

VERY LONG BASELINE INTERFEROMETRY

Craig Walker

Summer Student Lecture

Socorro, June 28, 2011

Adapted from 2004 Summer School Lecture and 2005, 2007, and 2009 Summer Student Lectures

WHAT IS VLBI?

- Radio interferometry with unlimited baselines
 - High resolution milliarcsecond (mas) or better
 - Resolve a finger nail in Los Angeles from New York
 - Measure relative positions to 10 microarcsec
 - Baselines up to an Earth diameter for ground based VLBI
 - Can extend to space (HALCA, VSOP2, Radioastron)
 - Sources must have high brightness temperature
- Traditionally uses no IF or LO link between antennas
 - Data recorded on tape or disk then shipped to correlator
 - Atomic clocks for time and frequency
 – usually hydrogen masers
 - Correlation occurs days to years after observing
 - Real time over fiber is an area of active development
- Can use antennas built for other reasons
- Not fundamentally different from linked interferometry

Mark5 recorder

The VLBA

Ten 25m Antennas, 20 Station Correlator 327 MHz - 86 GHz Operated from Socorro

National Radio Astronomy Observatory

> A Facility of the National Science Foundation

GLOBAL VLBI STATIONS

Geodesy stations. Some astronomy stations missing, especially in Europe.

EXAMPLE 1: AGN JET The VLBA 43 GHz Movie of the inner jet in M87

Summer Student Lecture 2011 Craig Walker

- OON_S IIIId3/ Malker

EXAMPLE 2: STELLAR JET THE SS433 MOVIE

- Two hour snapshot almost every day for 40 days on VLBA at 1.7 GHz •
 - Mioduszewski, Rupen, Taylor, and Walker

EXAMPLE 3: Measurement of Distance by Parallax

From M. Reid 2008 Summer School Lecture

PARALLAX RESULT Orion Nebular Cluster Parallax

Summer Student Lecture 2011

Craig Walker

PARALLAX PROSPECT Structure of the Milky Way and Local Group

- Use masers to determine the 3D structure of the galaxy
 - Past work with 12 GHz methanol and 22 Ghz water lines
 - Future may be mainly the 6.7
 GHz methanol line masers stronger and more stable
 - Needs the 4-8 GHz receiver
 - Use wide bands for close calibrators

EXAMPLE 4: GEODESY and ASTROMETRY

- Fundamental reference frames
 - International Celestial Reference Frame (ICRF)
 - International Terrestrial Reference Frame (ITRF)
 - Earth rotation and orientation relative to inertial reference frame of distant quasars
- Tectonic plate motions
 measured directly
- Earth orientation data used in studies of Earth's core and Earth/atmosphere interaction
- General relativity tests
 - Solar bending significant over whole sky

Germany to Massachusetts

10

Craig Walker

VLBI and CONNECTED INTERFEROMETRY DIFFERENCES

VLBI is not fundamentally different from connected interferometry

- Differences are a matter of degree.
- Separate clocks Cause phase variations and delay offsets
- Independent atmospheres (ionosphere and troposphere)
 - Phase fluctuations similar to EVLA A array
 - Gradients are worse affected by total, not differential atmosphere
 - Ionospheric calibration useful dual band data or GPS global models

Calibrators poor

- All compact sources are variable Flux calibrate using Tsys and a priori gains
- All bright sources are at least somewhat resolved need to image
- There are no simple polarization position angle calibrators
- Geometric model errors cause phase gradients
 - Source positions, station locations, and the Earth orientation are difficult to determine to a small fraction of a wavelength
- Phase gradients in time and frequency need calibration fringe fit
 - But EVLA with wide bandwidths needs slope in frequency corrected

VLBI and CONNECTED INTERFEROMETRY SCIENTIFIC AND OPERATIONAL DIFFERENCES

- VLBI is not sensitive to thermal sources
 - 10⁶ K brightness temperature limit (with current sensitivities)
 - This limits the variety of science that can be done
- Hard to match resolution with other bands like optical
 - An HST pixel is a typical VLBI field of view
 - But sees the compact X-ray and $\gamma\text{-ray}$ objects
- Even extragalactic sources change structure on finite time scales
 - The VLBA is a movie camera
- Much lower sensitivity to RFI
 - RFI sources are not shared between antennas don't correlate
 - High total fringe rates smear out any in-common sources
- Primary beam is not usually an issue for VLBI
 - New multi-phase-center capability is changing this
- Networks have inhomogeneous antennas hard to calibrate

VLBA STATION ELECTRONICS

- At antenna: •
 - Select RCP and LCP
 - Add calibration signals
 - Amplify
 - Mix to IF (500-1000 MHz)
- In building: •
 - Distribute to baseband converters (8)
 - Mix to baseband
 - Filter (0.062 16 MHz)
 - Sample (1 or 2 bit)
 - Format
 - Record on disk ____
 - Also keep time and stable frequency
- Other systems conceptually similar •
- RDBE will soon replace BBCs, samplers and formatter for more ٠ bandwidth

VLBI CORRELATOR

- Read disks
- Synchronize data
 - Apply delay model
 - Includes phase model $\varphi{=}\upsilon\tau$
 - Correct for known Doppler shifts
 - Mainly from Earth rotation

JIVE Correlator in tape era

- This is the total fringe rate and is related to the rate of change of delay
- Generate cross and auto correlation power spectra
 - FX: FFT or filter, then cross multiply (DiFX, old VLBA, Nobeyama, ATA, GMRT)
 - XF: Cross multiply lags. FFT later (JIVE, Haystack, VLA, EVLA, ALMA ...)
- Accumulate and write data to archive
- Some corrections may be required in postprocessing
 - Data normalization and scaling (Varies by correlator)
 - Corrections for sampler level offsets (ACCOR in AIPS)

TΗ	Е	D	ΞL	A	Y
	ИC	D	E	L	

For 8000 km baseline 1 mas = 3.9 cm = 130 ps

Adapted from Sovers, Fanselow, and Jacobs Reviews of Modern Physics, Oct 1998

Item Time scale Approx Max. Zero order geometry. 6000 km 1 day ~ 20 " Nutation < 18.6 yrPrecession $\sim 0.5 \operatorname{arcmin/yr}$ years Annual aberration. 20''1 year Retarded baseline. 1 day 20 m $4 \text{ mas} @ 90^{\circ} \text{ from sun}$ Gravitational delay. 1 year Tectonic motion. 10 cm/yryears Solid Earth Tide 50 cm12 hr Pole Tide 2 cm $\sim 1 \text{ yr}$ $2 \mathrm{~cm}$ Ocean Loading 12 hr Atmospheric Loading 2 cmweeks Post-glacial Rebound several mm/yr years Polar motion ~ 1.2 years 0.5 arcsec Several mas UT1 (Earth rotation) Various Ionosphere $\sim 2 \text{ m at } 2 \text{ GHz}$ A11 $\overline{2.3}$ m at zenith hours to days Dry Troposphere Wet Troposphere 0-30 cm at zenith All <10 m. 1cm thermal Antenna structure Parallactic angle 0.5 turnhours Station clocks few microsec hours Source structure $5 \mathrm{cm}$ years

VLBI DATA PROCESSING – OVERVIEW BASED ON AIPS

- Load correlator output cross and auto correlations (FITLD)
 - Includes tables with Flag, Tsys, Pulse cal, and Gain calibration data
- Examine data
 - DTSUM, LISTR (SCAN) for summaries
 - POSSM for spectra
 - VPLOT for amp/phase vs time
 - UVPLT for UV coverage, amp vs UV distance
 - SNPLT to check calibration tables
- Edit: Weather, RFI, zero fringe rate points etc. (UVFLG, EDITR, etc.)
- Correct for sampler offsets using autocorrelations (ACCOR)
- Apply gain and Tsys calibration (corr coeff -> Jy) (APCAL)
 - Includes opacity correction
 - ACCOR and APCAL are in proc VLBACALA

VLBI DATA PROCESSING – OVERVIEW PAGE 2

- Parallactic angle calibration (VLBAPANG uses CLCOR)
- Take out main delay error (clock offset) and align IFs
 - Pulse cal (VLBAPCOR runs PCCOR) or
 - "manual pcal" a fringe fit on one scan (VLBAMPCL runs FRING)
- Optional fringe fit or self-calibration on calibrators or all data
- Fine tune amplitude calibration
 - Image calibrator (self-calibrate/image loop)
 - Restrict elevation range and antennas for gain normalization
 - Apply smoothed result to all sources
- Optional: Phase referencing
- Optional: Polarization calibration
- Make images
- Extract science

VLBI AMPLITUDE CALIBRATION

Based on a priori gains and Ts, not a flux calibrator

$$S_{cij} = \rho_{ij} \frac{A}{\eta_s} \sqrt{\frac{T_{si}T_{sj}}{K_i K_j e^{-\tau_i} e^{-\tau_j}}}$$

- S_{cij} = Correlated flux density on baseline i j
- ρ = Measured correlation coefficient
- A = Correlator specific scaling factor
- η_s = System efficiency including digitization losses
- T_s = System temperature
 - Includes receiver, spillover, atmosphere, blockage
- *K* = Gain in degrees K per Jansky
 - Includes gain curve
- $e^{-\tau}$ = Absorption in atmosphere plus blockage

Note $T_s/K = SEFD$ (System Equivalent Flux Density)

CALIBRATION WITH Tsys

Ancient example shows removal of effect of increased Ts due to rain and low elevation

AIPS task APCAL

Summer Student Lecture 2011 Craig Walker

GAIN CURVES AND OPACITY CORRECTION

VLBA gain curves Caused by gravity induced distortions of the antenna as a function of elevation

Atmospheric opacity

Correcting for absorption by the ² atmosphere Can estimate using Ts – Tr – Tspill Example from single-dish VLBA pointing data

AMPLITUDE CHECK SOURCE

Typical calibrator visibility function after a priori calibration Calibrator is resolved

Will need to image One antenna low Use calibrator to fix

Shows why flux scale (gain normalization) should only be set by a subset of antennas

IONOSPHERIC DELAY

- Delay scales with $1/v^2$
- Ionosphere dominates errors at low frequencies
- Can correct with dual band observations (S/X)
- GPS based ionosphere models help (AIPS task TECOR)

Maximum Likely Ionospheric Contributions

lonosphere map from iono.jpl.nasa.gov

	Day	Night	Day	Night
Freq	Delay	Delay	Rate	Rate
GHz	ns	ns	mHz	mHz
0.327	1100	110	12	1.2
0.610	320	32	6.5	0.6
1.4	60	6.0	2.8	0.3
2.3	23	2.3	1.7	0.2
5.0	5.0	0.5	0.8	0.1
8.4	1.7	0.2	0.5	0.05
15	0.5	0.05	0.3	0.03
22	0.2	0.02	0.2	0.02
43	0.1	0.01	0. _{Jumme}	r StudenPLecture

Delays from an S/X Geodesy Observation

FRINGE FITTING 1

- Raw correlator output has phase slopes in time and frequency
 - Slope in time is "fringe rate"
 - Usually from imperfect troposphere or ionosphere model
 - Slope in frequency is "delay"
 - A phase slope because $\varphi{=}\upsilon\tau$
 - Fluctuations worse at low frequency because of ionosphere
 - Troposphere affects all frequencies equally ("nondispersive")
 - Large DC term from clock offsets
- Fringe fit is self calibration with first derivatives in time and frequency

FRINGE FITTING 2

- For Astronomy:
 - Used to allow averaging in frequency and time
 - Allows higher SNR self calibration (longer solution, more bandwidth)
 - Allows corrections for smearing from previous averaging
 - Strategy:
 - Remove clock offsets and align baseband channels ("manual pcal")
 - Fit calibrator to track most variations (optional)
 - Fit target source if strong (optional)
 - Fringe fitting weak sources rarely needed any more phase reference

• For geodesy:

- Fitted delays are the primary "observable"
 - Correlator model is added to get "total delay", independent of models
 - Allows data taken over decades on different systems to be combined
- Delays from phase slopes fitted over wide spanned frequency range
 - "Bandwidth Synthesis"

SELF CALIBRATION IMAGING

- Iterative procedure to solve for both image and gains:
 - Use best available image to solve for gains (can start with point)
 - Use gains to derive improved image
 - Should converge quickly for simple sources
 - Many iterations (~50-100) may be needed for complex sources
 - Will need to vary some imaging parameters between iterations
 - Should reach near thermal noise in most cases
 - Can image even if calibration is poor or nonexistent
- Possible because there are *N* antenna gains and *N(N-1)/2* baselines
 - Need at least 3 antennas for phase gains, 4 for amplitude gains
 - Works better with many antennas
- Does not preserve absolute position or flux density scale
 - Gain normalization usually makes this problem minor
- Is required for highest dynamic ranges on all interferometers

Example Self Cal Imaging Sequence

- Start with phase only selfcal
- Add amplitude cal when progress slows (#3 here)
- Vary parameters between iterations
 - Taper,
 robustness,
 uvrange etc
- Try to reach thermal noise
 - Should get close

PHASE REFERENCING

- Calibration using phase calibrator outside target source field
 - Nodding calibrator (move antennas)
 - In-beam calibrator (separate phase centers in same pointing)
 - Multiple calibrators for most accurate results get gradients
 - Include geodetic ("DELZN") segments to calibrate atmosphere
- Similar to EVLA calibration except:
 - Geometric and atmospheric models worse
 - Affected by totals between antennas, not just differentials
 - Model errors usually dominate over fluctuations
 - Errors scale with total error times source-target separation in radians
 - Need to calibrate often (5 minute or faster cycle)
 - Need calibrator close to target (< 5 deg)
- Biggest problems:
 - Wet troposphere at high frequency
 - Ionosphere at low frequencies (20 cm is as bad as 1cm)
- Use for weak sources and for position measurements
 - Increases sensitivity by 1 to 2 orders of magnitude
 - Used by about 30-50% of VLBA observations (old number more now?) Summer Student Lecture 2011 Craig Walker

EXAMPLE OF REFERENCED PHASES

- 6 min cycle 3 on each source
- Phases of one source self-calibrated (shift to near zero)
- Other source shifted by same amount

PHASE REFERENCING EXAMPLE

- 1. With no phase calibration, source is not detected (no surprise)
- 2. With reference calibration, source is detected, but structure is distorted (target-calibrator separation is probably not small)
- 3. Self-calibration of this strong source shows real structure

SCHEDULING

- PI provides the detailed observation sequence
- The schedule should include:
 - Fringe finders (strong sources at least 2 scans helps operations)
 - Amplitude check source (strong, compact source)
 - If target is weak, include a delay/rate calibrator
 - If target very weak, fast switch to a phase calibrator
 - Include geodetic segments for improved calibration
 - For spectral line observations, include bandpass calibrator
 - For polarization observations, calibrate instrumental terms
 - Get good Parallactic angle coverage on polarized source or
 - Observe an unpolarized source
 - Absolute polarization position angle calibrator (Get angle from VLA)
- No longer need to worry about tape management.
 - With Mark5, only worry about total data volume

VLBA SENSITIVITY UPGRADE

- Increase bandwidth to 512 MHz (2 Gbps) first, 1 GHz later
 - Previous bandwidth 32 MHz sustained, 128 MHz peak
 - Sensitivity increase by factor >5 (sustainable rates)
 - New digital backend (RDBE)
 - New recording system (Mark5C) -- The major cost is disk supply
 - New software correlator (DiFX) (In service since early 2010)
 - Testing now at all VLBA sites, GBT, Arecibo, and EVLA
 - Science use in a few months
- Improved 22 GHz amplifiers (Finished Jan. 2008)
 - About 30% sensitivity gain
 - MPIfR funding
- New 4-8 GHz EVLA style receivers (Ready in 2012)
 - Will reach Methanol maser at 6.7 GHz
 - Will provide 2 IF pairs at arbitrary frequency separation

A SAMPLE OF NEW RDBE/MARK5C DATA

- One of 2
 polarizations
- 32 MHz/baseband
- No calibrations
 - Phases aligned from RDBE

- 6 r_s

- 0.01 pc

THE END

Summer Student Lecture 2011 Cr

Craig Walker