
Roughness in the Mars Emission Model

The roughness of a planetary surface will modify the outgoing thermal
emission from the subsurface in several ways. What we are concerned with
here is the modification of the effective emissivity of the surface. This
is described in many references, including Heiles & Drake (1963), Hagfors
& Moriello (1965), Cuzzi (1974), Golden (1979), and Mitchell & de Pater
(1994).

Assume we have an antenna measuring the thermal emission which is
sensitive to a single linear polarization, and that the antenna (or its feed)
can be rotated to any angle. Then write the response to two orthogonal
directions as:

T‖ = T
(

E‖ cos2 φ+ E⊥ sin2 φ
)

(1)

and
T⊥ = T

(

E⊥ cos2 φ+ E‖ sin2 φ
)

(2)

where T is the physical temperature, φ is the angle between the orientation
of the linear feed and the location on the planetary surface, and E‖, E⊥ are
the surface emissivities in the two directions. The emissivities are given as a
function of the emission angle (angle between surface normal and observing
direction), θ, by:

E‖(θ) = 1 − R‖(θ) (3)

and
E⊥(θ) = 1 − R⊥(θ) (4)

where R‖, R⊥ are the Fresnel reflectivities in the two directions. These can
be written

R‖(θ) =
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and

R⊥(θ) =
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for a surface with dielectric constant ǫ. If the polarization is not of concern
(either the two linear polarizations are averaged together, or circular polar-
ization is measured), then the angle φ falls out when averaging over the two
linear polarizations, and we can write the average emissivity as

E(θ) =
E‖(θ) + E⊥(θ)

2
= 1 − R‖(θ) +R⊥(θ)

2
(7)
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(Of course if we are concerned with the difference in the linear polarizations
then we can retain the separation of the two emissivities.)

The surface roughness is modelled by assuming that the surface is con-
structed of many facets, each of which is much smaller than the resolution
element on the planet, but much larger than the wavelength being observed.
Each of these facets has an orientation relative to the mean surface given
by two angles - the angle between the surface normal and the mean surface
normal (the y-axis in the standard right-handed x-y-z coordinate system), ψ,
and the angle between the projection of the surface normal on the x-z plane
and the x-axis, δ. See Figure 1 for the coordinate system and facet normal
geometry.
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Figure 1: Geometry for roughness calculations.
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For the random facets, the angle δ is evenly distributed over the range
[0,2π), while the angle ψ is dependent upon the statistical distribution of
slopes (more on that later). To construct a single facet, we therefore need
simply generate two random numbers and derive these two angles from them.
Using these two angles, we have the definition of a planar facet, with normal
in direction n, given by

n = (nx, ny, nz) = (sinψ cos δ, cosψ, sinψ sin δ) (8)

Noting Figure 1 again, the mean surface normal is the unit vector along the
y-axis. Take the mean emission to be along a direction ki in the y-z plane at
an angle θi from the y-axis

ki = (kix , kiy , kiz) = (0, cos θi, sin θi) (9)

then the emission angle for a given facet is just the angle between that
direction and the normal for that facet:

cos θe = n · ki = cosψ cos θi + sinψ sin δ sin θi (10)

This value for θe can then be used in the equations above for the emissivity
as a function of angle.

For each facet, the deviation of the normal from the mean surface normal
(the angle ψ) can be calculated given probability distribution of slopes of
the surface. The roughness model allows for either of two distributions, both
developed in Muhleman (1964). The first is a Gaussian distribution of surface
heights and a Rayleigh distribution of surface lengths (called the “Gaussian”
model), which results in a probability distribution of slopes of

p′(ψ)dψ =
1

2
α′2 cosψdψ

(

sin2 ψ + α′2 cos2 ψ
)

3/2
(11)

where the parameter α′ is the mean surface slope. The second is an ex-
ponential distribution of heights and Poisson distribution of surface lengths
(called the “Exponential” model), which results in a probability distribution
of slopes of

p(ψ)dψ = 2 α2
cosψdψ

(sinψ + α cosψ)3
(12)

where once again the parameter α is the mean surface slope.
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To convert these probability distribution functions (PDFs) to cumulative
distribution functions (CDFs), integrate over angle. First, for the Gaussian
case

F ′(ψ) =
1

2
α′2

ψ
∫

−π/2

cosψ
(

sin2 ψ + α′2 cos2 ψ
)

3/2
dψ =

1

2



1 +
tanψ

√

tan2 ψ + α′2





(13)
and for the Exponential case

F (ψ) = 2 α2

ψ
∫

0

cosψ

(sinψ + α cosψ)3
dψ = 1 − α2

(tanψ + α)2
(14)

To draw a random angle from one of these CDFs, set it equal to a uniform
deviate, ζ (such as can be calculated by a random number generator), then
invert to solve for the angle. For the Gaussian case

ψ = tan−1



b α

√

1

1 − b2



 (15)

where b = 2 ζ − 1. For the Exponential case

ψ = tan−1

[

α′

(
√

1

1 − ζ
− 1

)]

(16)

So, for each mean emissivity angle (θi) the model needs a roughness-
modified emissivity for (〈E(θi) 〉), calculate the emissivity ofN random facets
(the model uses 10000) by generating two random numbers for each facet
and deriving the two angles δ and ψ from them. Then calculate the effective
emission angle and emissivity of the facet, θej

and Ej . Then the roughness-
modified average emissivity is

〈E(θi) 〉 =

N
∑

j=1

Ej cos θej

N
∑

j=1

cos θej

(17)

One detail of note remains. Near the limb some facets will actually not
be visible, notably for large mean surface slopes. The model ignores such
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facets. This is similar to the “clipped cosine” in the Mitchell & de Pater
(1994) model.
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