

Two epochs VLBA Imaging of Sgr A* at 86 GHz

Zhi-Qiang Shen Shanghai Astronomical Observatory

- K. Y. Lo (NRAO)
- J.-H. Zhao (CfA)
- M. Miyoshi (NAOJ)
- P. T. P. Ho (CfA)
- M.-C. Liang (Caltech/ASIAA)

Sgr A*

- as a gravitational source
- dark mass ~ 3 x 10^6 M_{sun} within a radius of 15 mas = 120 AU = 2000 R_{sch} (motions of *s like S0-2)
- $M_{SgrA^*} > 4 \times 10^5 M_{sun}$ (motions of Sgr A* itself)

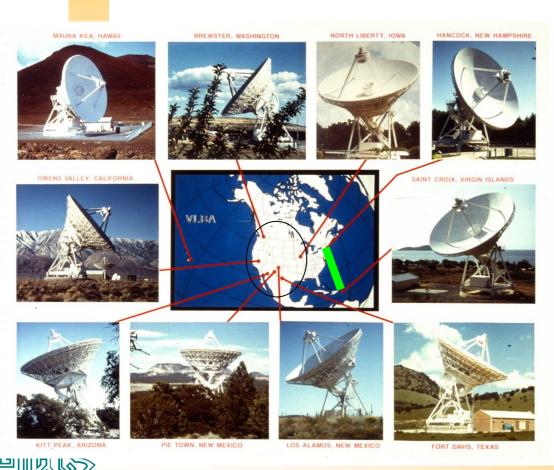
Sgr A*

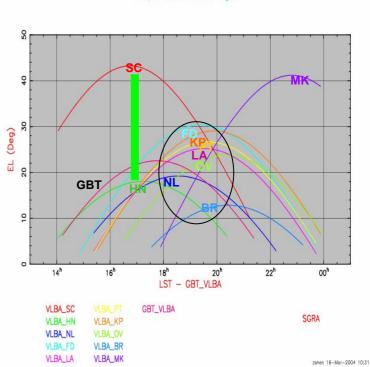
- as a radiative source

- X-ray flaring of 200 900 sec rise/fall timescales
 => 7 30 R_{sch} or 0.05 0.2 mas
 (Chandra and XMM-Newton)
- IR flares of 30 40 min
 => 5 AU (80 R_{sch}) or 0.6 mas
 (VLT and Keck)
- Correlated radio/X-ray variation (Zhao et al 04')
 - $=> r_{Radio} > r_{X-ray} = 7 R_{sch} \text{ or } 0.05 \text{ mas}$ At 30

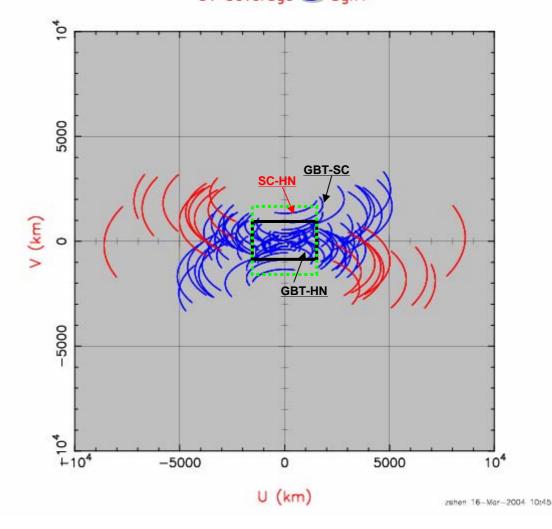
Interstellar scattering effect dominates the cm-VLBI images of SgrA* by λ^2 - law, with an *apparent* E-W elongated shape

need for the mm-VLBI




- The mm-VLBI plagued by 2 facts
- southerly Dec of SgrA* (~ 30°)
- northern lat. for most mm-VLBI antennas

Uptime plot of VLBA **Observations of Sgr A***



Experiment code: SgrA*

(u,v) coverage of VLBA Observations of Sgr.A*

VLBA_SC VLBA_HN VLBA_NL VLBA_FD VLBA_LA VLBA_PT VLBA_KP VLBA_OV VLBA_BR VLBA_MK GBT_VLBA SGRA

- The mm-VLBI plagued by 2 facts
- southerly Dec of SgrA* (~ 30°)
- northern lat. for most mm-VLBI antennas
- lack of spatial resolution in N-S (= minor axis)
- severe atmospheric effects on data calibration (large and variable opacity, short and variable T_{coh})
 - + compromised sensitivity at mm-band (high Tsys: >100 K at zenith; low antenna efficiency: < 45%)

- During the observations
- dynamic scheduling -> best weather condition
- compact SiO masers for amp cal and pointing

- During the data analysis
- closure amplitudes to constrain the model-fitting

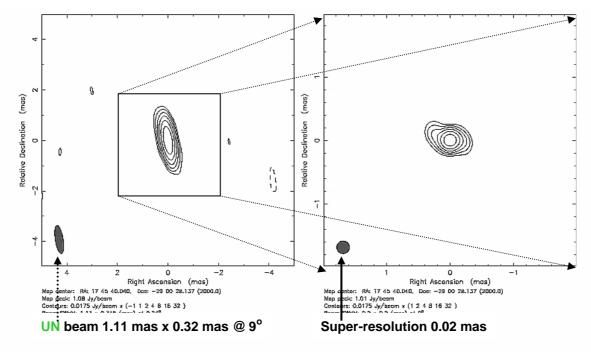
- Nov 3, 2002 (dynamic since Feb 2001)
- 512 Mbps (highest recording rate)
- Frequent pointing check (every 15 min)
- Very good detections among 5 antennas (FD/KP/LA/OV/PT), plus some to NL
- First 3mm VLBI image of SgrA*



1st epoch 3mm VLBA **Observation**

Very good detections among 5 antennas

(FD/KP/LA/OV/PT), plus some to NL



At 30

First 3mm VLBI image of SgrA*

- ⊕ unresolved (no extended structure) → single component
- zero closure phases
- $\Phi \sim \text{E-W}$ elongated emission \rightarrow consistent with $\lambda \geq 7$ mm data

Model-fitting using the closure amplitude constraints

 $-\chi^2$ – *minimization* algorithm

$$\chi^{2} = \sum_{t} \sum_{ij} w_{ij} |A_{ij}^{obs}(t) - G_{i}(t) G_{j}(t) A_{ij}^{mod}(t)|^{2}$$

here, the visibility amplitude A_{ij} is used, "good observable" - the closure amplitude $C_{ijkl} = \frac{A_{ij} A_{kl}}{A_{ik} A_{ij}}$

$$C_{ijkl} = \frac{A_{ij} A_{kl}}{A_{ik} A_{jl}}$$

is conserved by assuming an antenna-dependent gain G_i only.

This is equivalent to the use of closure quantities!

The measured visibility amplitude <Z> has a positive bias with respect to the true amplitude A (2)

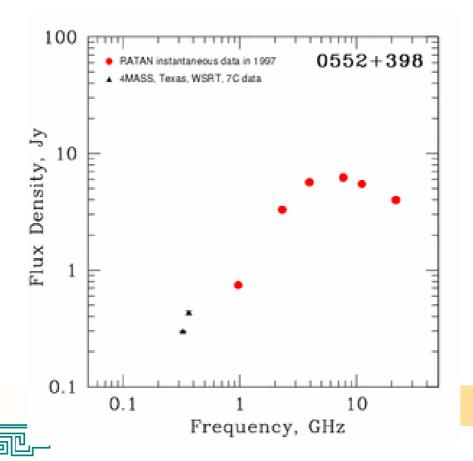
$$< Z > \approx A \left(1 + \frac{\sigma^2}{2A^2} \right)$$
 (strong signal: $A >> \sigma$)
 $< Z > \approx \sigma \sqrt{\frac{\pi}{2}} \left(1 + \frac{A^2}{4\sigma^2} \right)$ (weak signal: $A << \sigma$)

here, σ is the rms deviation of a single component of the complex noise vector. This is big at low SNR \leq 3, but can be corrected (see Thompson, Moran, & Swenson 1986)

However, it is difficult to estimate the unbiased C_{ijkl} and thus to treat its formal error properly if we fit the closure amplitude directly (see Trotter, Moran, & Rodriguez 1998).

Model-fitting procedure

- χ^2 *minimization* algorithm
- Bias correction to the measured visibility amplitude $A_{ij}(t)$
- Determination of the antenna-based gain $G_{\mathtt{i}}$ from the observed visibility amplitude A and the given model \widetilde{A} at each time t
- Error estimate from the χ^2 distribution 1 σ (68.3% confidence): χ^2 (min) -> χ^2 (min) + χ^2 (min) / N_{dof}



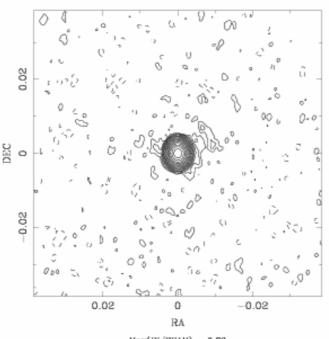
Application to DA193

DA193 (z=2.365)

GPS source

VLBI calibrator

At 30



Application to DA193

DA193: VLBI calibrator

Mex(IY/BEAM) = 5.83Min(JY/BEAM) = -0.0002

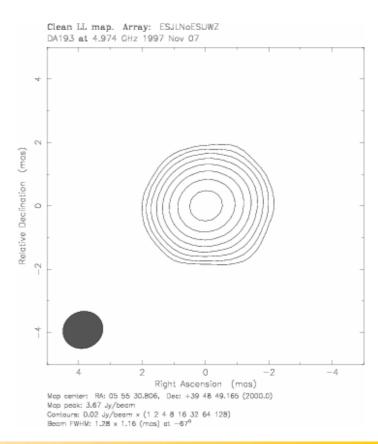
Figure 9.13: High dynamic range image of DA133. Peak to off-source RMS is 115,000:1!

D. Briggs thesis (1995)

DR = 115,000:1

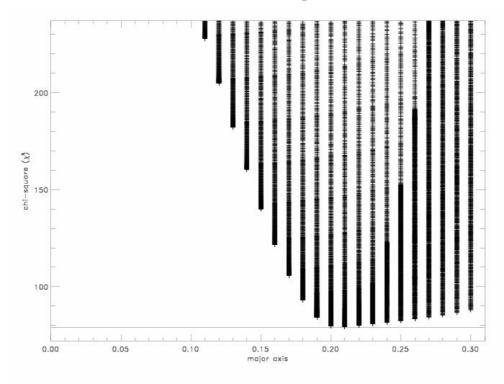
fit with a single Gaussian

 $0.904 \times 0.514 \text{ mas } @109.5^{\circ}$



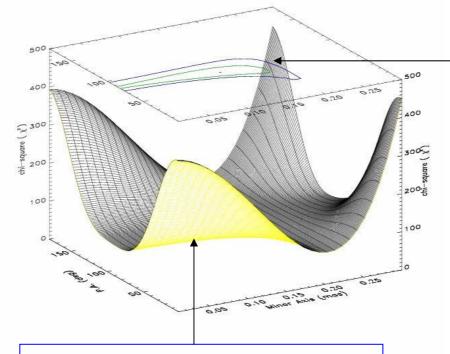
Application to DA193

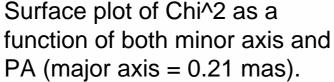
- DA193: EVN+Sh+Ur+Hart (Nov 7, 1997)
- Standard VLBI selfcalibration imaging and model-fitting 0.82 x 0.64 mas @ 111°
- Our procedure 0.82 x 0.48 mas @ 108°


At 30

1st epoch 3mm **Observation**

major axis: 0.21 (+0.02 / -0.01) mas




1st epoch 3mm Observation

Minor axis: 0.13 (+0.05 / -0.13) mas and PA: 79° (+12° / -33°)

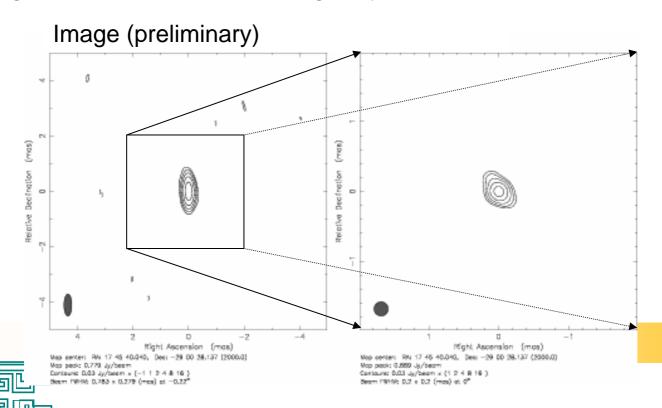
Contour plot showing the Confidence intervals of 68.3% and 90.0%.

- Model fitting:
- ✓ Single elliptical Gaussian

major axis: 0.21 (+0.02 / -0.01) mas

minor axis: 0.13 (+0.05 / -0.13) mas

position angle: 79° (+12°/-33°)


Best Circular Gaussian

FWHM: 0.20-0.21 mas

- Observations on Sept 28, 2003
- 512 Mbps; pointing check every 15 min
- gust @OV, tape (recording,playback)@KP, PT

At 30

- Model fitting:
- ✓ Single elliptical Gaussian

major axis: 0.21 (+0.01 / -0.01) mas

minor axis: 0.00 - 0.13 mas

position angle: 87° (+12°/-9°)

✓ Best Circular Gaussian

FWHM: 0.20 mas

 Apparent SgrA* structure at 3mm: elongated roughly along E-W with a major axis size of 0.21 mas

	Elliptical Gaussian Model (major,minor,pa)	circular
1999 Apr, CMVA (Doeleman et al 2001)	0.34(+/-0.14), 0.17(+/-0.02), 22(+/-20)	0.18(+/-0.02)
2002 Nov, VLBA	0.21(+0.02/-0.01), 0.13(+0.05/-0.13), 79(+13/-33)	0.20 - 0.21
2003 Sept, VLBA	0.21(+0.01/-0.01), 0.00-0.13, 87(+12/-9)	0.20

Intrinsic structure of SgrA* emission

The best ever measurement in Nov 2002 shows a $3\,\sigma$ deviation from the extrapolated scattering angle of 0.175 +/- 0.003 mas along the major axis. If confirmed, this indicates an intrinsic size of 0.116 mas, or ~1 AU @ 8 kpc, or ~17 Rsch ($3 \times 10^6 \, \mathrm{M_{sun}}$).

Intrinsic Tb $\sim 1.5 \times 10^{10} \text{ K}$ (non-thermal origin)

Discussion - 7mm data

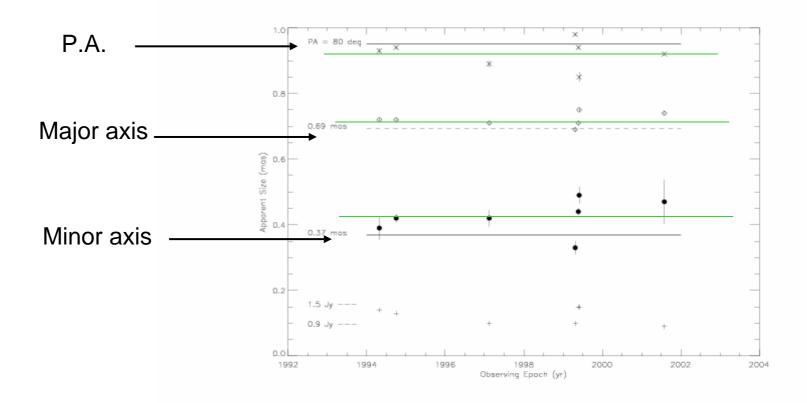
Epoch	Ctr Freq(+BW) GHz (+ MHz)	S (Jy)	Major axis (mas)	Minor axis (mas)	P.A (degree)	Reduced chi^2	SC- HN	Notes
19 <mark>94.32</mark>	43.151 (64)	1.4	0.72 +/- 0.01	0.39 +/- 0.07	78 +/- 2	1.11	yes	
19 <mark>94.75</mark>	43.151 (64)	1.3	0.72 +/- 0.01	0.42 +/- 0.03	79 +/- 1	1.17	yes	Bower & Backer 1998
19 <mark>97.12</mark>	43.213 (32)	1.0	0.71 +/- 0.01	0.42 +/- 0.05	74 +/- 2	2.89	no	Lo et al 1998; dual pol
19 <mark>99.31</mark>	43.135 (32)	1.0	0.69 +/- 0.01	0.33 +/- 0.04	83 +/- 1	0.97	yes	1.26 x 0.44 @ 7°
1999.39	43.135 (32)	1.5	0.71 +/- 0.01	0.44 +/- 0.02	79 +/- 1	1.59	yes	1.35 x 0.48 @ 11°
1999.41	43.135 (32)	1.5	0.75 +/- 0.01	0.49+/- 0.05	70 +/- 3	0.85		
	39.135 (32)	1.6	0.86 +/- 0.01	0.54+/- 0.03	78 +/- 1	1.54		39 GHz
	45.135 (32)	1.5	0.66 +/- 0.01	0.42 +/- 0.04	75 +/- 3	1.31		45 GHz
2001.58	42.8-43.1 (32)	0.9	0.74 +/- 0.01	0.47 +/- 0.14	77 +/- 6	3.41	yes	

Average over 7 epochs: major 0.72 +/- 0.02 mas

minor 0.42 +/- 0.04 mas

P.A. 77 +/- 3 deg

At 30



27

Discussion - 7mm data

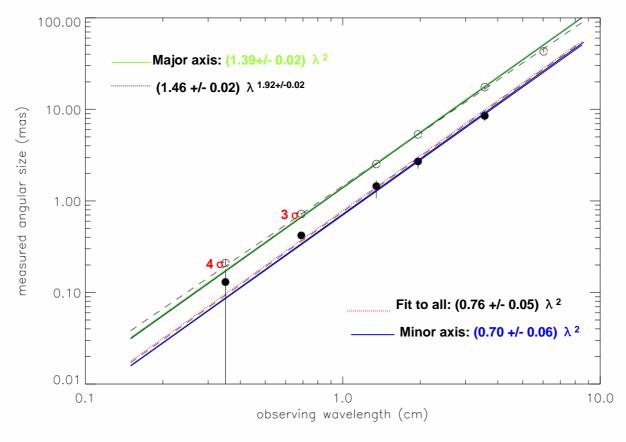
Discussion - past SgrA*

size measurements

Table 1. Summary of published Sgr A* size measurements

Epoch	$S_{ m VLBI}$	$ heta_{ m major}$	$ heta_{ ext{minor}}$	Axial Ratio	P.A.	References
(yrs)	(Jy)	(mas)	(mas)	$(\theta_{\mathrm{minor}}/\theta_{\mathrm{major}})$	(°)	
			`			
			$\lambda = 35.6 \text{ mm}$			
$1997.10 \dots$	0.73 ± 0.10	18.0 ± 1.53	9.88 ± 1.68	$0.55 {\pm} 0.14$	78 ± 6	Lo et al. (1998)
$1991.90 \dots$		17.5 ± 0.5	8.5 ± 1.0	0.49 ± 0.06	87 ± 5	Lo et al. (1993)
$1983.36 \dots$		16.1 ± 0.3	16.1	1.0		Marcaide et al. (1992)
$1983.35 \dots$		15.5 ± 0.1		$0.55 {\pm} 0.25$	98 ± 15	Lo et al. (1985)
$1982.30 \dots$		17.4 ± 0.5		0.53 ± 0.10	82 ± 6	Jauncey et al. (1989)
1978.07	0.7	18 ± 2	18	1.0		Lo et al. (1981)
$1976.18 \dots$	0.9 ± 0.06	14 ± 2	14	1.0		Lo et al. (1977)
$1975.38 \dots$	0.6 ± 0.1	< 20.0		1.0		Lo et al. (1975)
$1974.50 \dots$		17.0	17.0	1.0		
			$\lambda = 13.5 \text{ mm}$			
1997.10	0.74 ± 0.04	2.70 ± 0.15	1.50 ± 0.59	$0.56 {\pm} 0.25$	81±11	Lo et al. (1998)
1992.85	1.05 ± 0.10	2.67 ± 0.15	1.63 ± 0.41	0.61 ± 0.12	79 ± 10	Marcaide <i>et al.</i> (1999)
1991.49	0.98 ± 0.05	2.6 ± 0.2	1.3	0.5	87	Lo et al. (1993)
1991.47	1.07 ± 0.15	2.60 ± 0.20	1.30 ± 0.88	0.5 ± 0.3	80±15	Alberdi <i>et al.</i> (1993)
1985.11	1.2 ± 0.4	1.8 ± 0.09	1.8	1.0	00-10	Marcaide et al. (1992)
1983.47	0.98 ± 0.05	2.2 ± 0.2	1.21 ± 1.21	0.55 ± 0.5	87 ± 30	Lo et al. (1985)
						,
			$\underline{\lambda = 6.9 \text{ mm}}$			
$1997.10 \dots$	1.03 ± 0.01	0.70 ± 0.01	0.58 ± 0.07	0.83 ± 0.11	87 ± 8	Lo et al. (1998)
$1994.75 \dots$	1.28 ± 0.10	0.76 ± 0.04	0.55 ± 0.11	0.73 ± 0.10	77 ± 7	Bower & Backer (1998)
$1992.62 \dots$	2.10 ± 0.10	0.74 ± 0.03	0.40 ± 0.20	$0.54 {\pm} 0.29$	90 ± 10	Backer <i>et al.</i> (1993)
$1992.40 \dots$	$1.42 {\pm} 0.10$	0.75 ± 0.08	0.75	1.0		Krichbaum et al. (1993)
			$\lambda = 3.5 \text{ mm}$			
$1999.27 \dots$	1.4	$0.34{\pm}0.14$	0.17 ± 0.02	0.50 ± 0.26	22 ± 20	Doeleman et al. (2001)
	1.4	0.18 ± 0.02	0.18	1.0		Doeleman et al. (2001)
1995.18	1.80 ± 0.30	0.19 ± 0.03	0.19	1.0		Krichbaum et al. (1998)
$1994.25 \dots$	1.40 ± 0.20	0.15 ± 0.05	0.15	1.0		Rogers et al. (1994)
$1993.27 \dots$	$1.25 {\pm} 0.35$	$0.22{\pm}0.19$	0.22	1.0		Krichbaum et al. (1999)

At 30


Discussion - reanalysis of the archived VLBI data

ſ	λ (cm)	major (mas)	minor (mas)	p.a. (deg)	Resolution (mas x mas @ deg)	Notes
	6.03	43.0 +2.5 /-1.0			21 x 12 @ 4	Only 1 epoch data!
	3.56	17.5 +0.5/-1.0	8.50 +/- 1.0	87 +/- 3	12.5 x 6.5 @ 5	
	1.96	5.33 +/- 0.07	2.70 +0.30/-0.44	83 +/- 3	9.5 x 3.9 @ 26	1 epoch only!
	1.35	2.53 +0.06/-0.05	1.45 +0.23/-0.38	83 +4/-5	6.4 x 2.3 @ 24	
	0.69	0.72 +/- 0.02	0.42 +/- 0.04	77 +/- 3	1.6 x 0.5 @ 10	Errors from the scatter of 7 epochs data
	0.35	0.21 +0.02/-0.01		79 +12/-33	1.1 x 0.3 @ 9	Minor axis poor

Scattering law revisited

- First 3mm VLBA image of Sgr A* shows an E-W elongated structure, consistent with the morphology observed at other longer λ.
- A 3 σ deviation from the extrapolated scattering angle of 0.175 mas at 3mm (from the current 1.43 λ ²) may suggest an intrinsic size of 1 AU along E-W at 3mm.
- Investigation of the archived multi-wavelength data suggests a slightly smaller scattering effect of 1.39 λ ².
- The current scattering law needs to be re-examined with more measurements at both short (mm) and long (cm) wavelengths.

