matter ionized by sur-

rounding stars. From the Lorentz force law, an electron in the ISM will have

an equation of motion

m
dv

dt
= −qE− q

c
v × (B + B0),
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where m, v, and q are the electron mass, velocity, and charge, respectively.

E and B are the propagating electric and magnetic (EM) field and B0 is the

background magnetic field. Dispersion is one effect of the propagating EM wave

interacting with the ionized particles of the ISM; the mass of the particles

results in an inertial resistance to the perturbation of the EM field. More

quantitatively, the dispersion relation of cold, i.e. non-relativistic9, isotropic

plasma is (Rybicki & Lightman, 1979)

ω2 = ω2
p + k2c2, (1.4)

where ω and k are the angular frequency10 and wavenumber of radiation prop-

agating through the plasma, and the plasma frequency is

ωp =
√

4πNeq2/m. (1.5)

Here, Ne, q, and m are the electron number density, electron charge, and

electron mass, respectively. The dielectric constant, εr, for an isotropic plasma,

is related to the index of refraction11,

nr =
√

εr =

√
1−

ω2
p

ω2
. (1.6)

The effect of a medium with nr < 1 can be quite significant for pulsating radio

sources.

9For a plasma in thermal equilibrium, the root-mean-square electron velocity is vrms =√
3kBT/me. In the non-relativistic limit, vrms & c implies T & 109 K. The temperatures of

the vast majority of the ISM in our galaxy satisfy this inequality.
10The normal wave frequency, ν, relates to ω by ω = 2πν.
11For an isotropic plasma, Maxwell’s equations reveal that εr = c2k2/ω2 (Rybicki & Light-

man, 1979). The index of refraction is defined as nr ≡ c/vph = kc/ω, where vph is the phase
velocity. From here it is clear that nr =

√
εr.
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The frequency dependence of nr causes the low frequency radiation

to propagate more slowly through the ISM than high frequency radiation. The

propagation time for radiation to traverse a distance L in the ISM is

tp(ω) =

∫ L

0

1

vg
dr, (1.7)

where vg = dω/dk is the EM wave group velocity. The ISM electron density

is ∼0.03 cm−3, which gives a plasma frequency ωp ∼ 10 kHz. Since most ob-

servations, including those presented in this work, satisfy ω ( ωp, the group

velocity can be written in the form

1

vg
≈ 1

c

(
1 +

ω2
p

2ω2

)
.

Equation (1.7) then reduces to

tp(ω) =
L

c
+

2πq2

cmω2
DM, (1.8)

where DM ≡
∫ L

0 Ne dr is the dispersion measure (conventionally written in

units of [pc cm−3]), and r is length along the light ray path. For the Crab

pulsar DM ∼ 57 pc cm−3. Notice that the first term on the right hand side of

Equation (1.8) is the propagation time in vacuum, and the second term is the

additional propagation time due to the ionized medium.

1.3.2 Scatter Broadening

Another effect of pulse propagation through ionized matter is scatter

broadening. Scatter broadening has been analyzed in extensive detail [see, for

example, Lee & Jokipii (1975)]. I present here a simple model that describes

the basic frequency dependence of scatter broadening.
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Scattering of pulsar signals is caused by fluctuations in the index of

refraction between Earth and the pulsar. If the fluctuations have a scale size a,

then the wavefront passing through the fluctuation will undergo a phase change

∆φ ∼ ∆nr
ωa

c
= ∆nr

2πa

λ
(1.9)

For a cold, isotropic plasma equations (1.6) and (1.5) show that the index of

refraction relates to the electron number density as

∆nr ≈ −
2πq2

ω2m
∆Ne, (1.10)

where I have assumed that ω ( ωp. Combining equations (1.9) and (1.10)

gives

∆φ = ∆Neλare, (1.11)

where re = q2/mc2 is the classical electron radius.

The large amplitude fluctuations seen in pulsar signals are interpreted

as evidence that the ISM causes strong scattering (Scheuer, 1968) defined by

∆φ > π. For strong scattering, the angle over which the wavefront scatters is

θs =
∆φ

2π

λ

a
(1.12)

Combining equations (1.11) and (1.12) gives

θs ∝ λ2. (1.13)

It can be shown geometrically12 that the path length difference be-

tween the direct Earth-pulsar line of sight and the largest-angle scattered path

12This same approximation is performed in a different context, and in slightly more detail,
in Chapter 3; see equation (3.7) and Figure 3.8.
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is proportional to θ2
s . The propagation time is proportional to the path length

and therefore the pulse is broadened by time,

τ ∝ θ2
s ∝ λ4 (1.14)

So we find for a cold, isotropic plasma the pulse will be broadened

roughly as a function of λ4.

1.3.3 Interstellar Scintillation

The study of interstellar scintillation is vast; see Rickett (1977, 1990)

for some review. For the work reported here, the intricacies of scintillation

phenomena are not important, but a simple understanding will help to elucidate

the analysis to come.

Pulse scattering (either in the form of diffraction or refraction) be-

tween emitter and receiver not only broadens the pulse temporally, it also

produces interference when the scattered signals arrive at the telescope with

different phases. The phase differences produce a diffraction pattern in the

observing plane. The diffraction pattern varies with frequency and time; fre-

quency variation is a result of the frequency-dependent index of refraction of

the scattering medium; time variation is a result of the relative motion of the

Earth-pulsar sight line and the scattering medium. The observational effects

of the diffraction pattern are called scintillation.

If a scattered pulsar signal arrives at a telescope over a range of time

τ , the resulting interference pattern is correlated over a bandwidth given by
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the Fourier transform relation (Backer, 1988),

Bs =
1

2πτ
. (1.15)

Invoking the simple scattering model of § 1.3.2 we can infer that the scintillation

bandwidth varies with frequency as

Bs ∝ λ−4 ∝ ν4 (1.16)

This steep frequency dependence has a powerful effect on pulsar ob-

servations. At low radio frequencies, many scintillation bandwidths may fit

within the receiver bandwidth, resulting in a continual sensitivity to pulsar

flux. At higher frequencies, the scintillation bandwidth may exceed the re-

ceiver bandwidth and result in an apparent null over long periods of time when

the receiving center frequency lies in a scintillation minimum. At still higher

frequencies (> 20GHz) the effects of scintillation decrease until eventually the

effects disappear completely.

1.4 Signal Processing

The observational time resolution of individual pulses is fundamen-

tally limited by several factors: characteristics of the observing instrumenta-

tion, pulse dispersion broadening, and pulse scattering. Pulse dispersion broad-

ening is a systematic and frequency dependent process that can be removed

from the data in one of two ways, discussed below. Pulse scattering is a random

process; despite its well defined frequency dependence, it cannot be removed

from the data.
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The available bandwidth of the telescope and the sampling rate of the

voltage recording instrument impact the observational time resolution. The

product of the best possible time resolution, ∆t, and total bandwidth, ∆ν, of

an observed signal is constant according to the uncertainty relation,

∆t ∆ν = 1.

Thus, to obtain small time resolution requires large bandwidth. Furthermore,

for a given bandwidth, the sampling theorem states that all signal information

within the band can be obtained by sampling at an interval ∆t = 1/(2∆ν),

the Nyquist rate. Sampling slower than the Nyquist rate, known as undersam-

pling, results in a decrease in time resolution, a loss of the highest frequency

signal fluctuations, and an overestimation of the power at lower frequencies

[see Bracewell (2000) for a discussion]. Given a 2-GHz bandwidth signal, the

Nyquist rate is ∆t = 0.25 ns; for 2-bit sampling, a 1 second observation will

produce 1 gigabyte of data. Thus, time resolution is limited by the memory

size and the data storage rate of the recording instrumentation.

In addition to allowing for small time resolution, large observing band-

width is desirable because it increases the signal-to-noise ratio of the pulsar

after dedispersion according to the radiometer equation,

∆T

T
=

1√
∆ν ∆t

, (1.17)

where T is the system temperature and ∆T is the root-mean-square fluctuation

of the system temperature.
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1.4.1 Dedispersion

Dispersion broadening can be removed from pulsar observations by

two mechanisms: incoherent dedispersion and coherent dedispersion. Incoher-

ent dedispersion utilizes a filter bank spread over the observing band. Signals

in each channel of the filter bank can be detected, delayed appropriately to

remove most of the effect of dispersion, and then added together to improve

the signal to noise ratio. What remains is the dispersion broadening across the

individual channel bandwidths.

Coherent dedispersion, developed by Hankins (1971) and Hankins &

Rickett (1975), can fully remove dispersive broadening. The process is as fol-

lows. A pulsar signal, S(ν), propagating through the ISM undergoes a change

of phase described by

S(ν) → S(ν)eikL,

where L is the distance from the pulsar and k is the wavenumber of the signal

in the ISM given by equation (1.4). In signal processing terminology, the expo-

nential factor H(ν) ≡ eikL is the transfer function of the ISM. To remove the

effect of dispersion, all that need be done is multiply the Fourier transform of

the pulsar signal by the inverse of the ISM transfer function. An approximation

to the inverse function is obtained by first expanding k in a Taylor series about

the observing center frequency, ν0, then shifting the frequency to baseband.

For bandwidths that are small relative to ν0, the inverse becomes (Hankins &

Rickett, 1975),

H−1(ν + ν0) = exp

[
i2πDν2

ν2
0(ν0 + ν)

]
, ν & ν0.
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The dispersion coefficient, D, can be written in terms of the dispersion measure,

DM [pc cm−3] = 2.410000× 10−16 (D [sec Hz2] ).

Dedispersion of the giant pulses in this work was performed as follows:

the giant pulses were initially recorded as a voltage time series. The time series

were Fourier transformed to the frequency domain and multiplied by the inverse

ISM transfer function. The products were then inverse Fourier transformed

back to the time domain and stored for subsequent analysis.

1.5 Observations

Crab giant radio pulse observations between 1993 and 1999, utilized

the Very Large Array (VLA) and the high-time-resolution observing system de-

scribed by Moffett (1997). In total, observations were recorded on 24 different

days, and in various VLA array configurations. The array was used in phased-

array mode, where individual antenna delays are set in real time to restore the

original wave front. The interferometric nature of the VLA is advantageous for

Crab pulsar observations because, even in the most compact D-array config-

uration, the small synthesized beam resolves out most of the structure of the

Crab nebula, thus increasing sensitivity to pulsar signals. To avoid recording

radio sources other than the pulsar, the software package TEMPO was used

in prediction mode along with the Crab Pulsar ephemeris published by Jodrell

Bank Observatory to create a pulsar timing model. The model was used to

set a period-synchronous gate on either the main pulse or interpulse. With the

gate activated, the cumulative VLA signal was square-law detected and mon-

itored for power exceeding a threshold set at observing time. If the threshold
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Table 1.2: VLA Crab Nebula System Temperature
Observing Tsys

Frequency (GHz) (K)
0.333 200
1 – 6 140
8 – 9 96.5

was exceeded while the gate was on, a LeCroy oscilloscope was triggered to

sample two orthogonal circular polarization signals at a rate of 100MHz. The

signals were then transferred to disk for subsequent off-line coherent dedisper-

sion (Hankins, 1971). During the transfer time, 10-30 s, the data acquisition

was disabled, and no pulses could be captured. Pulses recorded at the VLA

were flux calibrated assuming a system temperature, Tsys, given in Table 1.2.

The change in Tsys with frequency is partially due to the spectral index of

the nebula (see above in this chapter) and partially to the VLA receivers (the

0.3GHz receivers are not cooled and therefore have a higher Tsys).

Observations recorded in 2004 and 2005 utilize the Arecibo radio tele-

scope and the Pµη system, described by Kern (2004). These observations were

taken on 29 different days. The large observing bandwidths available in the

5- and 9-GHz receivers at Arecibo allow for better time resolution despite the

decrease in sensitivity due to observing the radio-bright Crab nebula with a

single-dish telescope.

Unlike the earlier high-time-resolution observing system, the Pµη sys-

tem allows for creating a real-time pulsar average profile. At the right frequen-

cies, and when the pulsar is visible, both the Crab main and interpulse are

present in the average profile. Gates can be set on both pulses, and giant
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pulses detected in either pulse can be captured. At Arecibo, pulses were sam-

pled and captured with a Tektronix oscilloscope at the Nyquist rate.

1.5.1 Capturing Giant Pulses: On-pulse Energy Threshold

The Pµη system includes hardware designed to capture giant pulses

while ignoring weaker pulses. When a giant pulse is detected, the system

signals the oscilloscope to write its memory contents to disk, thus saving the

giant pulse record. The process of giant pulse detection is as follows.

The raw voltage signal from the telescope is square-law detected,

y(t) = x2(t), and then smoothed by a resistor-capacitor time constant low-

pass filter. The smoothing time is ∼ 2τRC, where τRC is the time constant

(Kraus, 1986); the time constant is set at observing time such that 2τRC is

approximately the sweep time of the pulse across the bandwidth of the channel

used for the detector, ∆νd. The output of this filter is then the square-law

detected signal convolved with the resistor-capacitor circuit response,

z(t) = y(t) ∗ e−t/τRC . (1.18)

The signal z(t) then passes through another capacitor circuit which removes

the DC component; this DC component is effectively the running mean of z(t)

taken over the previous ∼3 seconds.

u(t) = z(t)− 〈z(t)〉3s (1.19)

Next, the root mean square of u(t) is computed, σu(t). If we assume that giant

pulses occur no more than once per 3 seconds, then prior to a giant pulse σu(t)

is approximately the standard deviation of the off-pulse noise. Subsequently,



23

another resistor-capacitor circuit is used to compute the running mean of the

standard deviation over the previous 3 seconds, 〈σu(t)〉3s. With this information,

I can rewrite the radiometer equation [equation (1.17)] for the giant pulse

detector,

〈σu(t)〉3s =
〈z(t)〉3s√
∆νd 2τRC

, (1.20)

where 2τRC is the effective sampling interval13 of the smoothed signal, z(t).

The condition for detecting a giant pulse is,

u(t) > n 〈σu(t)〉3s, (1.21)

where the coefficient n is set at observing time, generally to n = 7.

1.6 This Study

The work presented in this study divides into three parts. Chapter

2 presents an analysis of microsecond-scale structure in observations of Crab

giant pulses recorded with the Very Large Array. Chapter 3 focuses on a pulse-

echo-like phenomenon observed on two days of VLA observations. Chapter

4 uses data recorded at the Arecibo radio telescope to analyze the dispersion

measure of single Crab giant pulses. Finally, in chapter 5 all the results of

this work are reviewed and their implications for astronomical research are

discussed.

13The sampling interval in the denominator of equation (1.20) is 2τRC. This is the sampling
interval of the signal, z(t), from which the standard deviation, 〈σu(t)〉3s, and mean, 〈z(t)〉3s,
are computed. The standard deviation and mean are running measurements taken over a
period of about 3 seconds, but that does not change the sampling interval of the signal from
which they are computed.



CHAPTER 2

MICROSECOND-SCALE SUBPULSE
CHARACTERISTICS

2.1 Introduction

At radio frequencies, the Crab pulsar main and interpulses consist

of superimposed components (or “bursts”) (Sallmen et al., 1999). Properties

of Crab components are highly variable. For example, the number of compo-

nents per pulse varies from one period to the next; the component rotational

phase, energy content, and width vary between consecutive periods and even

within single pulses. Component rotational phase variability obscures all but

the strongest components when the pulsar is observed using the traditional

technique of pulse-averaging. Fortunately, the brightness of Crab giant pulses

makes it possible to record high-time-resolution single pulses wherein the com-

ponents are observed well above the noise. Components have been detected

with widths of 10µs (Sallmen et al., 1999), 4 to 65µs (Popov & Stappers,

2007), and 0.4 ns (Hankins & Eilek, 2007). In this thesis I differentiate the

component timescales with the terms “microburst” and “nanoshot”, denoting

a component with width on the order of microseconds or nanoseconds respec-

tively. Since the data presented in this chapter has microsecond time resolution,

I focus my study on microbursts.

Pulse microbursts have long been known to exist, and were observed

in single pulses very soon after Hewish and Bell’s discovery of the first pulsar

24
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(Craft et al., 1968). There are a few theoretical models of pulse microbursts.

First, is the narrow spark or plasma column model, which was introduced by

Ruderman & Sutherland (1975); in this model the emitting regions are narrow

and relativistically beamed. Second, Petrova (2004) has proposed that pulse

microburst emission is stimulated—a maser process; the emission power of a

maser goes as eX , and X accounts for the variable physical conditions of the

medium; small variations in the physical conditions produce large variations

in power, accounting for the vast range of microburst flux. Third, is a solar

flare-like model wherein energy is released from magnetic field reconnection

(Lyutikov, 2003, 2006; Sheckard et al., 2009).

Microbursts represent a mid-scale of the Crab pulsar emission region.

Existing on the order of 10µs, I can infer a source size c ∆t = 3km; much larger

than the 2-ns (implying a source size of 60 cm) bursts observed by Hankins

et al. (2003) or the 0.4-ns (12 cm) nanoshots found by Hankins & Eilek (2007)

but much smaller than the magnetosphere radius rLC = cP/2π ∼1600 km.

It is possible that microbursts represent variably-sized groups of nanoshots

(Hankins & Eilek, 2007; Hankins et al., 2003; Cordes, 1976). Whatever the

nature of their sources, microbursts are part of the pulsar emission process,

and their characteristics provide important constraints for current and future

emission models.

In this chapter I report on a study of the characteristics of microbursts

in Crab main pulse observations made at the Very Large Array. In § 2.2 I

describe the observations used; in § 2.3 I describe the functional fitting of mi-

crobursts; in § 2.4 I describe the results of an analysis of fitted microbursts;
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and in § 2.5 I summarize the chapter.

2.2 Observations

In this chapter, I utilize observations recorded with the Very Large

Array (VLA) between 1993 (MJD 49080) and 1999 (MJD 51218)1. The observ-

ing method used is described in § 1.5. I limit my study to observing sessions in

which no fewer than 27 main pulses were captured2. Most of my VLA observing

sessions monitored and recorded main pulses only. Although interpulses were

recorded in some VLA sessions, these data are sufficiently few that I choose to

exclude them from this study3.

Table 2.1 lists 27 observing sessions used in this chapter. Pulses were

observed using four VLA receivers at frequencies of 0.33, 1.2-1.7, 4.5-5.0, and

8.4GHz; most observations were made with 1.2-1.7 or 4.5-5.0GHz receivers.

All observations were made with 0.05-GHz bandwidth, with two exceptions:

the lowest frequency observations allowed only 0.005-GHz bandwidth at 0.33-

GHz center frequency4; a simultaneous two-frequency observation at 1.2 and

1.7 GHz used 0.025-GHz bandwidth at each frequency. Table 4.1 also lists:

1I limit this microburst study to VLA observations; Arecibo observations, discussed in
Chapter 4, were made using larger bandwidths and higher radio frequencies, which I expect
to affect pulse microburst characteristics.

2The number 27 was chosen, after examining the data, to include a useful and interesting
ensemble of observing sessions but to avoid observing sessions with statistically insignificant
numbers of pulses. Some observing sessions present in Chapters 3 and 4 are not present in
this chapter because they contain too few pulses.

3A study of interpulse microbursts or nanoshots should include a statistically significant
sample of interpulses. Interpulse and main pulse analyses should be performed separately;
based on the dispersion results in Chapter 4 and on a recent study by Hankins & Eilek
(2007), the interpulse is, at least in some respects, very different from the main pulse.

4The 0.3-GHz VLA receiver has a total bandwidth of only 0.04 GHz.
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the number of pulses and microbursts fitted (see § 2.3), the post-processing

time resolution, the span of time between first and last recorded pulse, and

the MJD for each observing session. In total, the observations reported here

include 1610 Crab pulses (consisting of 3058 fitted microbursts) observed over

914 non-consecutive minutes of telescope time.

Of the 27 observing sessions listed in Table 2.1, 14 comprise simul-

taneous two-frequency observations in which pulses were recorded at two non-

overlapping passbands. These 7 pairs of observing sessions can be identified by

the superscripts on the first column of Table 2.1; corresponding superscripts

denote simultaneously recorded data. By observing two frequency bands simul-

taneously, the frequency structure of single giant pulses can be studied across

a wider span of frequency than is possible with single-frequency observing at

the VLA.

It should be noted that pulse records at 0.33-GHz center frequency

extend over 36ms, and thus capture an entire Crab pulsar rotational period. A

small number of these records contain giant main pulses and giant interpulses

within the same rotational period. Also visible in a small number of 0.33-

GHz pulse records is emission from the main pulse precursor, first observed by

Rankin et al. (1970). For the main pulse study to follow, I have intentionally

ignored the interpulse and precursor emissions.

2.3 Microburst Function Fitting

To analyze the properties of main pulse microbursts, I fit microbursts

with a function having a fast-rise-slow-decay shape. Pulse processing, including
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Table 2.1: Observations for microburst Analysis
Center Freq BW # GPs # Microbursts Time Res Time Span MJD
(GHz) (GHz) Fitted Fitted (µs) (min)
0.3339 0.0050 49 49 20 18 49406
1.2401a 0.0250 38 61 1.6 55 51218
1.3851b 0.0500 27 52 0.8 41 51159
1.3851c 0.0500 52 97 0.8 20 51174
1.4149 0.0500 61 142 0.8 26 49399
1.4351 0.0500 52 95 0.8 14 51137
1.4351 0.0500 50 131 0.8 11 51159
1.4351 0.0500 54 123 0.8 15 51167
1.4351 0.0500 51 119 0.8 10 51174
1.4351d 0.0500 34 81 0.8 13 51174
1.4351 0.0500 51 81 0.8 22 51214
1.4351 0.0500 203 259 0.8 59 50193
1.4351 0.0500 103 200 0.8 84 50224
1.4351e 0.0500 34 69 0.8 30 50368
1.4351f 0.0500 61 108 0.8 170 50370
1.6649b 0.0500 70 145 0.8 41 51159
1.7141a 0.0250 38 63 1.6 55 51218
1.7149c 0.0500 52 101 0.8 20 51174
1.7149d 0.0500 34 74 0.8 13 51174
4.5351g 0.0500 46 96 0.2 41 51167
4.8851 0.0500 51 104 0.2 57 49080
4.8851e 0.0500 40 79 0.2 31 50368
4.8851f 0.0500 62 117 0.2 170 50370
4.8851 0.0500 34 54 0.2 16 51112
4.8851 0.0500 152 312 0.2 126 51112
4.9851g 0.0500 52 145 0.2 42 51167
8.4149 0.0500 59 89 0.2 84 49086
Superscript pairs denote simultaneous 2-frequency observing sessions.
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smoothing, decimation, and fitting, is performed off-line5.

After coherent dedispersion (Hankins, 1971), the off-pulse mean in-

tensity is calculated and subtracted from each individual pulse. Microbursts

are fit using a sum of fast-rise-slow-decay functions,

F (t) =
n∑

i=1

Fi(t) =
n∑

i=1

Ai(t− t0i) e−(t−t0i)/τi . (2.1)

This sum, F (t), was also used by Sallmen et al. (1999), and is a modification of

the best-fit function found by Rankin et al. (1970) for pulses scatter broadened

by propagation through the turbulent ISM. An example of Fi(t) is shown in

Figure 2.1. For each microburst, the three parameters, Ai, t0i, and τi, are set

by initial estimates. χ2 minimization is then used to obtain the best fit of

F (t; Ai, t0i, τi) (Press et al., 1992). I choose the number of terms, 1 ≤ n ≤ 6,

such that the uncertainties in the function parameters are small and the pulse

residuals are close to being normally distributed about zero with standard

deviation σF (t); this uncertainty is given by the radiometer equation:

σF (t) ≡
{

[F (t) + Foff ]/
√

∆ν ∆t , t ∈ on-pulse region

σoff = Foff/
√

∆ν ∆t , t ∈ off-pulse region
, (2.2)

where ∆ν is the observing bandwidth, ∆t is the smoothed time resolution, Foff

is the off-pulse mean flux. For χ2 minimization, the uncertainty of each data

point is set to the off-pulse standard deviation. Finally, all fits are assessed by

eye to avoid non-physical χ2 minima.

Once good fits are obtained, I analyze the microburst properties by

making use of the fitted-function parameters. In equation (2.1) a microburst

5This microburst fitting method is also described in § 3.3.
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Figure 2.1: Plot of microburst fitting function. The function maximum is
labeled Fmax. The function width, W , is defined as the width at an amplitude
of Fmax/e. In practice, amplitude has units of flux density.

(term i) has maximum flux (Fmax)i = Aiτie−1 at time tTOA i = t0i + τi; the

microburst width is Wi = 3τi [defined as the length of time that the flux

exceeds (Fmax)i e−1]; the total microburst energy is Ei = Aiτ 2
i = (Fmax)iWie/3.

(Fmax)i and Wi are shown graphically in Figure 2.1.

Examples of fitted microbursts are shown in Figure 2.2 (see more

examples in Figure 3.1). Individual terms [see Equation (2.1)] are drawn with

dashed lines; the sum of all terms, F (t), is drawn with a solid line. The pulse
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a i.

1.2401 GHz

51218 MJD

i.

1.7141 GHz

51218 MJD

ii.

1.4351 GHz

51174 MJD

ii.

1.7149 GHz

51174 MJD

iii.

1.4351 GHz

50368 MJD

iii.

4.8851 GHz

50368 MJD

iv.

4.5351 GHz

51167 MJD

iv.

4.9851 GHz

51167 MJD

0.3339 GHz

49406 MJD

b c

d e f

g h i

j k l4.8851 GHz

51112 MJD

8.4149 GHz

49086 MJD

8.4149 GHz

49086 MJD

Figure 2.2: Examples of fitted microbursts. See § 2.3 for details.
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time resolution is given in Table 2.1. Pulses are labeled by unique letters in

the top left of each plot. The observing frequency and MJD are shown, for

comparison with Table 2.1. Pulses recorded simultaneously at two different

frequencies are denoted by a corresponding lowercase Roman numeral in the

top right corner of each plot.

2.4 Results

2.4.1 Goodness of Microburst Fits

Examples of fitted microbursts are shown in Figure 2.2. I find that

the fast-rise-slow-decay function given in equation (2.1) fits my microbursts

best at low frequencies. This is no surprise since the function in equation (2.1)

is a modification of the empirical best fit found by Rankin et al. (1970), who

were fitting Crab average profiles observed at frequencies of 74 to 430MHz.

The consistency of single giant pulse shape at 0.3GHz, compared with the

variability seen at higher frequencies, indicates that the lower frequency pulse

shape is dominated by interstellar scatter broadening. In § 1.3.2, I explain

that a thin screen scattering model predicts interstellar scatter broadening will

relate to frequency as

τB ∝ ν−4. (2.3)

I observe single pulses at 0.3GHz with pulse widths of approximately 600µs.

Extrapolating from this measurement, Table 2.2 shows the expected amount of

interstellar scatter broadening for the full range of frequencies I have observed.

Above 0.3GHz, the microburst widths I measure (see § 2.4.2) are all larger than

the inferred interstellar scattering width. It should be noted that changes in

pulse width do occur over a range of time scales [for example see Backer et al.
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Table 2.2: Interstellar Scatter Broadening Widths
Frequency Scattering

(GHz) Width (µs)
0.3 600
1.2 2
1.4 1
4.5 0.01
8.4 0.0009

(2000)]. Widths calculated in Table 2.2 are representative only of the epoch of

the 0.3GHz observation (see Table 2.1).

At 0.33GHz the main pulse6 is very well fitted with a single term of

Equation (2.1) (n = 1). Between 1.2 and 1.7GHz, microbursts are well fitted

with occasional deviations from the functional form at the beginning or end

of the microburst; for example, see plot (b) in Figure 4.1. Above 4.5GHz,

microbursts are frequently composed of very narrow bursts of emission which

are superimposed upon broader features often resembling the functional form

of equation (2.1); see, for example, plots (g), (h), and (i) in Figure 2.2.

The function described by Equation (2.1) fits resolved emission fea-

tures well, but it does not fit unresolved7 structures well. Although unresolved

emission is sometimes present in 1- to 2-GHz data (often at the peak of a

resolved microburst), unresolved emission is more abundant at higher frequen-

6At 0.33GHz interstellar scatter broadening obscures microstructure, and results in a
main pulse that consists of only one broad microburst.

7In this context, “unresolved” refers only to the smoothed and decimated data; in the
absence of smoothing, the same features may be resolved, but the higher noise level makes
analysis more difficult.
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cies. Examples of such unresolved emission are seen in plots (c) and (e) through

(l) of Figure 2.2. Unresolved bursts at the peak of broader microbursts can ac-

count for a large fraction of the microburst peak flux. In my data, most of

these unresolved bursts are not fitted and therefore are not accounted for in

the analysis of this section. Fortunately, the energy contribution of the un-

resolved emission is very small compared to most microbursts; therefore, my

microburst energy measurements are not greatly affected by this limitation of

my fitting function and algorithm.

2.4.2 Microburst Analysis

Microburst characteristics, derived from function fits, are shown graph-

ically in Figures 2.3 through 2.13. All figures contain plots in three columns;

from left to right the plots are, microburst flux versus width, microburst en-

ergy histogram, and microburst width histogram. The flux versus width plots

contain data points plotted as diamonds, with error bars denoting the fitted-

microburst uncertainty in both flux and width. Data points plotted as triangles

do not have error bars because the uncertainties are large enough to push the

bounds of the error bars beyond zero, on one or both axes (these error bars

cannot be displayed on a logarithmic plot). Diagonal lines in the flux-width

plots denote constant energy curves and are described below. To ease com-

parison, the horizontal and vertical axis ranges are uniform for all flux versus

width plots in Figures 2.3 through 2.13. The histograms show the distribu-

tion of microburst energy and width. In both histograms, data are binned in

one-tenth-decade intervals; the histogram values are not normalized to the bin
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size8. The horizontal axis of each histogram is uniform throughout Figures

2.3 to 2.13. The diagonal lines in the energy histogram plots show uniform

microburst energy distributions and are discussed later in this section.

Figures 2.3 through 2.11 display microburst characteristics for indi-

vidual observing sessions; each row contains one observing session. Rows are

ordered by frequency, the same order as Table 2.1.

Figures 2.12 and 2.13 show the same data as contained in Figures

2.3 through 2.11, but here data have been grouped by frequency. Each row

displays the characteristics of all data observed within the specified frequency

range; rows are ordered by frequency. By combining observing sessions with

similar frequencies, I increase the statistical significance of several microburst

trends.

Microburst Flux Analysis

The left-most columns of Figures 2.3 through 2.13 contain plots of

microburst width (W ) versus microburst maximum flux (Fmax). Flux variabil-

ity over 2 or more orders of magnitude is present in every frequency group and

almost every observing session (excluding the 0.34-GHz pulses). This large

microburst flux variability occurs on timescales as short as microseconds; even

within a single main pulse. However, for each observing session (Figures 2.3

to 2.11), the apparent centroid of the microburst flux is relatively constant;

8The units of the vertical axis are “number of microbursts”, not “number of microbursts
per bin size”. This is important when comparing to an analytical model, as done later in
this section.
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Figure 2.3: Microburst characteristics for individual observing sessions. See
§ 2.4.2 for details.
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Figure 2.4: Microburst characteristics for individual observing sessions (con-
tinued from Figure 2.3.
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Figure 2.5: Microburst characteristics for individual observing sessions (con-
tinued from Figure 2.4).
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Figure 2.6: Microburst characteristics for individual observing sessions (con-
tinued from Figure 2.5).
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Figure 2.7: Microburst characteristics for individual observing sessions (con-
tinued from Figure 2.6).
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Figure 2.8: Microburst characteristics for individual observing sessions (con-
tinued from Figure 2.7).
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Figure 2.9: Microburst characteristics for individual observing sessions (con-
tinued from Figure 2.8).
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Figure 2.10: Microburst characteristics for individual observing sessions (con-
tinued from Figure 2.9).
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Figure 2.11: Microburst characteristics for individual observing sessions (con-
tinued from Figure 2.10).
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Figure 2.12: Microburst characteristics, grouped by frequency. See § 2.4.2 for
details.
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Figure 2.13: Microburst characteristics, grouped by frequency (continued from
Figure 2.12).
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the microburst flux centroid varies by a factor of a few between observing ses-

sions (timescales of hours to days). This result agrees with Lundgren et al.

(1995) and Rickett & Lyne (1990), both of whom observe total flux amplitude

variations (at 0.8 and 0.61GHz, respectively9) in time-averaged Crab pulses of

factor of a few on timescales of 5 to 100s of days. This relatively small time-

averaged flux variability, in contrast to the 2-order-of-magnitude microburst

variability, is precisely what allows us to study pulse flux in frequency groups

(such as those in Figures 2.12 and 2.13), where data recorded on different days

has been combined.

The measurements reveal significant variability in microburst energy

(see below in this section for further discussion of microburst energies). The en-

ergy threshold used to record only giant pulses (see § 1.5) biases the microbursts

toward higher energy. Since energy is a product of microburst width and flux

(see § 2.3, and below), the microburst sample is biased toward both large-width

and high-flux microbursts. In the frequency-grouped data, the high-flux and

large-width part of the main pulse microburst distribution is well sampled10.

At all frequencies, there exists a break in the flux-width distribution that occurs

along a power law (linear function in the log-log plots) with negative slope; on

the high-flux, high-width side of the break, the number of microbursts decays

rapidly. As frequency increases, the break moves toward smaller widths.

9Flux amplitude variability above 2 GHz is not well studied. In this part of the spec-
trum, scintillation timescale increases with frequency, requiring a comparable increase in the
observing time for studying scintillation-induced variability.

10This assumes that the recorded dispersed pulses did not saturate the VLA voltage sam-
plers.
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Table 2.3: Constant Energy Curves in Figures 2.3 through 2.13
Line Style E

(Jy·µs)
dot 4 · 105

dash 1 · 105

dash-dash-dot 1 · 104

triple dot-dash 2 · 103

Using the microburst fitting function in § 2.3 I see that microburst

energy relates to flux and width as

Ei =
e

3
(Fmax)iWi. (2.4)

If the flux-width distribution break visible in Figures 2.3 through 2.13 occurs

at a frequency-dependent energy, then the break may be described by a power

law Fmax ∝ W−1
i . Equation (2.4) has been drawn in the flux-width plots of

Figures 2.3 through 2.13 for four values of E listed in Table 2.3. These energy

values roughly correspond to the flux-width breaks visible at each frequency.

The energy values in Table 2.3 also correspond to the upper limit of the energy

distributions, plotted in the middle column of Figures 2.3 through 2.13. These

energy plots are discussed in detail later in this section.

Comparing the flux-width data with the constant energy curves re-

veals that the distribution break may have a steeper slope than is described

by the constant energy expression, above. In particular, the data points at

the large-width side of the distribution appear to drop away from the constant

energy lines as width increases. A quantitative fit to the break is left for a

future study.



49

Microburst Width Analysis

At each of the six observing frequencies the microburst width distri-

butions shown in Figures 2.12 and 2.13 are roughly symmetric (in log space)

about some mean width. At 0.3GHz the microbursts are very wide with only

minimal variation about a width of 600µs. Between 1.2 and 1.44GHz, widths

vary over 2 orders of magnitude and are centered on 10µs. The 1.6 to 1.7GHz

distribution has a peak density near 5µs, and is approximately scattered over 2

orders of magnitude; here, the asymmetry in the logarithmic width density dis-

tribution is likely a result of data smoothing and decimation to 0.8µs11. At 4.5

to 4.9GHz the maximum of the microburst width density distribution is 1µs;

whereas the smoothed and decimated time resolution is 0.2µs. At 8.4GHz the

width distribution density peaks at approximately 2µs and is scattered over

slightly more than 1 order of magnitude.

The large variability in microburst width occurs on very short timescales.

Microbursts within a single pulse (∼1ms timescales) can have vastly different

widths. Neither the interstellar medium nor the Crab Nebula vary rapidly

enough to account for such short timescale pulse width variability. The vari-

ability must be a result of processes occurring in the emission region—within

the pulsar magnetosphere.

Kern (2004) used some of the same data presented here to study pulse

scatter broadening. Using a function identical to equation (2.1) [differing only

11Microburst fitting becomes difficult as the microburst width approaches the post-
processing time resolution limit. Unresolved and nearly-unresolved microbursts are narrow
rectangle functions—not fast-rise-slow-decay functions, such as equation (2.1). Only the
strongest unresolved microbursts have been fitted. See § 2.4.1 for further discussion.
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in constants; Kern’s equation (3.2)], he fits giant pulse microbursts in a manner

very similar to what I have done here. After fitting, he estimates the lower

bound of the microburst width distribution and infers that this lower bound

is equivalent to τB, the scatter broadening width of the interstellar medium.

His measurements of τB are within an order of magnitude less than the lowest

widths measured in the same frequency groups shown in Figures 2.12 and 2.13;

Kern’s τB is greater than or equal to the interstellar scattering width estimates

shown in Table 2.2, which were inferred from the width distribution at 0.3GHz.

Kern (2004) finds that his measurements of τB are roughly consistent with

τB ∝ ν−4, as described in § 1.3.2 and equation (2.3).

In addition to measuring the pulse microburst widths using functions

fitted to the time series data, Kern (2004) fits an interstellar scattering transfer

function to observing-session-averaged power fluctuation spectra, using some

of the same data presented in this chapter. He then measures the half power

point of the transfer function and uses this to describe a “characteristic” width

of the giant pulses. I have inverted the half power point measurement to obtain

the characteristic width12 . These are listed in Table 2.4.

From 1.3 to 5.0 GHz, Kern’s characteristic widths are slightly larger

than the widths at the peak density of the width histograms in the frequency-

composite plots of Figures 2.12 and 2.13; at 8.4 GHz the characteristic width

falls at the upper bound of the width distribution. At 0.3GHz, Kern’s char-

acteristic width lies at the small-width end of the width distribution in Figure

12The characteristic width, τ , relates to the spectral half power point, ν−3 dB, as τ ν−3 dB =
1/2π.
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Table 2.4: Characteristic Giant Pulse Widths from Kern (2004)

Frequency Half Power Characteristic
(GHz) Point (Hz) Width (µs)
0.3330 3.84× 102 414.5
1.3851 9.33× 103 17.1
1.3851 1.37× 104 11.6
1.4351 1.22× 104 13.0
1.6649 1.51× 104 10.5
1.7149 9.62× 103 16.5
3.3750 5.60× 104 2.8
4.1500 7.08× 104 2.2
4.1500 5.65× 104 2.8
4.8851 3.72× 104 4.3
5.5000 4.11× 104 3.9
8.4149 2.25× 104 7.1

Compare with Table 3.2 in Kern (2004).

2.3; the reason for the different positioning of the characteristic width rela-

tive to my width distribution at this low frequency is not clear. However, I

do note that this 0.3 GHz data is the only data set that is completely inter-

stellar scattering dominated (see goodness of fit discussion in § 2.4.1). Kern’s

characteristic widths, in conjunction with some scattering measurements from

the literature, are described by a pulse broadening power law τ ∝ ν−1.9. The

significance of this power law is discussed further in § 2.4.3 below.

Microburst Energy Analysis

The microburst energy histograms in Figures 2.3 and 2.13 show sev-

eral interesting things. Foremost, is the fact that microbursts inhabit a range

of energies. This differs from the suggestion by some authors that giant pulse



52

microbursts have a constant energy (Benford, 2003). The energy distribution

can also be seen in the flux-width plots in the left most column of Figures 2.3

through 2.13; the constant-energy lines (see also Table 2.3) clearly show the

variability in energy.

However, it is still possible that microbursts have constant energy in

the emitter’s rest frame, and that the emission is relativistically beamed in the

direction of the emitter’s motion (Weatherall & Eilek, private communication).

To model this, let E ′ be the microburst energy in the emitter’s rest frame. Let

the emitter have dimensionless velocity β, Lorentz factor γ, and move along a

path at an angle θ to the Earth-pulsar line of sight. Then, letting µ = cos(θ),

a Lorentz transformation gives the microburst energy in the Earth frame,

E =
E ′

γ(1− βµ)
. (2.5)

Let us assume that microbursts are emitted equally at all angles to the Earth-

pulsar sight line; the distribution n(µ) is uniform. Then, the microburst dis-

tribution in angle relates to the distribution in energy as,

n(E)dE = n(µ)dµ =⇒ n(E) =
n(µ)

dE/dµ
(2.6)

Combining equations (2.5) and (2.6), the energy distribution varies as

n(E) ∝ 1

E2
. (2.7)

To compare equation (2.7) with the energy distributions, I multiply

by E to obtain units of “number of microbursts”13. One example of this model

13Recall from earlier in this section that the vertical axes of these histograms have units
of “number of microbursts”.
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using constant of proportionality 0.5 Jy · s is plotted on the energy histograms

in Figures 2.3 through 2.13. Comparing the data with the model I find that

the high-energy side of the microburst energy distribution is only partially

described by the model. At the highest energies the distribution falls more

rapidly than the model. The microburst energies where the energy histograms

fall away from the constant emission-frame-energy model roughly corresponds

with the high-energy side of the flux-width distribution, which can be identified

using the constant (observing frame) energy lines overlaid on the flux-width

plots. The break in the flux width distributions (discussed above in this section)

occurs at slightly lower energies.

The minimum pulse energies required for recording giant pulses (set

at observing time; see § 1.5) correspond roughly with the peaks of the energy

distributions in Figures 2.3 through 2.13. For a pulse with multiple microbursts,

each burst contributes to the total pulse energy. For this reason, the microburst

distribution is not truncated at the observational threshold, but it is under

sampled. To avoid this under-sampled region, I do not analyze the low-energy

side of the energy histograms.

The upper-bound of the energy distribution decreases with increas-

ing frequency. This agrees with negative spectral index measurements of gi-

ant pulses, −2.7 ± 0.1 (Popov et al., 2006), and average profiles, −3.1 ± 0.2

(Lorimer et al., 1995). In § 2.4.3 I measure spectral indices for giant pulses

observed simultaneously at two different frequencies and compare them with

these measurements made by other authors.
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2.4.3 Simultaneous Two-frequency Observations

After fitting the function of Equation (2.1) to microbursts in all the

data, I look for evidence of microburst width and energy frequency dependence

by carefully inspecting data sets that were observed simultaneously at two

different frequencies. These data are denoted by superscripts in the first column

of Table 2.1; simultaneously recorded data sets have the same superscript.

The same microbursts at high and low frequencies can be identified

by visual inspection in some, but not all, of these data. Examples of simulta-

neously observed microbursts are shown in Figure 2.2 (i.e., pairs b & c, d & e,

f & g, h & i). Corresponding microbursts are identified in three observing ses-

sions that simultaneously recorded pulses at two bands between 1 and 2 GHz;

and in one observing session that recorded pulses at two bands between 4 and

5GHz. These four observing sessions (8 data sets total) are marked in Table

2.1 with superscripts a, c, d, and g14. Corresponding microbursts could not be

identified in the majority of pulses observed simultaneously at 1.4 and 5GHz.

This suggests that the microbursts have an emission bandwidth of < 4GHz in

this frequency range, or that propagation in the pulsar magnetosphere suffi-

ciently distorts one or both passbands that identification of burst pairs at the

two frequencies is impossible.

In the four data set pairs listed above and in Table 2.5, 192 high-

and low-frequency fitted microburst pairs are matched. Figures 2.14 and 2.15

show the correlation of microburst width and microburst energy, respectively,

14These superscripts are also referenced from Table 2.5
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of these high- and low-frequency microbursts; both the microburst energies and

widths are well correlated and have roughly a linear relationship between high

and low frequency. In each plot, a dotted line shows the location of horizontal

and vertical axis equality.

Width Measurements

Figure 2.14 reveals that lower frequency microbursts are typically

wider than their higher frequency counterparts. To compare these findings with

the results of other authors I quantify the width-frequency relationship using

a power law, W ∝ νy; where ν is the observing frequency and y is a power law

index to be determined. I measure power law indices for each microburst pair;

the means, 〈y〉, and standard deviations, σy, of these indices are shown in Table

2.5. There is a large scatter in power law indices for each of the 4 observing

session pairs. It should be noted that this scatter is not a result of measurement

uncertainties. The large standard deviations of power law indices are partially

a result of relative microburst-pair width fluctuations—fluctuations that are

intrinsic to the observed pulse. These fluctuations are quantitatively amplified

by the small separation (or “baseline”) of the two frequency bands, and I note

that the smallest standard deviation of 〈y〉 occurs in the data set pair having
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Figure 2.14: High- versus low-frequency microburst widths of simultaneous two-
frequency observations. Error bars determined during the microburst fitting
process are plotted for both axes. On average, lower-frequency microbursts
tend to be wider than high-frequency microbursts. Average power law indices
have been measured for each data set and are shown in Table 2.5. The scatter
in data points (or standard deviation of the width power law index mean;
see Table 2.5) tends to increase roughly with decreasing relative separation of
observing bands, as explained in § 2.4.3. The dotted line shows the location of
high- and low-frequency width equality.
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Figure 2.15: High- versus low-frequency microburst energies of simultaneous
two-frequency observations. Error bars determined during the microburst fit-
ting process are plotted for both axes. The three data sets utilizing observing
frequencies between 1 and 2GHz have, on average, higher energies at the lower
frequencies. The bottom right plot, with observing frequencies between 4 and
5GHz is an exception to this rule (but see § 2.4.3). Average spectral power law
indices have been measured for each data set and are shown in Table 2.5. The
dotted line shows the location of high- and low-frequency energy equality.
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the largest band separation (1.24 to 1.71GHz)15.

Even with the large fluctuations it is clear that the microburst broad-

ening we have observed is different from the τ ∝ ν−4 scattering described in

§ 1.3.2. The width analysis of Kern (2004) used two different measurements

of microburst width and identified two scatter broadening power laws (see dis-

cussion in § 2.4.2). His data suggest that the ISM scattering (ν−4) operates in

addition to a less-steep scattering law (ν−2). As mentioned above in § 2.4.2, the

ISM law corresponds roughly to the lower bound of my width measurements

while the less-steep law corresponds more closely to the peak density of my 1.4-

to 4.9-GHz width distributions.

The scattering represented by the less-steep law is highly variable in

comparison with the ISM scattering. A variable mechanism, or environment, is

needed to explain this scattering; the pulsar magnetosphere provides just that.

It is not yet clear whether this microburst width variability is intrinsic to the

emission process itself or is a result of scattering in the magnetosphere.

15A small frequency baseline amplifies any fluctuation in widths when performing the
power law fit. For example, the width power law index derives from

y =
ln(W1/W2)
ln(ν1/ν2)

,

where subscripts 1 and 2 represent measurements of the high and low frequency bursts, and
a frequency ratio near 1 produces a large multiplicative factor. For this reason, the bottom
row of Table 2.5 contains very large standard deviations, σα and σy, which make the values
of α and y very uncertain.
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Table 2.5: Microburst Frequency Power Laws: Width and Energy

Superscript Freq 1 Freq 2 # Matched 〈y〉‡ σy
‡ 〈α〉‖ σα

‖

(Table 2.1) (GHz) (GHz) Microbursts
a 1.2401 1.7141 46 −2.2 0.9 −1.2 1.8
c 1.3851 1.7149 68 −1.6 2.1 −2.4 2.4
d 1.4351 1.7149 37 −1.8 1.8 −2.7 2.0
g 4.5351 4.9851 41 −0.8 4.7 4.8 8.2

‡ Mean and standard deviation of width power law indices, where W ∝ νy.
‖ Mean and standard deviation of energy power law indices, where E ∝ να.

Energy Measurements

Figure 2.15 shows that, between 1 and 2GHz, microburst energy is

typically larger at lower frequencies. I quantify the energy-frequency relation-

ship with a power law, E ∝ να, where α is the spectral index. The large scatter

in spectral indices points to an intrinsic fluctuation in the relative energy of

high- and low-frequency microbursts. As discussed above for width power law

measurements, the small frequency baseline between high and low frequency

passbands amplifies any fluctuation in relative energies. Spectral index means

for each of the four two-frequency data sets are shown in Table 2.5. Moffett

(1997), using simultaneously recorded 1.4 and 4.9GHz Crab giant pulses16,

measured a distribution of single pulse spectral indices that peaks between

−1.5 and −2.0; consistent with my measurements. My results agree well with

Popov et al. (2006), who measured a mean spectral index of −2.7±0.1 for Crab

16Moffett (1997) actually made use of 1.4351GHz observations that I have also used in
this chapter (see Table 2.1 and the observing session from MJD 50193). However, Moffett’s
simultaneously recorded 4.9-GHz observing session recorded only a small number of pulses
and, therefore, was excluded from this study.
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giant pulses between 23 and 600MHz; however, the same authors suggest that

the spectrum of individual Crab giant pulses is not well described by a simple

power law. For comparison, the Crab average profile spectral index has been

measured between 408 and 1606MHz as −3.1 ± 0.2 (Lorimer et al., 1995).

It should be noted that the observing method introduces a bias for

stronger pulses at higher frequency, because the energy threshold used to record

only giant pulses is compared exclusively with the energy in the higher fre-

quency band. Additionally, the mean value of α between 4.5 and 5.0GHz is

affected by interstellar scintillation, which alters the pulse power by an un-

known function of frequency and time (see § 1.3.3).

2.5 Conclusions

Microbursts are pulse emission microbursts with widths on the order

of microseconds. The VLA was used to record Crab pulsar giant pulse mi-

crobursts with high time resolution. Main pulses, interpulses, and main pulse

precursors were recorded, but a statistically significant sample only of main

pulses was obtained. Thus, I have focused my study on characteristics of main

pulse microbursts.

I fit the microbursts with a series of fast-rise-slow-decay functions

and analyze microburst properties by studying the fitted-function parameters.

I find that the function fits the data best at low frequencies. As frequency in-

creases, the number of unresolved bursts increases. I find that the flux of single

microbursts varies by up to 2 orders of magnitude on timescales shorter than

one pulse period; in contrast, the centroid of the microburst flux distributions
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varies by roughly a factor of 2 over hours to days.

I find that all microbursts do not contain the same amount of en-

ergy. There is, however, evidence of a break in the flux-width distribution

above which the density of microbursts decays rapidly. This flux-width break

occurs along a power law that is roughly described by a constant-energy line,

F ∝ W−1. The constant of proportionality (the microburst energy upper

bound) decreases with increasing frequency. All microbursts do not have the

same duration (width). A wide range of temporal widths (∼2 orders of magni-

tude) occur within a short timescale (even within a single pulse). This width

variation is too rapid to be caused by the ISM or nebula and must be intrin-

sic to the pulsar. The maximum density of the energy distribution decreases

with increasing frequency; the break in the flux-width distribution moves to

lower energies as frequency increases. I compare the high-energy side of the

energy distribution with a model of microbursts having uniform energy in the

rest frame, n(E) ∝ E−2, and find that at the highest energies the number of

microbursts is less than is suggested by this model.

In simultaneously observed two-frequency observations, I am able to

identify corresponding microbursts when the observing bands are both between

1 and 2 or 4 and 5 GHz. Corresponding microbursts could not be identified

when the two observing bands were set to 1.4 and 4.8 GHz. The microburst

emission bandwidth may be < 4 GHz at these frequencies, or magnetospheric

distortions may occur over these wider bandwidths. Both microburst flux and

width are well correlated between high and low simultaneously observed fre-

quencies. Between 1 and 2 GHz, lower frequency microbursts are typically
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wider and more energetic. Although I was able to identify microbursts be-

tween 4 and 5 GHz, the scintillation bandwidth at these frequencies is large

enough that intrinsic relative flux and energy cannot be determined without

more extensive observations. Microbursts tend to be wider and have greater

energy at lower frequencies. I measure width and energy frequency dependence

and find my measurements to be roughly consistent with other authors.



CHAPTER 3

ECHOES OF CRAB PULSAR GIANT RADIO
PULSES1

Abstract

We have detected short-lived “echoes” of giant pulses from the Crab

pulsar. We observed individual giant pulses with high time resolution, at 1.4

and 4.8GHz. Over a course of several years, we saw the echoes on only two days

(separated by 13 months), and only at the lower frequency. The echo emission

follows the giant pulse primary emission by 40–100µs. The peak flux of the

echo microburst is consistently a factor of 10 less than that of the primary

microburst. The echo widths are greater than the primary microburst widths.

One of our two echo events lasted no more than four days. The frequency

dependence, shorter echo lag time, and echo event lifetime together suggest

that these echoes differ from those reported previously. We use simple models

to investigate the possibility that the echoes are due to reflection from plasma

structures close to the pulsar, possibly close to the interface between the pulsar

wind and the outer synchrotron nebula.

1This chapter has been submitted for publication in The Astrophysical Journal: Crossley,
J. H., Hankins, T. H., & Eilek, J. A., Echoes from Crab Pulsar Giant Radio Pulses.
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3.1 Introduction

The Crab pulsar was discovered in 1968 (Staelin & Reifenstein, 1968),

only 15 months after the detection of the first pulsar by Hewish et al. (1968).

Among the more than 1700 pulsars presently known2 the Crab pulsar is ex-

ceptional in many respects including its youth, broadband emission, associated

supernova remnant, rapidly evolving structures near the star, and extreme

pulse brightness variability. The pulsar lies in the center of the Crab nebula,

at a distance of 2±0.5 kpc (Cordes & Lazio, 2002). The nebula and the pulsar

have been explored extensively from radio through gamma ray wavelengths.

The outer-nebula synchrotron emission is thought to be supported by the in-

terior pulsar wind, which produces a shock at ∼0.3 pc from the pulsar. Bright,

variable “wisp” structures, explored in radio, optical and X-ray (Bietenholz

et al., 2004; Hester et al., 2002, 1995; Mori et al., 2002), are interpreted as

a product of the pulsar wind shock. The ejecta of the supernova lies at the

outer boundary of the synchrotron nebula, and takes the form of large- and

small-scale “filaments” which are believed to be ionized by the synchrotron

emission from the interior nebula (Sankrit et al., 1998). X-ray observations

have revealed a bilateral jet and torus centered on the pulsar, which are colo-

cated with the wisps seen at optical wavelengths (Weisskopf et al., 2000). Pulse

broadening variability has been attributed to scattering from evolving nebular

plasma (Rickett, 1977).

The flux of radio pulses from the Crab pulsar varies widely, occa-

2Based on the current number of pulsars listed in the Australia Telescope National Facility
Pulsar Catalogue: http://www.atnf.csiro.au/research/pulsar/psrcat/
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sionally reaching more than 1000 times the average pulse amplitude. These

sporadic, very luminous giant pulses were evident in the discovery of the Crab

pulsar (Staelin & Reifenstein, 1968). There are presently only seven pulsars

for which giant pulses have been claimed (Soglasnov et al., 2004). The proper-

ties of Crab giant pulses have been studied extensively (Hankins et al., 2003;

Sallmen et al., 1999; Lundgren et al., 1995). Crab giant pulses have structure

on nanosecond timescales (Hankins et al., 2003; Hankins & Eilek, 2007), and

typical giant pulse widths are much shorter than the average pulse profile. The

fraction of the average profile energy provided by giant pulses is frequency de-

pendent, increasing from 1% at 0.146GHz to 89% at 0.8GHz (Sallmen et al.,

1999). Crab giant pulses occur at the same rotational phases as the main pulse

and interpulse, and may also occur at the phases of the high frequency mi-

crobursts (S$lowikowska et al., 2005). During observations, we saw giant pulses

with energies exceeding a 5σ threshold, where σ is the off-pulse detected noise

standard deviation, as often as ∼1 per second at 1.4GHz3 with the Very Large

Array4 (VLA). At higher frequencies the average rate of detectable pulses de-

creases significantly due to scintillation effects.

Changes in low radio frequency pulse characteristics, including the

scattering width, dispersion measure, and rotation measure, have been at-

tributed to plasma variability in the Crab nebula (Lyne & Thorne, 1975; Rankin

et al., 1988). A new form of Crab pulse variability was detected by Smith &

3Our high time resolution data acquisition equipment was unable to record all giant pulses
at this rate. See §3.2.

4The Very Large Array is an instrument of the National Radio Astronomy Observatory,
a facility of the National Science Foundation operated under cooperative agreement by As-
sociated Universities, Inc.
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Lyne (2000) and Backer et al. (2000)—an irregular “echo” or “ghost replica”

was detected following the main pulse and interpulse. We define a pulse echo

as emission that appears in many pulse periods, lags behind the normal pulse

microburst in rotational phase, and has characteristics that correlate with the

primary emission. We refer to the normal pulse microburst preceding the echo

as the primary microburst. The primary-to-echo time-of-arrival (TOA) dif-

ference is referred to as the echo delay. Smith & Lyne (2000), Backer et al.

(2000), Lyne et al. (2001), and Dickerson (2003) all reported an echo event

that began in 1997 August, with echo emission following the main pulse and

interpulse by 7ms; the echo delay decreased over a period of 50 days until the

two microbursts merged. Lyne et al. (2001) found this echo event in archival

timing data along with 16 other Crab echo events that occurred between 1984

and 1998. Many of the echo events occurred in pairs and were symmetrical in

time: the echo delay decreased daily to a minimum, where the echo merged

with the primary; the next echo then separated from the primary, and the echo

delay increased; the echo eventually disappeared. Smith & Lyne (2000) and

Backer et al. (2000) proposed that the echoes originate from pulse refraction

in transient, ionized filaments in the Crab nebula supernova ejecta shell. This

model accounts for the decreasing, and subsequently increasing, echo delay be-

havior because the light travel time from pulsar to transient filament to Earth

will reach a minimum when the filament is closest to the Earth-pulsar sight

line.

We made high-time-resolution observations of Crab giant pulses at

1.4 and 4.8GHz on 20 days between 1993 and 1998. We found echoes on only

two days: 1996 October 14 and 1997 November 26. The latter date coincides
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with the period of enhanced dispersion measure and the echo event reported

by Backer et al. (2000) and Lyne et al. (2001). The strength of giant pulses

makes pulse averaging unnecessary, thus allowing us to probe the variability

of echo emission on shorter timescales than was available in previous average

profile studies. Furthermore, our observations span a range of higher radio

frequencies than previous studies, allowing us to explore a new regime of echo

frequency dependence. The echo emission we observed at two frequencies in

1996 October differs from the echo emission reported by Backer et al. (2000)

and Lyne et al. (2001). This echo event has a shorter lifetime and, a smaller

echo delay, and it is strongly frequency dependent. The origin of our echoes

can be explained by a modification to the nebula refraction model of Backer

et al. (2000) and Lyne et al. (2001).

In §3.2 we describe the details of our observations. In §3.3 we describe

our microstructure analysis technique. We discuss the results of this analysis

in §3.4, and in §3.5 we discuss implications of our findings on the current echo

model and our understanding of the Crab nebula. Conclusions are provided in

§3.6.

3.2 Observations

Our giant pulse observations were made at the Very Large Array in

several baseline configurations in the phased-array mode, where individual an-

tenna delays are adjusted in real-time so as to restore the original wave front.

Even in the D-array configuration, the VLA at both 1.4 and 4.9GHz forms

such a small angular beam that, when pointed at the pulsar, it resolves out

most of the structure of larger angular size in the Crab nebula. We therefore
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attain a much lower system temperature on the Crab pulsar than is possible

with a single-dish telescope of equivalent collecting area. The software package

TEMPO (Taylor & Weisberg, 1989) was used in prediction mode to create a

pulsar timing model based on the monthly Crab pulsar ephemeris published

by Jodrell Bank Observatory5. The model was then used to set a period-

synchronous gate at the pulse phase of either the Crab main pulse or interpulse.

For each pulsar period the signal within the gate was square-law detected with

a 200-µs time constant. If the total energy of the giant pulse within the gate

exceeded a preset multiple (typically 7) of the root-mean-square off-pulse noise,

two orthogonal circular polarization signals were digitally sampled by a LeCroy

oscilloscope at a rate of 100MHz. The signals were then transferred to disk for

subsequent off-line coherent dedispersion (Hankins, 1971). During the trans-

fer time, 10–30 s, the data acquisition was disabled, and no pulses could be

captured.

For six of the nine observations we present here, we utilized two dis-

tinct frequency bands simultaneously (usually 4.9 and 1.4GHz) by splitting the

VLA into two independent sub-arrays. Since nebular and interstellar dispersion

causes the lower frequency pulsar emission to arrive later, the gated portion

of the higher frequency pulse was compared against the energy threshold; if

the threshold was exceeded, the pulse was recorded, and after the appropri-

ate digitally controlled dispersion delay (to account for the dispersion delay to

the lower frequency), the digital oscilloscope was triggered again to record the

signal in the lower frequency band. Off-line coherent dedispersion utilized the

5http://www.jb.man.ac.uk/∼pulsar/crab.html
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Table 3.1: Observations used in Crab giant pulse echo analysis.
Date Center Freq Giant Time Max (Min) SNR

(GHz) Pulses spana

ν1 ν2 (min) ν1 ν2

1996 Oct 12 1.4 4.9 40 30 1128 (4.4) 664 (11)
1996 Oct 12b 1.4 4.9 4 45 1033 (211) 389 (53)
1996 Oct 14 1.4c 4.9 62 170 1999d (9)d 1054 (21)
1996 Oct 16 1.4 4.9 4 20 643 (55) 212 (42)
1996 Oct 16 1.4 4.6 11 43 57 (8) 270 (16)
1997 Nov 19 4.8 1 n/a 154
1997 Nov 26 1.4e 14 15 161d (36)d

1997 Nov 26 4.8 4 15 269 (42)
1997 Nov 26 4.94 4.89 3 18 113 (53) 70 (47)

ameasured from first to last recorded pulse
binterpulse observation
c“Observation A”, echoes present
dIncludes only pulses with good residuals after χ2 minimization and clearly distinguishable

echo and primary microbursts (same pulses used in Figures 3.3 through 3.6)
e“Observation B”, echoes present

Note — Observations are of the main pulse except where noted. 50-MHz
bandwidth was used at each center frequency. The measured SNR is a ratio
of the smoothed primary microburst maximum flux and the smoothed off-
pulse noise. The maximum and minimum SNR for each observation and each
frequency are shown.

dispersion measure extrapolated from the Jodrell Bank Crab pulsar ephemeris

as well as cross correlation of the detected intensity to obtain precise dispersion

delays.

In Table 3.1 we present two sets of Crab pulsar observations in which

we have seen echoes. The first set of observations was obtained over a five-day

period in 1996 October; giant pulses were recorded simultaneously at center

frequencies 1.435 and 4.885GHz (at 1.435 and 4.635GHz on 1996 October 16),

with 50-MHz bandwidth at each frequency. A total of 121 giant main pulses
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were observed along with 4 giant interpulses. Echoes were detected only on

one day, 1996 October 14, and only at 1.4GHz. The second set of observations

was obtained on two days in 1997 November. A total of 19 giant pulses were

observed with a single 50-MHz bandpass centered either at 1.435 or 4.885GHz;

3 giant pulses were observed simultaneously at 4.935 and 4.885GHz with 50-

MHz bandwidth at each frequency. Again, echoes were observed only on one

day, 1997 November 26, and only at 1.4GHz.

This paper focuses primarily on echo emission observed at 1.4GHz

on 1996 October 14 and 1997 November 26. For convenience, these 1.4GHz

observations are referred to as Observation A and Observation B, respectively,

in the remainder of the paper. The other observations shown in Table 3.1 are

discussed only in so far as they provide insight into Observations A and B. A

subsequent paper will present an in-depth study of a larger set of high-time

resolution Crab pulsar observations, including the observations in Table 3.1.

3.3 Microburst Fitting

After dedispersion and smoothing, a region of weak, persistent emis-

sion trailing the otherwise normal, strong giant pulse emission is clearly visible

in all but two pulses in Observation A and in all pulses in Observation B, ex-

amples of which are shown in Figure 3.1. We term this emission the echo and

primary emission, respectively, as mentioned in §3.1. The primary emission is

similar in variability and component complexity to Crab giant pulse emission

observed at 1.4GHz on other occasions (when the echo emission was absent).

Crab giant radio pulses vary from one pulse to the next in both rotational phase

and in the number of components present (Sallmen et al., 1999). However, the
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Figure 3.1: Example giant pulses. All pulses are plotted with a time resolution
of 2µs. The dashed lines show the fitted individual terms, Fi(t), from equation
(3.1); the thin solid line is the sum of the fitted pulse microbursts, F (t). The
first row contains pulses observed at 1.4GHz on 1996 October 14; echoes can
be seen following the primary emission. The second row shows the same three
pulses (labeled A, B, and C for emphasis) but now at 4.9GHz. The third
row shows pulses observed at 1.4GHz on 1997 November 27; echoes follow the
primary. The bottom row shows giant pulses observed at 1.4GHz on 1996
October 12, when no echo is present. The tail of emission following the main
pulse on 1996 October 12 is typical of Crab pulses at 1.4GHz and is not echo
emission (see §3.3); the absence of echo emission on this day and on 1996
October 16 allows us to constrain the lifetime of the echo event to ≤4 days.
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echo emission we observe correlates strongly, and in multiple ways (see §3.4),

with the primary emission for the full duration of Observation A (170 minutes)

and Observation B (15 minutes).

In 1996 October, the total lifetime of the echo emission is constrained

to ≤ 4 days by giant pulse observations which show no echo emission on 1996

October 12 and 1996 October 16 (Table 3.1). Echoes with a signal-to-noise

ratio of ∼10 would have been clearly visible in any of the observations listed in

Table 3.1. For the brightest pulses observed on non-echo days, a signal-to-noise

ratio of ∼10 would correspond to an echo with peak flux of approximately 1

percent the primary peak flux; the echoes we actually observe have a peak flux

of 10% the primary peak flux (see §3.4). We have determined that a weak

“tail” of emission frequently follows Crab pulses at ∼1.4GHz, as can be seen

in the 1996 October 12 data shown in Figure 3.1; this same “tail” was found in

Crab observations recorded in 1998, long after the echo events presented here.

We do not believe this tail to be an echo.

Individual giant pulses at 1.4GHz are often composed of several com-

ponents, each of which has a fast-rise-slow-decay shape. To study the mi-

crostructure intensity properties of the pulses observed, we therefore subtract

the off-pulse mean intensity, Foff , and fit the remaining pulse flux as a sum of

microbursts with a fast-rise-slow-decay shape:

F (t) =
n∑

i=1

Fi(t) =
n∑

i=1

Ai(t− t0i) e−(t−t0i)/τi . (3.1)

This microburst functional form is a modification of the best-fit shape found

by Rankin et al. (1970); it was used by Sallmen et al. (1999) in their Crab giant

pulse analysis. From equation (3.1), a fitted pulse microburst i has a maximum
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flux Fi = Aiτie−1 at time tTOA i = t0i + τi, total energy Ei = Aiτ 2
i , and width

Wi = 3τi (defined as the length of time that the flux exceeds Fie−1). We define

the time-of-arrival of a pulse microburst as tTOA i. Examples of fitted pulses

are shown in Figure 3.1. Looking ahead to the analysis of §3.5, we note that

if the energies of two microbursts are equal, then the flux and width ratios for

the two microbursts are inversely equal: E1 = E2 ⇒ F1/F2 = W2/W1.

We employ χ2 minimization to find the best fit of F (t; Ai, t0i, τi) to

each pulse (Press et al., 1992). For each term in F (t), we provide initial es-

timates for the parameters Ai, t0i, and τi. The smallest value of n, where

1 ≤ n ≤ 6, is chosen such that the uncertainties in t0i, Fi, and Wi are small

and residuals of F (t) are described as closely as possible by a normal distribu-

tion with zero mean and standard deviation σF (t), where σF (t) is the standard

deviation given by the radiometer equation:

σF (t) ≡
{

[F (t) + Foff ]/
√

∆ν ∆t , t ∈ on-pulse region

σoff = Foff/
√

∆ν ∆t , t ∈ off-pulse region
. (3.2)

Here ∆ν is the bandwidth and ∆t is the post-detection smoothing time.

In computing χ2 for a given set of parameters of F (t), every j’th data

sample must be assigned a standard deviation, σχ j, to represent its uncertainty.

After experimenting with a variety of methods for calculating σχ j, we found

that using the constant off-pulse standard deviation gives fits with the best

residuals after χ2 minimization. Using σχ j = σF (t) as the standard deviation

unweights the strongest parts of the pulse and χ2 minimization yields poor

fits. Thus, the standard deviation σχ j used to compute χ2 is not formally the

same as the standard deviation, σF (t); after χ2 minimization we judge the fit

according to σF (t) to avoid non-physical χ2 minima.
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When the final fit of a pulse is attained, an m×m covariance matrix

is returned (m is the number of parameters fitted; m increases by 3 for each mi-

croburst used), providing the covariance between each set of fitted parameters.

We assume that the measurement errors in the data are normally distributed,

thus allowing us to use the diagonal elements of the covariance matrix as the

standard deviations in the respective parameters (Press et al., 1992).

The majority of flux in most pulses is accounted for by fitting two

microbursts to the pulse–one to the primary and one to the echo. Many pulses

contained low-level emission not accounted for by the two microburst fits. Very

often low-level flux could be seen between the primary and echo, and less often

preceding the primary. While this flux can be fitted by using two superimposed

microbursts, the parameters (t0i, Fi, and Wi) of the superimposed microbursts

often have very large uncertainties, revealing a degeneracy in the parameter

fits (a trough or valley in χ2-space); for the purpose of the analysis of §3.4, we

sought to avoid superimposing microbursts as much as possible, thus exchang-

ing better residuals for high precision parameter fits. Recurring unfitted flux

features such as these suggest that a function with a slower rise and decay may

provide a better fit.

In the analysis of the next section, only those pulses are used for

which two or more microbursts, not strongly overlapping, are fitted to at least

the primary and echo (with the exception of the average autocorrelation, which

includes almost all pulses). Only two pulses, one in Observation A and one in

Observation B, were fitted with 3 rather than 2 microbursts; for both pulses

the extra microburst accounts for emission between the primary and echo.
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For those two pulses that do contain more than two fitted microbursts, the

analysis below regards the microburst with the maximum peak flux as the

primary microburst and the latest microburst in time as the echo microburst,

consistent with the definitions given in §3.1. We thus limit the analysis to 33

out of 62 observed pulses in Observation A, and 9 out of 14 observed pulses in

Observation B.

3.4 Results

3.4.1 Frequency Dependence

Echo emission is seen in 1.4-GHz pulses on 1996 October 14 but not in

simultaneously recorded 4.8-GHz pulses. This is demonstrated by plots of the

individual pulses (for example see Figure 3.1) and the average autocorrelation

function of each frequency in Figure 3.2. The prominent shoulder extending out

50 µs at 1.4GHz coincides with the echo delay, tTOAecho− tTOAprimary, deduced

from pulse microburst fitting, discussed below. The smaller shoulder around

the 4.8-GHz peak does not correspond to a persistent emission microburst, but

arises from pulse structure; the 4.8-GHz shoulder reveals that the giant pulses

at this frequency have a width of ∼15µs.

We searched for a 4.8-GHz echo in individual pulse data from 1996

October 14 and 1997 November 26, focusing especially on the echo delay ex-

pected from a purely geometrical delay and the echo delay expected from a

purely dispersive delay (see §3.5 for details). No echoes were found in the

4.8-GHz individual pulse data. The 4.8-GHz 1996 October 14 observation

contained 62 giant pulses with signal-to-noise ratios (SNR’s) of up to 1054,

where SNR is defined as the ratio of the smoothed pulse maximum flux to the
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Figure 3.2: Average intensity autocorrelation functions (ACF’s) for 1996 Oc-
tober 12 and 1996 October 14 at 4.8 and 1.4GHz. These ACF’s are averaged
over all pulses for which both the high and low frequency pulses have a SNR
> 5; this includes all 40 pulses for 1996 October 12 and 61 out of 62 pulses
for 1996 October 14. The echo emission at 50-µs lag is clearly visible in the
1.4-GHz autocorrelation, but no echo is visible at the same lag in the 4.8-GHz
data. The feature at ∼12-µs lag at 4.8GHz does not correspond to a consis-
tent emission microburst but is a result of pulse structure. The flux “spike” at
zero lag is truncated by the upper bound of the plot. The ACF’s have been
smoothed to 1-µs resolution.
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smoothed off-pulse detected noise. Echoes were detected simultaneously in 1.4-

GHz pulses with SNR’s as low as 9. The 4.8- and 4.9-GHz 1997 November 27

observations contained 7 giant pulses with signal-to-noise ratios of up to 269.

Echoes were detected on the same day in 1.4-GHz pulses with SNR’s as low as

36.

3.4.2 Analysis of Microburst Fits

The consistency of the echo delay in Observations A and B is shown

in Figure 3.3. The average echo delay for Observation A is 45±4µs. The

average echo delay for Observation B is 92±18µs. It is known that the TOA

of individual pulses varies randomly with rotational phase within the pulsar

average profile (Hankins et al., 2003). The Observation A and Observation B

pulses show this expected random TOA variation. However, the TOA difference

between the primary and echo emission is independent of the pulsar rotational

phase.

The maximum flux of the echo emission, Fecho, is plotted against

the maximum flux of the primary emission, Fprimary, in Figure 3.4. In both

observations the maximum echo flux is consistently a factor of 10 lower than the

maximum primary flux. The Observation B flux distribution overlaps the weak

end of the Observation A flux distribution. This is not surprising considering

that Observation B occurred during the strong scattering event that took place

during 1997 November (Backer et al., 2000).

The e−1 width of each echo microburst, Wecho, is plotted against the

e−1 width of each primary microburst, Wprimary, in Figure 3.5. The plot shows
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Figure 3.3: Histogram of the time-of-arrival (TOA) difference between the
primary and echo microbursts, tTOAecho− tTOAprimary, for 1996 October 14 and
1997 November 27 at 1.4GHz. The TOAs are determined as described in
§3.3. Only pulses with two or more, not strongly overlapping, microbursts
fitted to the primary and echo are used in this plot; 33 pulses are plotted for
1996 October 14 and 9 pulses for 1997 November 27. Individual pulses have
primary-to-echo TOA uncertainties of less than 6µs. The 1996 October 14
and 1997 November 27 pulses have a mean echo delay of 45±4 and 92±18µs,
respectively.
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Figure 3.4: Plot of maximum echo flux, Fecho, versus maximum primary flux,
Fprimary, in units of Janskys for 1996 October 14 and 1997 November 27 at
1.4GHz. The pulses used here are the same as those used in Figure 3.3. Note
that the echo microburst peak flux is consistently a factor of 10 less than the
peak flux of the primary microburst. The dashed line shows the location of
primary and echo maximum flux equality.
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Figure 3.5: Plot of echo microburst width, Wecho, versus primary microburst
width, Wprimary, for 1996 October 14 and 1997 November 26 at 1.4GHz. The
pulses used here are the same as those used in Figure 3.3. The 1996 October 14
and 1997 November 27 distributions are disjoint, with the 1997 November 27
echoes being wider than all but one of the 1996 October 14 echo microbursts.
The dashed line shows the location of primary and echo width equality. The
average ratio of echo-to-primary width is 2.54±1.07 for 1996 October 14 and
4.61±1.20 for 1997 November 27.
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disjoint distributions for Observations A and B; this is not surprising consid-

ering the enhanced scattering during 1997 November. The ratio of the echo-

to-primary widths, Wecho/Wprimary, ranges from 1.0 to 6.8, with the majority

of the Observation B pulses having wider echo emission; the average ratio of

echo-to-primary width for both Observation A and B is ∼3.5.

The energy of each echo microburst, Eecho, is plotted against the

energy of the corresponding primary microburst, Eprimary, in Figure 3.6. For

each pulse plotted the echo microburst energy is less than the energy in the

primary microburst by approximately a factor of 4 for Observation A and a

factor of 3 for Observation B. That the echoes have less total energy than the

primary microbursts does not follow immediately from the fact that the echo

flux maximum is less than the primary flux maximum, since the microburst

energies also depend on the microburst widths, Wi. A necessary condition for

the small-angle refraction model discussed in §3.5 is that the echo energy is less

than the primary energy. We note that the strong echo-primary energy and

maximum flux correlations suggest that the echo emission is not intrinsic to the

star, since microstructure intensity is usually observed to be highly variable.

We find no temporal evolution of the pulse characteristics discussed

in this subsection for either Observation A or Observation B.

3.4.3 Polarization

The pulses of all observations listed in Table 3.1 are polarized with an

average degree of polarization for each observation and each frequency ranging

from 12 to 22 percent. The standard deviation in the degree of polarization
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Figure 3.6: Plot of echo energy, Eecho, versus primary energy, Eprimary, for 1996
October 14 and 1997 November 27 at 1.4GHz. The pulses used here are the
same as those used in Figure 3.3. The i’th microburst energy is calculated
by integrating over Fi(t) in the exponential fitting function, equation (3.1).
The dashed line shows the location of primary and echo energy equality. The
average ratio of echo-to-primary energy is 0.25±0.09 for 1996 October 14 and
0.38±0.6 for 1997 November 27.
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measured off-pulse is approximately 5 percent for all pulses observed. The

strongest polarized flux is always concurrent with the strongest total intensity

flux; the type of polarization (circular or linear) and the time evolution of

the polarized flux are inconsistent from one giant pulse to the next. We find

that echo microbursts have approximately the same degree of polarization as

the primary microbursts. With the exception of 4.9-GHz giant pulses from

1996 November 26, all 4.6 to 4.9-GHz observations have an on-pulse degree

of polarization that is approximately 1 to 7 percent larger than the 1.4-GHz

giant pulses, which is within instrumental calibration uncertainty. The change

in Faraday rotation over 50MHz is 8.1◦ at 1.4GHz and 0.19◦ at 4.9GHz, using

a rotation measure of 43 rad m−2 (Rankin et al., 1988); hence, no significant

depolarization from Faraday rotation is expected.

3.5 Discussion

Echoes from the Crab pulsar seen in previous studies were explained

as refraction within evolving plasma structures in the Crab nebula (see §3.1).

However, the echo events we observed in Observations A and B differ in several

important ways from the echoes seen in previous studies.

The strength of giant pulses allows us to avoid the loss of individual

pulse information inherent in the pulse averaging used in other echo obser-

vations. The main pulse average profile width at 318MHz and 430MHz is

∼0.5ms and ∼0.3ms, respectively (Rankin et al., 1970); previous Crab echo

studies (Lyne et al., 2001; Backer et al., 2000; Smith & Lyne, 2000) were not

sensitive to the small echo delays we report in §3.4. At 1.5 and 5.5GHz the

average profile width is 0.5±0.2ms and 0.3±0.08ms respectively (Cordes et al.,
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2004). Although single pulse widths tend to decrease with increasing frequency,

pulse phase variability keeps average profile widths above ∼400MHz approxi-

mately constant over a large range in frequency (Cordes et al., 2004; Moffett

& Hankins, 1996). Therefore, even at these higher frequencies, the echoes we

report are only visible in individual, coherently dedispersed giant pulse data.

3.5.1 Echo Event Lifetimes

Lyne et al. (2001) observed echo events with lifetimes ranging from 6

to 50 days. Our Observation A echo event is constrained to less than or equal

to 4 days by observations two days before and after which show no echoes.

Thus the Observation A echo event has the shortest lifetime of any Crab echo

yet observed. As discussed in §3.5.5, this same lifetime is expected for a re-

fraction event caused by Crab nebula wisps. Since we have no other 1.4-GHz

observations within several months of Observation B, we cannot constrain the

duration of this echo event.

3.5.2 Echo Broadening

In §3.4 we found that the ratio of echo-to-primary microburst width is

∼3.5 for both Observation A and B. Two propagation phenomena could account

for the enhanced echo microburst width: dispersion and scattering. Using

dedispersed dynamic spectra, for example see Figure 3.7, we find no evidence

that the echo microbursts have a higher dispersion measure than the primary

microbursts. The spectra show no dispersion delay changes greater than 5µs

across the passband. This places an upper limit on the change in dispersion

measure between the primary and echo microbursts, ∆DM < 0.04 pc · cm−3.
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We conclude that dispersion does not account for the enhanced echo width.

The larger echo width may have resulted from enhanced turbulent

scattering along the echo ray path. Scattering from plasma turbulence would

tend to spread the pulse energy in time and result in broader pulse emission and

lower peak flux; the total pulse energy should not be affected. Crab pulse scat-

tering variability has been attributed to changes in the nebula plasma (Rickett,

1977; Isaacman & Rankin, 1977), and it seems likely that a plasma density en-

hancement significant enough to refract pulsed emission (see §3.1 and §3.5.4)

might also be turbulent enough to contribute to pulse scatter broadening.

3.5.3 Energy and Power Loss in Reflection

From §3.4 it is clear that the echoes we observed contain less energy

than the primary microbursts. Under the refraction (or reflection) model this

energy difference can be explained by a number of mechanisms: partial reflec-

tion where some of the energy is transmitted through the reflecting medium;

reflection of only a small part of the pulsar beam by a reflecting medium that

is small in size; reflection from a curved surface that broadens the reflected

beam. In this subsection we explore the possibility that energy loss is due to a

curved reflection surface.

Consider the simple case of a spherical reflector located much closer

to the pulsar than the earth so the earth-pulsar distance, Do, is approximately

equal to the earth-reflector distance, Di ≈ Do, where we use subscripts i and o

for “image” and “object”, respectively. From geometrical optics we know that

reflection from a spherical surface produces a demagnified virtual image within
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Figure 3.7: The dedispersed total intensity and dynamic spectrum of one pulse
are shown. The total intensity time resolution is 1.28µs; the dynamic spectrum
resolution is approximately 10µs and 3.1MHz. The dynamic spectrum reveals
that the dispersive time of arrival delay for the echo microburst varies by < 5 µs
across the 50MHz band. This equates to an upper limit on the difference in
dispersion measure between the primary and echo microbursts of 0.04 pc · cm−3.
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the spherical surface. The location and apparent size of the reflected image

obeys the transverse magnification relation,

di

do
= − xi

xo
, (3.3)

and the mirror formula,
1

xo
+

1

xi
= − 2

Rc
. (3.4)

Here di and do are the transverse sizes of the image and object respectively,

and xi and xo are the distances from the surface of the reflector to the image

and object respectively (when the origin is at the reflecting surface). Rc is the

radius of curvature of the reflecting surface. We know neither d nor x for both

the object and image; we now proceed to make use of equations (3.3) and (3.4)

to relate Rc to the image-to-object (echo-to-primary) flux ratio, which we do

know.

An observer sees two sources of radiation, the pulsar and its reflection.

These two unresolved sources are identical save for their observed flux and pulse

time of arrival (ignoring additional echo scattering for the moment). The flux

of the reflection, Fi, will be less than the pulsar flux, Fo, because the flux of

a radiating source decreases with the square of the distance from the source

(Fi ∝ D−2
i ) and because the curved surface of the reflector widens the pulsar

beam in the process of reflection. To connect this flux loss to Rc, we note

that the observer cannot discern between a demagnified (di1 < do) image at

the pulsar distance (Do) and an equal size (di2 = do) image farther away. The

angular size of the image, ξi, is assumed to be the same in either case, so that

di1 = ξiDo and di2 = do = ξiDi. Combining this with equation (3.3) and (3.4)
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we obtain

Rc =
2xo√

Fo/Fi − 1
. (3.5)

To determine the energy loss factor Fo/Fi we must account for the

fact that the echo microbursts are broadened more than the primary. Since

scatter broadening lowers the peak flux (but not the total energy), we want to

remove the effect of this scattering before making use of equation (3.5); after

removal, the remaining difference between the flux maxima is a result of the

energy loss of the spherical reflector.

From §3.3 and §3.4 we know that if the echo is a duplicate of the

primary, with the same total energy but with different degrees of scatter broad-

ening, then Wecho/Wprimary = Fprimary/Fecho ∼ 3.5. What we actually observe

is Fprimary/F ′
echo ∼ 10. The observed echo flux, F ′

echo, is less than the scatter

broadened echo flux, Fecho, telling us that some sort of energy loss has occurred

in the observed echo. Upon taking the ratio, we have Fecho/F ′
echo = Fo/Fi ∼ 2.9;

this is the energy loss factor that we attribute to reflection from a spherical

surface.

If we assume the reflection takes place in the vicinity of the Crab

wisps (§3.5.5), then we can approximate the pulsar-wisp distance from radio

images to be roughly xo = 0.3 pc (Bietenholz et al., 2004). Substituting this in

equation (3.5), we obtain

Rc = 2.8xo ≈ 0.84 pc.

The radius of curvature needed on the reflector to obtain the energy loss we

observe is a few times the distance of the reflector from the pulsar.
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3.5.4 Echo Frequency Dependence

Backer et al. (2000) found a ratio of echo to primary energies of 0.02–

0.06 at 327MHz and ∼0.5 at 610MHz. We have carefully searched our 4.8-GHz

data for echo emission, taking into consideration two mechanisms that could

affect echo emission: a geometric echo delay and additional echo dispersion.

Echo Delay

If the echo delay is due only to the difference in the light travel time

along the direct and refraction paths, the echo delay will be the same at all

frequencies. If the echo delay is due in part or in whole to the difference in

the column density of electrons along the direct and refraction paths, we can

expect the echo delay to depend on frequency as

∆tTOA ∝
1

ν2
.

The echo delay in Observation A at 1.4GHz is 48µs; for a purely

dispersive delay, the echo delay at 4.8GHz on the same day should be 4.1µs.

For Observation B, with a 1.4GHz delay of 92µs, the echo delay at 4.8GHz

should be 9µs. The time resolution of our data (ultimately 10 ns) is more than

adequate to resolve delays this short, but we do not see them.

It is worth noting that if the dispersion measure of the primary and

echo microbursts differ, the dedispersion process will not have properly removed

the dispersion from both microbursts. However, since the effect of dispersion

is greater at lower frequencies, if some dispersive effect remained after dedis-

persion, the effect should be less prominent at higher frequencies. Since both
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the primary and echo microbursts are visible at 1.4GHz, dispersion should not

impair our ability to see both microbursts at higher frequency, if indeed the

emission of both microbursts actually extends to higher frequency.

The combined affect of a geometrically and dispersively delayed echo

allows us to estimate a possible range for the echo delay at 4.8GHz. The lower

limit on the higher frequency echo delay would obtain in the limit of a purely

dispersed echo. The upper limit on the higher frequency echo delay would

obtain when the delay results from both geometric and dispersive effects. The

possible range of the high frequency echo delay is then

1996 Oct 14 : 4µs < ∆tTOA < 52 µs

1997 Nov 27 : 9µs < ∆tTOA < 118 µs.

We have examined our higher frequency observations for emission within this

time range, but no evidence of an echo microburst was found.

Frequency Dependent Refraction

If the refracting plasma model (§3.1) is correct, the absence of echo

emission at 4.8GHz places constraints on the electron number density within

the plasma. If the refracting medium bends the pulsar beam by an angle θ,

then the refraction event as a whole can be regarded as reflection, with equal

incident and reflection angles, φ, and θ = π − 2φ (see Figure 3.8). To obtain

reflection within a region of plasma density enhancement the index of refraction

(electron number density) must decrease (increase) toward the inner region of

the plasma to a critical value, nrc, such that the ray is refracted until it is

parallel to the plasma boundary through which it entered (Lorrain & Corson,
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R=zD (1−z)D

Figure 3.8: Diagram of the direct and reflected ray paths from the pulsar to
telescope. The thick line shows the tangent to the surface of reflection, and the
dash-dot line shows the normal to the tangent surface. The open arrowheads
show the direction of ray propagation. Figure not to scale.

1970). In this case Snell’s law of refraction can be written nrc = nri sin φ, where

nri is the index of refraction outside the plasma structure. By substituting in

the expression for the index of refraction of a cold plasma, we obtain

Ne = (1− nri sin φ)
2πmν2

e2
,

where Ne is the electron number density, m and e the electron mass and charge,

and ν the frequency of the pulsar emission.

Thus the critical electron density for pulse reflection is frequency de-

pendent and is larger for higher frequencies. It is possible that the maximum

density encountered by the reflected pulse during the times of our observations

on 1996 October 14 and 1997 November 27 was between the critical values,

Ne(ν = 1.4 GHz) ≤ Ne ≤ Ne(ν = 4.8 GHz), thus explaining the absence of an

echo at 4.8GHz.

We now consider the geometry of the reflection process in order to



92

gain insight into the characteristics of the reflecting plasma. Here we assume

the echoes of Observations A and B were produced by small-angle reflection

from cold plasma close to the pulsar and that the echo delay is a purely geomet-

ric effect, rather than a dispersive effect. We assume that the average index

of refraction per unit length from the pulsar to Earth along both the direct

and reflected paths is close to unity. We model the observed echo frequency

dependence by supposing the intensity of the echo is determined by the ratio

of the reflected to incident intensity at the boundary of the plasma structure.

Figure 3.8 is a cartoon of the ray paths considered in our model. If

the angle of incidence, φ, of the pulsar radiation upon the plasma structure is

φ ≥ φc, where φc is the critical angle, then the incident radiation is reflected

completely. For φ < φc, the incident radiation is only partially reflected. At

the critical angle, Snell’s law becomes

sin φc =
nrt

nri
= cos δc,

where nrt is the index of refraction of the the plasma (transmission) medium,

nri is the index of refraction of the surrounding (incident) medium, and δc ≡

π/2− φc. We define η ≡ e2Ne/(2πmν2), and the plasma index of refraction is

nr ≈ 1− η. For δc & 1 and ηi & 1,

1

2
δ2
c ≈ ηt − ηi. (3.6)

Since we know the echo delay, we also know the difference in the

length of the direct and reflected paths, S. If we then assume that α & 1,

β & 1, z & 1, (angles and lengths are defined in Figure 3.8) and use the small
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angle relations, α/β ≈ B/A ≈ (1− z)/z, S can be written as

S = A + B −D ≈ 1

2
Rθ2, (3.7)

where θ = α + β ≈ α/(1− z). Since we are considering reflection, θ = 2δ, and

equation (3.6) can be rewritten as

4δ2
c = θ2

c ≈ 8(ηt − ηi). (3.8)

Total reflection occurs when δ ≤ δc. By employing equation (3.7), (3.8), and

the definition of η, this inequality can be written as

2Sπmν2

4e2
≤ R ∆Ne, (3.9)

where ∆Ne is the change in the electron number density at the boundary

of the reflecting plasma. Partial reflection occurs when equation (3.9) is not

true. Thus, if echoes are visible only in the limit of total reflection, then for

Observation A, where echoes are seen at 1.4GHz but not 4.8GHz, equation

(3.9) results in a range for the product R ∆Ne:

1016 cm−2 ≤ R ∆Ne ≤ 1017 cm−2. (3.10)

These two parameter values are determined by Backer et al. (2000)

to be Rfil ∼ 1 pc and ∆ne fil ∼ 1500 cm−3 for the ejecta filaments in the outer

nebula (assuming the region between the filaments has much lower electron

density). However, the product of these values is 4 orders of magnitude above

the range allowed by inequality (3.10). We believe that we may be observing

refraction from a different type of ionized structure than was active in the echo

observations of Backer et al. (2000) and Lyne et al. (2001).
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3.5.5 Crab Nebular Wisps as a Location for Reflection

We note that the central wisp region of the Crab nebula, studied by

Bietenholz et al. (2004), Hester et al. (2002), Mori et al. (2002), and Hester

et al. (1995), provides plasma structures with a smaller pulsar-plasma distance,

0.01 pc
<∼ R

<∼ 0.3 pc (Bietenholz et al., 2004; Hester et al., 1995). To obtain

the lowest allowable electron number density we use R ∼ 0.3 pc, which reduces

equation (3.10) to

10−2 cm−3 ≤ ∆Ne ≤ 10−1 cm−3. (3.11)

The wisp region is also more rapidly variable than the outer-nebula

filaments. The wisps have been measured to have width 0.1′′ < w < 0.4′′

(Hester et al., 1995) and projected speed ∼0.3c (Bietenholz et al., 2004). This

combines to give us a line-of-sight (or small pulsar beam) crossing time of

4 days < tcross < 14 days.

which is close to what we measured for the lifetime of the 1996 October event

(≤4 days). To determine better the plausibility of refraction from the wisps

we turn now to an estimation of the electron number density within the wisps

via analysis of synchrotron emission.

We begin by assuming that the electron distribution in energy has a

power law form, n(γ) = n0γ−p, and that this distribution is the same in both

the larger nebula and the wisps. Our goal is to determine the total electron

density

Ne =

∫ γ2

γ1

n(γ)dγ

using the appropriate range of γ1 < γ < γ2 for the particles in the wisps.



95

The Crab nebula has been observed to have a power law emissivity,

ε(ν) ∝ ν−α, with α ∼ 0.3 between 107 and 1013 Hz; the spectral index steepens

within infrared and optical wavelengths to α ∼ 0.8 (Atoyan, 1999), and at

higher frequencies the index increases further still. The spectral index relates

to the distribution index according to α = (p−1)/2. Here we ignore the highest

energy part of the distribution because the contribution to the total electron

density from this energy range is much smaller than that from the lower energy

part of the distribution.

The synchrotron emissivity is a function of n0 and the magnetic field

B,

ε(ν) ∝ n0B
1+αν−α. (3.12)

Therefore, to determine n0 we need to know ε(ν) and B; in general it is not

possible to determine these quantities independently. It is conventional to re-

solve this degeneracy by assuming equipartition of energy between the particles

and the magnetic field,

∫ γmax

γmin

γmc2 n(γ)dγ =
B2

8π
, (3.13)

where γmc2 is the particle energy. This assumption makes our problem one of

solving for two unknowns, n0 and B, in equations (3.12) and (3.13). We do

this by utilizing the emissivity measured by Hester et al. (1995) for the wisp

structure they label as “knot 1”, which is the smallest and densest structure

they observe.

We first employ a two-part power law electron distribution function,

where the break in the functional form occurs at the energy, γc = 104, corre-
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sponding to the break in the spectrum.

n(γ) =

{
n0γ−1.6 , γ1 < γ < γc

n1γ−2.6 , γc < γ < γ2

,

where n1 = n0γc. The emissivity of the higher-energy part of the distribution

was measured by Hester et al. (1995); we include the lower-energy part of the

distribution to account for the observed radio emission. We follow Hester et al.

(1995) and set γ2 = 109. The high Lorentz factors dominate the energy den-

sity, and equipartition of energy using ε(ν) = 1.23× 10−31 ergs cm−3 s−1 Hz−1

(Hester et al., 1995) gives us B ∼ 3.8mG and n1 ∼ 42 cm−3. From this

we choose γ1 = 25 so that the synchrotron spectrum will extend down to

10MHz, as observed for the nebula. We find a total electron number density

Ne ∼ 1.0× 10−3 cm−3.

Alternatively, if we assume the wisp electron distribution has an un-

broken power law form

n(γ) = n0γ
−2.1 , γ1 < γ < γ2,

the number of low energy electrons increases relative to the broken power law

above. Again with γ2 = 109, equipartition of energy using knot 1 emissivity

gives B ∼ 3.9mG and n0 ∼ 7.9 × 10−2 cm−3. We choose γ1 = 25 in order

to obtain 10-MHz radiation. This gives us a total electron number density of

Ne ∼ 5.5× 10−3 cm−3.

Using two different power law electron density distributions, we have

found that the total electron density is less than that predicted by equation

(3.11). We make three points concerning this discrepancy. First, the six wisp

emissivities reported by Hester et al. (1995) span an order of magnitude. We
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think it is likely that higher pressure features, dense enough to produce the

echoes we have observed, exist either transiently or on scales smaller than

those observed in the optical wavelength range. Second, we have assumed that

the wisps have a low-frequency emissivity and magnetic field similar to the

mean nebula. It is possible that the magnetic field may be weaker, or the low-

frequency emissivity stronger than we have assumed. This would increase the

total electron density found through equipartition. Third, equipartition is an

assumption. If the electron energies and the magnetic field energies differed by

a few-to-ten in pressure, the total electron density would increase sufficiently

to satisfy our reflection model.

3.6 Conclusions

We have observed echo emission in Crab pulsar giant pulses at 1.4GHz

on 1996 October 14 and 1997 November 26. The echo emission is strongly

frequency dependent; the echo is absent in simultaneously observed giant pulses

at 4.8GHz. The echo lag time, ≥40µs, is the shortest yet observed for Crab

echoes. The 1996 October echo event has the shortest lifetime, ≤4 days, of any

echo event observed.

We find for both the 1996 October and 1997 November echo events:

the echo microburst maximum flux is a factor of 10 less than the primary

microburst maximum flux; the echo total energy is less than the primary total

energy by a factor of a few; the ratio of the widths of the echo microbursts to

the widths of the primary microbursts is ∼3.5.

The echo power and energy are both lower than that of the corre-
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sponding primary microburst. This may be attributed to pulse reflection from

the curved surface of a plasma structure in the nebula. For a spherical surface,

the radius of curvature needs to be a few times the distance from the pulsar

to the plasma structure. We have also found that the echoes are broader than

the primary microbursts; this is likely a result of additional scattering along

the echo ray path.

We believe that the echoes we have observed may have been produced

by refraction from plasma structure in the inner nebula wisp region. The fre-

quency dependence and echo delay times we observed suggest refraction close

to the star; the 1996 October event lifetime suggests plasma structure variabil-

ity such as that present in the outward-moving wisps; synchrotron emissivity

analysis shows that the wisps may have the electron densities, either transiently

or on small angular scales, necessary to generate pulse reflection at 1.4GHz.

We thank David Moffett and Tracey DeLaney for their assistance with

VLA observations. We also thank Christine Jordan of Jodrell Bank Observa-
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CHAPTER 4

DISPERSION MEASURE DETERMINATION

4.1 Introduction

Dispersion has been evident in pulsar observations since the discovery

of the first pulsar (Hewish et al., 1968), in which dispersion was manifested by

later pulse arrival times at lower frequencies. Dispersion variability of the

Crab pulsar was evident as early as 1971 (Rankin & Roberts, 1971), where the

dispersion was observed to vary on time scales from several days to one year.

More recent dispersion measurements by Backer (2002) suggest1 variability may

exist on time scales as short as tens of minutes.

For typical pulsars, the only method of measuring pulse dispersion is

a comparison of average pulse profiles at different frequencies. The difference

in the arrival time at each frequency allows for a direct measurement of cold

plasma dispersion in the form of the dispersion measure, which is defined as

the path integral of the electron number density,

DM ≡
∫ L

0

Ne dr. (4.1)

L is the distance from Earth to the pulsar. Dispersion measure is introduced

in § 1.3.1.

1No error bars are available in Backer’s data; see § 4.4.2.

99
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Dispersion is interesting for several reasons. First, investigation of the

pulsar emission mechanism via high-time-resolution pulsar observations relies

upon an understanding of pulse dispersion. For such observations, it is desirable

to remove the dispersion incurred by passage through ionized material between

the emitter and receiver and study the pulse as it was at the place of emission.

Effectively accomplishing dispersion removal and judging the quality of the

dedispersed pulse requires an understanding of the behavior of dispersion and

dispersion variability.

Second, if any dispersion occurs within the pulsar magnetosphere (the

emission region), identifying and analyzing it may give further insight into the

physics of the emission region and emission mechanism. Single pulse obser-

vations of the Crab main pulse and interpulse allow for comparison of the

dispersive properties of different parts of the magnetosphere.

Third, since dispersion variability is a direct indication of plasma

density fluctuations, and an indirect indication of plasma turbulence scales

(Phillips & Wolszczan, 1991; Armstrong et al., 1995) along the line of sight

to the pulsar, it is of interest to know how quickly and with what amplitude

pulse dispersion varies. Backer et al. (2000) found Crab pulsar dispersion to

vary significantly over ≤ 7 days. The nebular refraction discussed in Chapter

3 suggests variations may exist over periods of several days or less.

This chapter reports dispersion measurements obtained from high-

time-resolution Crab giant pulses. Dispersion in a giant pulse is measured just

as dispersion is measured in an average profile: the time of arrival difference

between flux maxima in different frequency bands is measured and converted
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directly to DM. Dispersion variability can then be determined with a time

resolution set by the interval between recorded giant pulses. I have measured

fluctuations in DM with unprecedented time resolution, as small as several

minutes.

Both giant main pulses and giant interpulses have been used to mea-

sure dispersion. I show in this chapter that there are differences between main

pulse and interpulse dispersion, and these differences are likely caused by propa-

gation through the magnetized plasma in the pulsar magnetosphere. I compare

the data with two magnetospheric dispersion laws put forth in the literature.

The observations used in this chapter are discussed in § 4.2. I present

the method of measuring giant pulse dispersion in § 4.3. The results of my

measurements are discussed in § 4.4. Then, in § 4.5 I further discussion of my

results by focusing on interpulse dispersion and its connection to the magneto-

sphere. I summarize my findings in § 4.6.

4.2 Observations

The ultra high time resolution (UHTR) observing system (Kern, 2004;

Moffett, 1997) was used to record high-time-resolution Crab giant pulses. (See

§ 1.5 for a description of the UHTR system.) The dispersion investigation

in this chapter makes use of 11 years of Crab single giant pulse observations.

Each observing session is listed in Table 4.1. Pulses observed between years

1996 and 1999 (MJD 50368 and 51218) were recorded with the Very Large
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Array2 (VLA); pulses observed between years 2002 and 2007 (MJD 52414 and

54123) were recorded with the Arecibo Observatory radio telescope3.

Table 4.1: DM measurements listed by observing session.

MJD Center BW MP 〈DM〉 # IP 〈DM〉 #
freq (GHz) (GHz) (pc cm−3) MP’s (pc cm−3) IP’s
ν1 ν2

50368 4.8851 1.4351 0.050 n/a 0 56.8208± 0.0001 3
50368 4.8851 1.4351 0.050 56.8226± 0.0037 28 n/a 0
50370 4.8851 1.4351 0.050 56.8276± 0.0030 53 n/a 0
50372 4.8851 1.4351 0.050 56.8325± 0.0004 3 n/a 0
50372 4.6351 1.4351 0.050 56.8324± 0.0002 5 n/a 0
50778 4.9351 4.8851 0.050 56.9187± 0.0708 3 n/a 0
51159 1.6649 1.3851 0.050 56.8000± 0.0010 22 n/a 0
51167 4.9851 4.5351 0.050 56.8009± 0.0036 35 n/a 0
51167 4.9851 4.6851 0.050 56.7995± 0.0037 11 n/a 0
51174 8.5351 8.4351 0.050 n/a 0 56.5603± 0.3089† 12
51174 4.7351 4.6851 0.050 56.7844± 0.0185 4 n/a 0
51174 1.7149 1.3851 0.050 56.7968± 0.0005 49 n/a 0
51174 1.7149 1.4351 0.050 56.7967± 0.0003 34 n/a 0
51217 4.8351 4.7351 0.050 56.7942± 0.0138 19 n/a 0
51217 4.8351 4.6351 0.050 56.7931± 0.0093 6 n/a 0
51218 4.8351 4.7351 0.050 56.8057± 0.0189 4 n/a 0
51218 4.8351 4.6351 0.050 56.7970± 0.0094 3 n/a 0
51218 1.7141 1.2401 0.025 56.7948± 0.0007 36 n/a 0
52414 5.7500 5.2500 0.500 56.7686± 0.0034 5 n/a 0
52414 8.9000 8.4000 0.500 56.7655± 0.0082 9 n/a 0

continued on next page
†This DM value is suspect due to its large uncertainty, narrow passband width, and narrow

frequency separation. See § 4.4 for further discussion.

2The Very Large Array is an instrument of the National Radio Astronomy Observatory,
a facility of the National Science Foundation operated under cooperative agreement by As-
sociated Universities, Inc.

3The Arecibo Observatory is part of the National Astronomy and Ionosphere Center,
which is operated by Cornell University under a cooperative agreement with the National
Science Foundation.
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Table 4.1: DM measurements listed by observing session

MJD Center BW MP 〈DM〉 # IP 〈DM〉 #
freq (GHz) (GHz) (pc cm−3) MP’s (pc cm−3) IP’s
ν1 ν2

52417 5.2500 4.7500 0.500 56.7671± 0.0011 5 n/a 0
53156 9.8750 8.6250 1.250 n/a 0 56.7626± 0.0106 12
53162 7.9250 6.6750 1.250 n/a 0 56.8012 1
53372 9.8750 8.6250 1.250 56.7411± 0.0045 2 56.7567± 0.0030 4
53375 9.8750 8.6250 1.250 56.7354 1 56.7481± 0.0105 6
53375 9.8750 8.6250 1.250 56.7353± 0.0009 4 56.7459 1
53378 4.8563 5.1688 0.313 56.7344± 0.0021 30 56.7393± 0.0031 3
53582 6.3125 6.9375 0.625 56.7385± 0.0024 5 n/a 0
53582 9.8750 8.6250 1.250 56.7383± 0.0007 3 56.7548 1
53584 6.1875 6.8125 0.625 56.7388± 0.0012 34 56.7485± 0.0112 20
53584 6.1875 6.8125 0.625 56.7389± 0.0026 16 56.7417± 0.0007 2
53586 4.1875 4.8125 0.625 56.7397± 0.0011 11 n/a 0
53586 7.9250 6.6750 1.250 56.7387± 0.0004 7 n/a 0
53590 4.1875 4.8125 0.625 56.7387± 0.0004 11 n/a 0
53590 9.8750 8.6250 1.250 56.7401± 0.0022 10 56.7517 1
53591 8.0250 6.7750 1.250 56.7387± 0.0002 5 56.7566± 0.0040 3
53591 9.8750 8.6250 1.250 56.7389± 0.0000 2 56.7603± 0.0213 23
53803 9.8750 8.6250 1.250 n/a 0 56.7523± 0.0077 6
53804 9.8750 8.6250 1.250 56.7426± 0.0079 8 56.7528± 0.0041 5
53805 7.3125 6.6875 0.625 56.7407± 0.0021 10 56.7582± 0.0149 17
53807 4.3438 4.6563 0.313 56.7431± 0.0018 3 n/a 0
53807 9.8750 8.6250 1.250 56.7410 1 56.7490± 0.0098 3
53807 9.8750 8.6250 1.250 56.7446± 0.0081 8 56.7663± 0.0162 3
53808 6.1875 6.8125 0.625 56.7430± 0.0070 5 56.7485± 0.0117 6
53808 9.8750 8.6250 1.250 56.7427± 0.0045 3 56.7526± 0.0077 4
54007 4.6563 4.3438 0.313 56.7610± 0.0009 3 n/a 0
54101 9.8750 8.6250 1.250 56.7646± 0.0102 11 56.7697± 0.0110 3
54101 9.8750 8.6250 1.250 56.7591± 0.0009 5 n/a 0
54123 9.8750 8.6250 1.250 56.7610± 0.0009 3 56.7715± 0.0076 8

VLA observations were recorded in phased-array mode. The array

of antennas was divided into two subarrays. One subarray operated at a low
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observing frequency and the other array at a higher frequency. Both subar-

ray passbands were 50MHz wide. See §1.5 for more detail on two-frequency

observations with the VLA.

Arecibo observations were made with passband widths 0.313 GHz ≤

∆ν ≤ 2.5 GHz. The dispersion measurement method (discussed in § 4.3) re-

quires a pulse to be observed at two different passbands. I therefore split the

bandwidth of each pulse recorded at Arecibo to obtain two records with adja-

cent passbands, each with half the original pulse bandwidth.

In Arecibo observations, the UHTR system often monitored multiple

disjoint ranges of Crab pulsar phase, namely the main pulse and interpulse,

and captured giant pulses that occurred within those phase windows. I use the

pulse dynamic spectra to distinguish conveniently between main pulses and in-

terpulses. At the observing frequencies recorded at Arecibo (4 < ν < 10GHz),

there is a consistent difference between the dynamic spectra of main pulses

and interpulses, as demonstrated in Figure 4.1 (Hankins & Eilek, 2007). Main

pulses tend to be more narrow in time than interpulses and have spectra that

are typically uniform across the observing bandwidth. Interpulses are broader

in time and exhibit regularly spaced spectral bands that may increase in fre-

quency with time. Multiple trigger windows were not used in VLA observations,

and thus each observing session captured either main or interpulses exclusively.

The main pulse and interpulse displayed in Figure 4.1 were both

recorded at Arecibo Observatory on MJD 53808 with 9.25-GHz center fre-

quency and 2.5-GHz bandwidth; the interpulse was recorded 12 minutes after

the main pulse. The main pulse (interpulse) total intensity time resolution is
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Figure 4.1: Dedispersed total intensity and dynamic spectra from one main
pulse (top) and one interpulse (bottom). See § 4.2 for details. Figure taken
from Hankins & Eilek (2007).
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6.4 ns (51.2 ns); both main and interpulse dynamic spectra have time resolution

of 51.2 ns and frequency resolution of 19.5MHz.

4.3 Dispersion Measurement Method

The propagation time of a pulse in an isotropic, non-relativistic plasma

relates to DM and frequency as shown here [and in Equation (1.8)],

tp(ν) = t0 +
q2

2πcmν2
DM, (4.2)

where t0 is the propagation time in vacuum, and DM has fundamental units of

cm−2. The difference in the propagation time at two frequencies, ∆tp = tp2−tp1 ,

then relates to DM by (Manchester & Taylor, 1972),

DM = 2.41× 10−16

(
1

ν2
2

− 1

ν2
1

)−1

∆tp. (4.3)

Here, DM has the conventional units of pc · cm−3, ν has units of Hertz, and ∆tp

has units of seconds. Equation (4.3) shows that dispersion measure is directly

proportional to the pulse time of arrival difference between two frequencies.

To measure the DM of individual giant pulses I use the following pro-

cess. A set of pulses is dedispersed with assumed dispersion measure, D̃M,

initially obtained from an interpolation of monthly average profile Crab pulsar

DM measurements made at the Jodrell Bank Observatory4. If the true dis-

persion measure, DM, is not equal to D̃M, the pulse will then have a residual

dispersion,

DMres = DM− D̃M = 2.41× 10−16

(
1

ν2
2

− 1

ν2
1

)−1

∆tres, (4.4)

4The Jodrell Bank Crab pulsar ephemeris, containing a monthly DM measurement, is
available online at http://www.jb.man.ac.uk/∼pulsar/crab.html.
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where ∆tres = ∆tp − ∆̃tp. Here, ∆tp is the true time-of-arrival (TOA) dif-

ference between the two observing frequencies, and ∆̃tp is the TOA difference

predicted by the dedispersion value, D̃M. I measure ∆tres by cross-correlating

the dedispersed high and low frequency pulse profile (see immediately below)

and then obtain DMres; finally, I get DM = D̃M + DMres. To obtain the most

accurate DM measurement, I may choose to iterate, by setting D̃M to derived

DM, dedispersing the original set of pulses again with the more accurate D̃M,

and obtaining a new value of DM. Since I find that the main and interpulse

DM’s often differ substantially (see § 4.4), I segregate these pulses when neces-

sary and dedisperse them separately to find the most accurate value of DM for

each group.

I use the following process to measure ∆tres from the cross-correlation

function (CCF) of the dedispersed high and low frequency pulse profiles.

1. A window of predetermined width is centered on the flux maximum of

the high frequency pulse time series so it contains the on-pulse region.

2. The D̃M used in pulse dedispersion determines the expected time of ar-

rival of the low frequency pulse relative to the high frequency flux maxi-

mum. A window is then centered on this time in the low frequency pulse

record.

3. The CCF is computed from the data in the high and low frequency win-

dows.

4. A parabola is fit to the peak of the CCF. The time offset of the maximum

of the parabola from zero-lag is set equal to ∆tres. The uncertainty in the
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time of the parabola maximum is equal to the uncertainty in ∆tres.

The measurement of ∆tres then gives ∆tp, and ∆tp gives DM. The

uncertainty in ∆tres translates to an uncertainty in DM. The arithmetic mean

of the individual-pulse dispersion measures, 〈DM〉, is computed for each main

pulse and interpulse group for each observing session. In anticipation of the

discussion in § 4.5, where I explore alternative dispersion laws, all DM measure-

ments should be regarded as apparent dispersion measure, since the measured

DM is not necessarily a result only of propagation through an isotropic, cold

plasma medium. If the pulses have been dispersed in any other medium, Equa-

tions (4.1) and (4.3) may not agree.

This method of DM measurement assumes that the high and low

frequency parts of the pulse are emitted at the same time and in the same

place. Thus, I find a value for DM that makes the flux maximum at each

frequency within the observing bandwidth as nearly simultaneous as possible.

Use of this CCF method of DM determination requires there be suffi-

cient power in both the high and low frequency pulses to produce a CCF that

can be fitted with a parabola. A small fraction of the pulses I have observed

do not have sufficient power in both observing bands to make such a CCF. I

choose to exclude from this dispersion study pulses for which the maximum

signal-to-noise-ratio5 (SNR) in either band is ≤ 2.

5The maximum SNR is computed by subtracting the off-pulse mean power from the
maximum on-pulse power and then dividing by the off-pulse standard deviation,

SNRmax = (Fmax − 〈Foff−pulse〉 ) / σoff−pulse.
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4.4 Giant Pulse Dispersion Measurements

Table 4.1 lists apparent 〈DM〉 measurements for each two-frequency

Crab giant pulse VLA observation and each wide bandwidth giant pulse Arecibo

observation. The standard deviation among single-pulse DM measurements

within each observing session is given as the uncertainty of 〈DM〉. The center

frequencies of the two passbands are shown in Table 4.1 along with the band-

width at each center frequency. The number of giant main pulses and giant

interpulses used to compute 〈DM〉 in each observing session is also shown.

The VLA interpulse observation from MJD 51174 (see Table 4.1) has

been excluded from the dispersion analysis that follows. This observation is the

only 8GHz (X-band) VLA interpulse observation. The DM values measured

in this observation are exceptionally scattered, as indicated by the large 〈DM〉

uncertainty. I believe this enhanced scattering is a result of observing high

frequency interpulses with narrow (50MHz) bandwidth and narrow frequency

separation between passbands, so that ∆tp is small; I do not believe that those

measurements represent the true dispersion of the interpulse. Wider bandwidth

observations of interpulses (for example, see the interpulse in Figure 4.1) reveal

complex spectral structure that evolves with time. By observing with narrow

bandwidth, only portions of the complex structure are recorded, and this may

skew DM measurement. However, I choose to leave this observation in Table

4.1 to emphasize the unique characteristics of the interpulse and one of the

challenges associated with making accurate DM measurements.
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4.4.1 Single Pulse Measurements

Single-main-pulse and single-interpulse DM measurements recorded

on MJD 53805 are plotted in Figures 4.2 and 4.3, respectively. The data points

contained in these figures are single-pulse DM measurements. Figures 4.2 and

4.3 demonstrate four findings consistent throughout my data.

1. The uncertainty in single-pulse DM measurements is smaller than the

DM scatter among single pulses separated in time by minutes to hours.

2. The interpulse DM scatter measured over time scales of minutes to hours

is larger than the main pulse DM scatter. (To emphasize this point

Figures 4.2 and 4.3 are plotted with the same vertical scale.)

3. DM does not depend upon pulsar rotational phase.

4. DM is not observed to vary systematically over times of minutes to hours.

4.4.2 Pulse-Averaged Measurements

Figure 4.4 is a plot of the 〈DM〉 measurements in Table 4.1, along

with the monthly average profile DM measurements made at Jodrell Bank and

average profile measurements made by Backer (2002) and described by Backer

et al. (2000). While giant pulse 〈DM〉 measurements do not always agree to

within uncertainties with the average profile DM values, both the giant pulse

and average profile measurements follow the same long-time-scale trends. Six

of the 〈DM〉 values in Figure 4.4 are derived from ensembles consisting of only

one giant pulse; these data points are plotted without error bars. The high-DM

data point at MJD 53162 is one such single-pulse measurement; its high value
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Figure 4.2: Single giant main pulse DM measurements observed on MJD 53805
and split into two passbands (see table 4.1). The main pulses shown here have

been dedispersed with D̃M = 56.741 pc cm−3. The left side vertical axis shows
the residual, DMres. The right side vertical axis shows the residual time of
arrival difference, ∆tres, between the pulse in the high and low frequency pass-
bands. The pulse time of arrival is measured at the pulse flux maximum. The
top plot horizontal axis is the pulse time of arrival relative to the average time
of arrival in each pulse record; this is equivalent to relative pulsar rotational
phase. The bottom plot horizontal axis is the time of arrival of each pulse in
Universal Time.
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Figure 4.3: Single giant interpulse DM measurements observed on MJD 53805
and split into two passbands (see table 4.1). The interpulses shown here have

been dedispersed with D̃M = 56.741 pc cm−3. The left side vertical axis shows
the residual, DMres. The right side vertical axis shows the residual time of
arrival difference, ∆tres, between the pulse in the high and low frequency pass-
bands. The pulse time of arrival is measured at the pulse flux maximum. The
top plot horizontal axis is the pulse time of arrival relative to the average time
of arrival in each pulse record; this is equivalent to relative pulsar rotational
phase. The bottom plot horizontal axis is the time of arrival of each pulse in
Universal Time.



113

Figure 4.4: Dispersion measurements obtained from average profile observa-
tions made at Jodrell Bank, average profile observations made by Backer (2002),
and giant pulse observations made at the VLA and Arecibo Observatory. The
dotted lines denote the typical uncertainty in the Jodrell Bank monthly DM
measurements. The DM measurements made by Backer (2002) are provided
without uncertainties. The giant pulse 〈DM〉 values are averages over either the
main pulses or interpulses recorded in each observing session; giant pulse 〈DM〉
uncertainties show the standard deviation of the single-pulse measurements.
The six giant pulse observing sessions consisting of only one pulse are plotted
without error bars. This figure shows that giant pulse DM measurements follow
the same trends over long time scales as average profile measurements.
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is indicative of the large variability in dispersion throughout all my interpulse

measurements.

Figure 4.5 shows two plots of enlarged regions from Figure 4.4. The

plots in Figure 4.5 show better the variability among the giant pulse, Jodrell

Bank, and Backer (2002) measurements over days to tens of days; these plots

also show the degree of correspondence between these three independent sets

of measurements.

Figure 4.6 shows another enlarged region from Figure 4.4 (MJD 53100

to 54174). It is evident from this figure that the giant interpulse DM measure-

ments are often higher and more scattered than giant main pulse DM mea-

surements taken around the same time. This suggests that the interpulse may

under go an additional, variable dispersion not encountered by the main pulse.

I investigate this idea below, in §4.5. It is also apparent in Figure 4.6 that the

average profile DM is in better agreement with 〈DM〉 measurements of giant

main pulses than giant interpulses.

As mentioned in § 4.1, average profile DM measurements have been

used by other authors (Phillips & Wolszczan, 1991; Armstrong et al., 1995)

to measure turbulence in the interstellar medium. Though it is beyond the

scope of this work, single pulse DM measurements may be used to measure

turbulence within the Crab pulsar magnetosphere and Crab nebula. However,

differentiating the turbulent contribution of the magnetosphere from that of

the ISM will likely require observations of other sources.
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Figure 4.5: Enlargement of two groups of giant pulse 〈DM〉 measurements
from Figure 4.4. The vertical and horizontal scales are the same in both plots
here. The plot symbols, lines styles, and color codes are identical to those in
Figure 4.4, with the exception that the Jodrell Bank DM measurements are
now plotted with triangles rather than a solid line; dotted lines again represent
the interpolated Jodrell Bank DM uncertainty. These plots show giant pulse
and average profile DM fluctuations on time scales of days to tens of days.
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Figure 4.6: Enlargement of one group of giant pulse 〈DM〉 measurements. The
plot symbols, lines styles, and color codes are identical to those in Figure 4.4.
This enlarged region of DM-versus-MJD space demonstrates several important
points: the difference between the often higher-DM interpulse and the lower-
DM main pulse; the large scatter in interpulse DM measurements, in contrast
to the more consistent main pulse DM measurements; the size of average pro-
file and giant pulse 〈DM〉 uncertainties; the degree of correspondence between
average profile and giant main pulse and interpulse 〈DM〉 measurements; and
DM fluctuations on time scales of 652 days to less than 1 day. One outlying
interpulse 〈DM〉 measurement from MJD 53162 is not visible, residing above
the upper bound of the plot window (but see Figure 4.4).
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4.5 Giant Interpulse Dispersion

As shown in Figure 4.6, over a span of 751 days the interpulse dis-

persion is larger and often more variable than the main pulse dispersion. Since

the main pulse and interpulse ray paths are very nearly the same in the Crab

nebula and ISM, it is likely that any dispersion caused in these two regions is

shared by both pulses. I believe the pulsar magnetosphere is the only region

along the ray paths that can exhibit the spatial and temporal variability nec-

essary to produce the observed differences between main pulse and interpulse

dispersion.

If I assume for the moment that the excess interpulse dispersion fol-

lows the cold, isotropic plasma law, I can estimate the magnetospheric charge

density enhancement necessary to produce the interpulses I have observed. The

excess DM can be written as

∆DM = DMip −DMmp =

rlc∫

res

Ne dr, (4.5)

where the integral is taken over the interpulse ray path from the emission site

radius, res, to the light cylinder radius, rlc. The conventional magnetospheric

charge density distribution goes as Ne ∝ r−3. I measure approximately

∆DM ≈ 0.01 pc cm−3.

If I approximate the emission site as being at the stellar surface, I find

Ne ≈ 6.2× 1028 r−3. (4.6)

The number density necessary to produce the enhanced interpulse dispersion is

approximately 100 times less than the Goldreich-Julian density (the Goldreich-

Julian model is introduced in § 1.1.1). The above calculation shows that if cold
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plasma dispersion holds in the simple Goldreich-Julian magnetosphere, (which

it probably does not for reasons discussed immediately below) there would be a

sufficient number density to explain the observed higher interpulse dispersion.

The canonical pulsar model describes the magnetosphere as contain-

ing: high magnetic field strength, relativistic particle thermal speed, and rela-

tivistic particle bulk flow. These criteria call for an anisotropic and relativistic

dispersion relation, unlike that in Equation (4.2). If the total pulse delay is

due to the sum of delays from (i) propagation in vacuum, (ii) cold plasma ISM

and nebular dispersion, and (iii) an anisotropic, relativistic magnetospheric

dispersion, the interpulse propagation time delay can be written as

tp = t0 + tISM + tmag =
L

c
+ DMISM

1

A ν2
+ tmag(ν), (4.7)

where L is the path length from pulsar to Earth, tISM = DMISM/Aν2 is the cold

plasma dispersion time delay, DMISM is the cold plasma dispersion measure,

A = 2.41×10−16 s · pc · cm−3 as in Equation (4.3), and tmag(ν) is the time delay

induced by the additional magnetospheric dispersion. If I then compute the

difference in arrival time, ∆tp, and multiply by

A

(
1

ν2
2

− 1

ν2
1

)−1

,

as in Equation (4.3), I get the total apparent dispersion measure,

DM = DMISM + A

(
1

ν2
2

− 1

ν2
1

)−1

[tmag(ν2)− tmag(ν1)]. (4.8)

4.5.1 Dispersion-Frequency Dependence

In Figure 4.7, the average apparent dispersion measure, 〈DM〉 , is

plotted against average center frequency for main pulses and interpulses; data
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is shown for the three observing epochs with the most main pulse and inter-

pulse data points (MJD 53156-53378, 53582-53591, 53803-53808). The plots

reveal that the main pulse 〈DM〉 is approximately constant with average center

frequency. The interpulse 〈DM〉, in contrast, has a weak tendency to increase

with average center frequency; the lower bound of the interpulse 〈DM〉 distri-

bution is roughly equal to the main pulse 〈DM〉.

I now explore interpulse 〈DM〉 frequency dependence as a possible

constraint on interpulse dispersion models. I begin by postulating that the

interpulse propagation delay can be described as a power law in frequency. I

gain some insight later in this section by deriving the propagation delay from

the group velocity. Let the magnetospheric group velocity be written

vmag = c

(
1− K

νx

)
, (4.9)

where K contains physical constants specified by the particular dispersion

model. The delay time is then

tmag ≈
D

c

(
1 +

K

νx

)
(4.10)

where D is the distance along the interpulse ray path in the magnetosphere,

and I have approximated K/νx & 1. Dropping the constant vacuum light

travel time term, which is accounted for by t0 in Equation (4.7), the expression

reduces to

tmag(ν) =
C

νx
, (4.11)

where C = DK/c. Combining Equations (4.11) and (4.8) gives

DM = DMISM + ACξ (4.12)
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Figure 4.7: Average dispersion measure, 〈DM〉, of giant main pulses (left) and
giant interpulses (right) plotted against average center frequency. The plot
symbols and colors are the same as in Figure 4.4. The three rows depicted here
show the three epochs of observations with the most MP and IP data points..
The main pulses and interpulses are plotted in different windows to keep the
two sets of data points from overlapping and obscuring each other. In each of
the three epochs, the main pulse 〈DM〉 remains roughly constant with average
center frequency and approximately equal to the lower bound of the interpulse
observations; the interpulse 〈DM〉 has a weak tendency to increase with average
center frequency.
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where

ξ =

(
1

ν2
2

− 1

ν2
1

)−1 (
1

νx
2

− 1

νx
1

)
=

(
νx

1 − νx
2

ν2
1 − ν2

2

) (
ν2

1ν
2
2

νx
1 νx

2

)
. (4.13)

Identify the ISM (cold plasma) dispersion with the main pulse, DMism →

DMmp, and the total DM with the interpulse, DM → DMip. Equation (4.12)

can then be rewritten as

1

A
(DMip −DMmp)(ν

2
1 − ν2

2) = C(νx
1 − νx

2 )(ν1ν2)
2−x, (4.14)

Let DMip and DMmp be measurements made during the same observing session,

using the same center frequencies, ν1 and ν2. By dividing Equation (4.14) by the

same equation containing DM measurements from different center frequencies,

ν3 and ν4, the following ratio is obtained,

(DMip(ν1,ν2) −DMmp)(ν2
1 − ν2

2)

(DMip(ν3,ν4) −DMmp)(ν2
3 − ν2

4)
=

(νx
1 − νx

2 )(ν1ν2)2−x

(νx
3 − νx

4 )(ν3ν4)2−x
. (4.15)

I assume the main pulse DM is constant with frequency, which is approximately

true, as evidenced by Figure 4.7. Equation (4.15) can be numerically solved

for x (see below and Table 4.2).

An approximate analytical solution for x can be obtained by noting

that the center frequencies used in my observations allow for the following

approximation,

ν2 = ν1 + δν1 = ν1

(
1 +

δν1

ν1

)
, δν1 & ν1, ν2 ,

ν4 = ν3 + δν3 = ν3

(
1 +

δν3

ν3

)
, δν3 & ν3, ν4. (4.16)

Equation (4.15) can now be approximated to zeroth order in δν1/ν1 and δν3/ν3

to give
DMip(ν3,ν4) −DMmp

DMip(ν1,ν2) −DMmp
=

∆DMν3

∆DMν1

≈
(

ν3

ν1

)2−x

. (4.17)
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This equation can easily be solved for x (see Table 4.2).

Table 4.2 lists the values of the exponent x obtained by numerical

and analytical solution of Equations (4.15) and (4.17), respectively. Solutions

are listed for the same three epochs presented in Figure 4.7. The values of

DMip(ν1,ν2) and DMip(ν3,ν4) are obtained from the interpulse data points with

the smallest and largest average center frequency, respectively; the values of

DMmp are obtained by averaging all main pulse 〈DM〉 measurements in each

epoch. The scatter in 〈DM〉 values at a given average center frequency implies a

variability in x. I explore the range of x variability by first selecting 〈DMip〉 data

points that together give the steepest possible DM-frequency slope (see first

row of each epoch in Table 4.2), and then again by selecting data points that

together give the shallowest possible slope (second row of each epoch in Table

4.2). The values of x obtained using the numerical and analytical solutions are

similar. I find that the steep-slope solutions range between −4.1 ≤ x ≤ −1.7.

The shallow-slope solutions range between −0.1 ≤ x ≤ 1.8. Considering the

dispersion delay time, Equation (4.11), the change in x with slope makes sense:

as x becomes increasingly negative, the dispersion delay and apparent DM will

increase with frequency, resulting in a steeper slope in Figure 4.7; likewise, as

x increases toward positive numbers, the delay and apparent DM will increase

less with frequency, resulting in a shallower slope.
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To better understand the physical significance of the x values I have

measured, it is helpful to consider the group velocity expression. Equation (4.9)

shows that x < 0 is not physically realistic, since at very high frequency |vmag|

becomes greater than the speed of light in vacuum. It is, however, possible

that x may vary with frequency, being negative within the bandwidth of my

observations and positive at higher frequencies. The full range of −4.1 ≤

x ≤ 1.8 demonstrates the uncertainty in my estimation of the DM frequency

dependence. This estimation uncertainty is due to the large variability in single

pulse DM measurements within each of my interpulse observing sessions; the

uncertainty is not a result of instrumental or algorithmic limitations.

In the subsections to follow, I compare my data with two published

magnetospheric dispersion models, using characteristics other than frequency

dependence.

4.5.2 Dispersion-Flux Dependence

At least two attempts have been made to describe the dispersion law

in the magnetosphere (Wu & Chian, 1995; Lyutikov & Parikh, 2000). The

first pertains to strong electromagnetic (EM) waves. EM waves propagating

in a plasma will induce motion in the charges; a strong EM wave will induce

relativistic motion. Particles with relativistic velocities appear more massive,

and therefore change the dispersion law of the medium. Following Wu & Chian

(1995), Clemmow (1974), and Max (1973), the index of refraction of a strong

EM wave is

n2
r = 1−

2ω2
p

γsγδω2
. (4.18)
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(compare to the cold plasma index of refraction, equation [1.6]) Here, ωp =
√

4πNee2/m is the plasma frequency; the relativistic factor γδ = (1 + δ2)1/2,

where δ is a dimensionless Lorentz-invariant parameter,

δ =
ωE

ω
=

eE

mcω
,

e and m are the electron charge and mass, respectively, and E is the electric

field; the factor γs = (1−V 2
s /c2)−1/2, where Vs is the plasma streaming velocity.

I will assume that a strong EM wave has δ ( 1. Recalling that nr = ck/ω, I

can compute the group velocity, vg = dω/dk, and thereby the dispersion delay

time,

tmag =

∫
1

vg
dr =

1

c

rlc∫

res

[
1 +

1

2

(
ω2

p

γsωEω

)2
]

dr. (4.19)

I may neglect the first term in the integrand since this is simply the vacuum

light travel time and is accounted for by t0 in Equation (4.8). If I substitute

the remainder of Equation (4.19) in the magnetospheric term (second term) of

Equation (4.8) I get an expression for the apparent DM induced by magneto-

spheric dispersion,

DMmag =
A

8π2

(
1

γsωE

)2
rlc∫

res

ω4
p dr. (4.20)

Since ωE ∝ E and pulse flux, Fmax, goes as Fmax ∝ E2, it follows that

DMmag =
B

Fmax
, (4.21)

where B consists only of physical constants and the quantity

rlc∫

res

N2
e

γ2
s

dr.
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To test this, I plot single pulse DM measurements against flux for each

observing session listed in Table 4.1; two example plots are shown in Figure

4.8. I find no visible systematic relationship between DM and flux, either for

the interpulse or the main pulse, in any of my observations. I conclude that

either the strong wave dispersion law does not apply in the magnetosphere or

the DM-flux relationship derived above is hidden by DM variability from some

additional phenomena.

In the case of the latter, I can place an upper limit on B by measuring

the variability in DM,

∆DM = ∆DMmag = B

(
1

Fmin
− 1

Fmax

)
. (4.22)

The first equality in this equation is a statement of my belief that DM variability

within a single observing session (time scales of minutes to hours) is a result of

magnetospheric dispersion processes. Variables Fmin and Fmax are the minimum

and maximum peak flux values within an observing session. Table 4.3 contains

upper limits of B, and thus indirectly of

rlc∫

res

N2
e

γ2
s

dr,

obtained for interpulses and main pulses in two observing sessions. In the ta-

ble, ∆DM = DMmin −DMmax, where DMmin and DMmax are the minimum and

maximum dispersion measure values for the observing session. The main pulse

limits are measured for comparison with the interpulse and are, as expected,

less than the limits measured for the interpulse.
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Figure 4.8: Dispersion measure versus average on-pulse flux for two observing
sessions. The plot symbols and colors are the same as in Figure 4.4. The
observing session from MJD 53584 corresponds to the top most of the two
rows in Table 4.1 containing this date. For both of the observing sessions
shown here, the on-pulse flux is calculated by averaging over 13.1µs, centered
about the flux maximum; the average on-pulse flux scales with the pulse energy.
In the plots shown here, there is no discernible trend in DM as a function of
flux, either for the interpulse or for the main pulse.
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Table 4.3: DM-flux relation for strong wave dispersion
Epoch Pulse DMmax DMmin Fmax Fmin B <
(MJD) (pc/cm3) (pc/cm3) (Jy) (Jy) (Jy·pc/cm3)
53584 IP 56.7663 56.7289 63.85 9.220 0.4023

MP 56.7440 56.7371 257.7 5.209 0.03659
53805 IP 56.7851 56.7372 20.09 5.003 0.3191

MP 56.7461 56.7383 112.6 8.299 0.06996

4.5.3 Dispersion in a Strong Magnetic Field

Another dispersion law suggested for the magnetosphere pertains to

EM waves propagating through a region of strong background magnetic field

and cold plasma. This model of dispersion was applied to pulsars by Lyutikov

& Parikh (2000). The general expression for the index of refraction in a cold,

magnetized plasma is

n2
r = 1 +

ω2
p

Ω2 − ω2
, (4.23)

where Ω = eB/mc is the cyclotron frequency (compare to the index of refrac-

tion for an unmagnetized plasma, Equation [1.6]). Lyutikov & Parikh (2000)

assumed Ω ( ω and ignored the ω in the denominator of Equation (4.23). In

the following derivation I keep ω terms up to 2nd order.

By making use of the definition of the index of refraction (nr = ck/ω)

and differentiating with respect to k, an expression for the EM wave group

velocity can be obtained,

c

vg
=

(
1 +

x2

1− y2
+

x2y2

(1− y2)2

) (
1 +

x2y

1− y2

)−1/2

(4.24)

where x = ωp/Ω and y = ω/Ω. In a strong magnetic field, I assume x, y & 1.

Two Taylor series expansions to 2nd order in x and y about x = 0 and y = 0
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yield,
c

vg
≈ 1 +

1

2

ω2
p

Ω2
+

3

2

ω2ω2
p

Ω4
. (4.25)

The magnetospheric propagation delay time is then,

tmag =
1

c

rlc∫

res

(
1

2

ω2
p

Ω2
+

3

2

ω2ω2
p

Ω4

)
dr, (4.26)

where the constant term, representing the light travel time in vacuum, is

dropped since it is accounted for by t0 in Equation (4.7). Substituting this

expression for tmag in the second term of Equation (4.8) gives the apparent

magnetospheric DM,

DMmag = −6π2A

c
ν2

1ν
2
2

∫
ω2

p

Ω4
dr. (4.27)

This expression for DMmag does not agree with my data, since DMmag < 0 for all

values of ν1 and ν2. In contrast to this model, my interpulse DM measurements

are typically higher than main pulse DM measurements within the same epoch,

as shown in Figure 4.6.

It should be noted that the strong magnetic field dispersion law (Lyu-

tikov & Parikh, 2000) and the strong EM wave dispersion law (Wu & Chian,

1995) (discussed in § 4.5.2) result from approximating the conditions of the pul-

sar magnetosphere in different ways. The Crab giant pulses are strong enough

to accelerate leptons to relativistic speeds, and the pulsar magnetosphere is

strongly magnetized. The strong EM wave solution does not account for a

strong background magnetic field. Alternatively, the strong magnetic field so-

lution does not account for the relativistic effects induced by a high amplitude

EM wave. In light of these approximations, the disagreement between these

theories and my data is not surprising.
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4.6 Conclusions

I have measured dispersion in single Crab giant pulses in 49 observ-

ing sessions over the course of 11 years. Both main pulses and interpulses have

been observed. The measurements follow the same trends as average profile

DM measurements over time scales of 100’s to 1000’s of days. The measure-

ments vary over short time scales of minutes to hours, but these variations do

not appear to be systematic. I find no correlation between DM and pulsar

rotational phase, with the exception of DMIP > DMMP.

The main pulse has a marked tendency toward better agreement with

average profile DM. The interpulse has a more variable, and, on average, higher

DM than does the main pulse. This suggests that the interpulse undergoes an

additional and variable dispersion not encountered by the main pulse. It is

likely this additional dispersion is acquired within the pulsar magnetosphere.

I analyze the frequency dependence of the main pulse and interpulse

data and find the main pulse DM to be approximately constant with average

center frequency; the interpulse DM, however, tends to increase slightly with

increasing average center frequency. This suggests that the dispersion affecting

the interpulse differs from the cold plasma dispersion generally present in the

magnetosphere.

I investigate two dispersion laws proposed for pulsar magnetospheres.

The first magnetospheric dispersion law applies to high amplitude electromag-

netic waves propagating in an isotropic, relativistic plasma. The dispersion law

predicts a dependence between DM and pulse flux. I compare the single-giant-

pulse measurements with average pulse flux but find no visible correlation; I
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use my measurements to place upper limits on the DM-flux relationship.

The second dispersion law applies to a cold plasma in a strong mag-

netic field, and predicts a magnetospheric dispersion that decreases the ap-

parent DM. This contradicts my observational findings, which indicate the

magnetospheric interaction increases the apparent DM.



CHAPTER 5

CONCLUSIONS

Pulsars, and especially the Crab pulsar, remain exotic and mysteri-

ous in many ways. Though there are a number of existing models of the pulsar

emission mechanism and of pulsar magnetospheres, none account for all ob-

served phenomena (Eilek et al., 2002). Understanding requires that theory and

observation continue to develop synergistically. This thesis is another step in

this synergism. In this chapter I review the important results of this thesis.

5.1 Microsecond-scale Pulse Structure

By fitting the microsecond-scale structure (microbursts) of Crab gi-

ant radio pulses, I have shown that flux distributions are broad but stable.

Microburst flux can vary by up to 2 orders of magnitude, even within a single

pulse, but on time scales of hours to days the centroid of the flux distribution

varies only by a factor of 2.

The widths of microbursts also form a wide distribution, spanning 2

orders of magnitude at frequencies between 1 and 5GHz. Microburst widths

tend to decrease with increasing frequency. Some of the observations were

recorded using two distinct passbands separated by 0.2 to 4GHz. These data

reveal that microburst widths are the result of two frequency power laws work-

ing in concert: the lower bound of the width distribution follows the steep scat-

132
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tering law of the interstellar medium, W ∝ ν−4; however, the centroid of the

width distribution reveals a variable and more shallow frequency dependence,

roughly described by W ∝ ν−2. Since the variability exists on microsecond

timescales the origin of the width variation must be rapidly changing. The

pulsar emission mechanism and the magnetosphere are both variable on mi-

crosecond scales and may produce the width variation observed.

Microburst energies are also distributed over several orders of mag-

nitude. Some theorists have suggested that microbursts have constant energy

in the rest frame of emission. I have transformed the rest frame constant en-

ergy model to the observed frame and found that the model overestimates the

number of high energy microbursts. I find that microbursts occupy a range of

energies in both the observed and emitted frame.

Plots of microburst flux versus width reveal a break in the flux-width

density distribution; the distribution decays rapidly on the high-flux and large-

width side of this break. The break is a physical characteristic of observed

microbursts (it is not a systematic effect of instrumentation or analytic meth-

ods). The flux-width break is present at all observed frequencies, though it

does move to smaller widths as the frequency increases. The microburst fitting

function I have used for this analysis has a total microburst energy that is pro-

portional to the product of flux and width, E ∝ FmaxW . I have speculated that

this diagonal break in the distribution may be related to a soft upper limit in

microburst energy; however, overlaid lines of constant energy show that this is

not exactly the case. High-energy microbursts are well sampled in my observ-

ing method and therefore this diagonal break is real, but its meaning remains
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unknown.

In simultaneous two-passband observations I have identified corre-

sponding microbursts for band separations of up to 0.5GHz (1.2 to 1.7GHz);

corresponding bursts were not found for bands separated by 4GHz. I conclude

that the observed microburst bandwidth is 0.5 < ∆ν < 4GHz at radio frequen-

cies between 1 and 5GHz and may be frequency dependent. This bandwidth

limitation may be imposed by the emission mechanism or by some interfering

or scattering mechanism along the line of sight. Corresponding microbursts

have widths and energies that are well correlated. Microburst spectral index

measurements are highly variable from burst to burst, but on the whole the

spectral indices are roughly consistent with average profile measurements made

by other authors.

In Summary

There is a lot of variability in the pulsar magnetosphere: microburst

flux, width, and energy vary over ∼2 orders of magnitude, and this sometimes

within a single pulse. Analysis of the energy distribution has shown us that

energy variation is not caused by relativistic beaming but is present even in

the rest frame of emission.

Microbursts, and their origin, remain mysterious: there is an unex-

plained limit to the product of microburst flux and width; microbursts have a

finite bandwidth < 4GHz between 1 and 5GHz.
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5.2 Echoes in Single Giant Pulses

On one day in 1996 and one day in 1997 single giant pulse observations

reveal an echo-like pulse following main pulse microbursts. For both events, the

echo flux is 10 times less than the flux of the “primary” main pulse microburst;

the echo energy is less than the primary energy by a factor of a few; the echoes

are wider than the primary microbursts by a factor of a few. The lag time

between the primary and echo microbursts is 120 ≥ ∆tlag ≥ 40 µs; the smallest

echo lag ever observed for the Crab pulsar.

The 1996 observation was a simultaneous two-frequency observation

(1.4 and 4.8GHz), and the echoes are only visible in the lower frequency pass-

band. The 1996 echo event lifetime is constrained to < 4 days by earlier and

later observations. The short timescale of this event precludes the possibility

of it being an interstellar medium refraction phenomenon. Ionized material

closer to the pulsar has a much more rapid motion relative to the pulsar-Earth

sight line. Timescale and frequency characteristics of the observed echoes are

consistent with what is known about the Crab nebula wisps. We have calcu-

lated the electron densities of wisps resolved by the Hubble Space Telescope

(Hester et al., 1995) and found the densities are too low to produce the echoes

we observe. However, higher density, unresolved wisps may be present.

In Summary

These observations make a strong case that the inner nebula does

affect single giant pulses. It is possible to explain some pulse phenomena, like

these echoes, through the interaction of pulsed radiation with the surrounding



136

nebula. When pulsar observations are fortunate enough to detect echoes, the

observations can be used as a probe of the environment around the star.

5.3 Dispersion Measure

I have analyzed dispersion for 11 years of Crab giant pulse observa-

tions. I find that over long time scales (100’s to 1000’s of days) giant pulse

dispersion measure (DM) follows the same trend as average profile dispersion

measurements. Over short times however, giant pulse DM varies randomly.

On short timescales, the interpulse is much more variable than the

main pulse; averaged over 10s of minutes to hours, the interpulse DM mea-

surements are greater than main pulse DM measurements. The short time

scale variability of the interpulse DM, and the fact that it is on average greater

than the main pulse DM, suggests that the additional dispersion occurs within

the pulsar magnetosphere. The main pulse DM is constant with observing fre-

quency to within uncertainties from pulse-to-pulse DM variation (∼0.003 pc cm−3).

The interpulse DM shows a slight tendency to increase with average center fre-

quency, despite having a larger pulse-to-pulse DM variability.

I compare my observations with two magnetospheric models and find

both models to be inconsistent with my observations. The first model predicts

a dependence between DM and pulse flux, but I find no visible correlation

between these two quantities. I instead set an upper limit on the DM-flux

relationship. The second model predicts that a strong magnetic field will weakly

decrease the apparent DM. In contrast we observe a weak increase in DM1.

1Since we have not measured the magnetic field in the magnetosphere, we cannot comment



137

In Summary

The surprising result that the main and interpulse have different dis-

persion measures provide a new constraint on Crab pulsar models.

5.4 Pulse Scattering and Alternative Dispersion Laws

I showed in Chapter 1 that a cold plasma dispersion law [equation

(1.4)]

ω2 = ω2
p + k2c2

relates to the index of refraction [equation (1.6)]

nr =

√
1−

ω2
p

ω2

and to the propagation time for a pulse in a cold, isotropic plasma [equation

(1.8)]

tp(ω) =
L

c
+

2πq2

cmω2
DM.

In Chapter 4, I showed evidence for an alternative dispersion law operating

in giant interpulses. I wrote the general propagation time for a pulse mov-

ing through a magnetosphere with an unspecified dispersion relation [equation

(4.10)]

tmag ≈
D

c

[
1 + K

(
2π

ω

)x]
.

Measured values of index x are given in Table 4.2. If the interpulse dispersion

had been cold plasma, x would have been 2; instead, x was found to be less

than 2 and vary over a wide range between −3.8 and 1.8.

on the validity of the model itself, but only that it does not describe the data we have
recorded.
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The dispersion law also determines the scatter broadening function,

τ ∝
( ω

2π

)y

,

(see equations 1.9 through 1.14 for derivation) where for cold, isotropic plasma

y = −4. The scatter broadening power law measured in Chapter 2, y ∼ −2,

(Table 2.5) differs from the simple cold plasma law. This suggests, then, that

the shallow scattering law measured in Chapter 2 may result from an alternative

dispersion law in the magnetosphere.

It should be noted that the frequency dependent DM measurements

of Chapter 4 were made using giant interpulses; in the same chapter I demon-

strated that giant main pulses show no evidence of frequency dependent DM

during the epochs of observation. The alternative, shallow scatter broaden-

ing law was measured in Chapter 2 using giant main pulses. If the scatter

broadening is caused by alternative dispersion, it is strange that this alterna-

tive dispersion law was not detected in the analysis of Chapter 4. However, it

is always possible that the alternative dispersion varies with time2. My DM-

frequency comparison was made using data recorded between MJD 53156 and

53808 (see § 4.5.1); scatter broadening measurements were made using data

from MJD 49080 to 51218 (see Table 2.1). The 1,938 days between these two

data groups may explain the different results regarding dispersion.

2In fact, I found that the alternative interpulse dispersion varies over short timescales.
Variability in an alternative main pulse dispersion would not be surprising.
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5.5 Next Steps

It is clear that new theories and observations are required to explain

these surprising measurements of Crab pulsar characteristics. The work pre-

sented in this thesis can be continued as follows.

The intriguing distribution break visible in plots of microburst flux

versus width should be analyzed with careful functional fitting. Additional ob-

servations can help to gain a better grasp on this limit and its temporal and fre-

quency dependence. The microburst fitting function I have used [equation (2.1)]

suggests that this upper limit may indicate a maximum microburst energy, but

the slope of the limit in flux-width space is steeper than expected. Since the

origin of this upper limit remains unknown, a more careful investigation may

lead to a refinement of the microburst fitting function, and additionally may

give insight into pulse emission and propagation in the magnetosphere.

My study of microbursts should be extended to include interpulses,

in addition to main pulses. A recent study by Hankins & Eilek (2007) has

revealed new information about the differences between main and interpulses.

A detailed investigation of the differences between main and interpulse mi-

crobursts may further illuminate the nature of the pulsar emission mechanism

and magnetosphere. Because the interpulse varies greatly across the radio

spectrum (Moffett & Hankins, 1996; Hankins & Eilek, 2007), and in particular

has a complex spectrum at higher radio frequencies (>4GHz), the observing

bandwidth used for a microburst study should be carefully considered3.

3It was precisely out of concern for the differences in bandwiths that wide-band giant pulse
observations from Arecibo Observatory were not added to the data analyzed in Chapter 2.



140

A proposal to further investigate giant pulse echoes faces the difficulty

of the inability to predict when echoes will occur. Furthermore, the giant pulse

echoes I observed in 1996 had a total lifetime less than 4 days. Not knowing the

exact event lifetime, I cannot say whether observing such an event as a “target

of opportunity” is plausible; however average profile echoes have been observed

to have lifetimes of 10s of days. The best course for continuing a study of this

phenomenon may be to use archival data. This presents its own challenges, as

pulsar observing equipment—and especially giant pulse observing equipment—

does not conform to any one standard; a variety of software may be necessary

to extract the relevant information. With regard to new observations, echo

events may remain serendipitous. In this case the best an observer can do is

remain mindful of the possibility of echo emission appearing in a new data set.

Additional observations with excellent spectral coverage will further

the work of this thesis in two ways. First, such observations can help constrain

the bandwidth of Crab microbursts. I found between 1 and 5GHz that the

microburst emission bandwidth is 0.449 < ∆ν < 4GHz. A single, very wide

passband or two simultaneous passbands separated by various frequency inter-

vals may constrain this limit. A good limit will give insight into the poorly

understood pulse emission and magnetospheric propagation processes.

Second, observations with excellent spectral coverage will help to con-

firm or refute the possibility of an alternative dispersion law operating in the

Crab pulsar magnetosphere. I have proposed this possibility based on disper-

sion and scattering measurements made over a range of frequencies; still the

proposal remains tenuous because of the large variability in both dispersion
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and scattering measurements. Additional data recorded in other parts of the

radio spectrum may help to better quantify dispersion and scattering trends.

Such quantification may provide an important platform for new models of the

pulsar magnetosphere and emission mechanism.
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