Introduction: note they are *all* time-critical - i.e., geometry (body + array) needs to be a particular combination (except for the stellar astrometry). also note they are all moving bodies (except the stars, though even they are moving...). most require at least the ACA, and a sizable fraction require single dish... Order of entries (and separation into different subthemes): Theme 4: Solar system 4.1 Planetary Atmospheres 4.1.1 The dynamics of Mars' and Venus' middle atmopheres 4.1.2 The three-dimensional water cycle of Mars 4.1.3 Chemistry in the atmospheres of Venus and Mars 4.1.4 Composition and dynamics of giant planet stratospheres 4.1.5 Search for broad lines in the tropospheres of the giant planets 4.1.6 Mapping the continuum emission from the giant planets 4.1.7 Chemical-dynamical couplings in Titan's atmosphere 4.1.8 Volcanism at Io 4.1.9 The atmospheres of Triton, Pluto and other transneptunians (TNO) objects 4.2 Planetary Surfaces and Dynamics 4.2.1 Albedos, sizes and surface properties of transneptunian objects 4.2.2 Mapping the surfaces of the Moon, Mercury and Mars 4.2.3 Mapping the surfaces of large icy bodies 4.2.4 Structure and composition of Saturn's rings 4.2.5 Mapping the surfaces of larger asteroids 4.2.6 Sizes and albedoes of NEAs 4.2.7 Astrometry of NEAs and TNOs 4.2.8 Radar observations of NEAs 4.3 Comets 4.3.1 A complete picture of an Earth-grazing short-period comet 4.3.2 A TOO observation of an Oort cloud comet 4.3.3 Observations of the great comet of the decade 4.3.4 Characterization of the Jupiter-family comet population 4.3.5 Is Hale-Bopp still alive? 4.3.6 Chiron distant activity 4.3.7 CO nucleus outgassing of 29P/Schwassmann-Wachmann 1 4.3.8 Radar observations of comets 4.4 Extrasolar Planets 4.4.1 Search for extrasolar planets via astrometry of nearby stars -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: The dynamics of Mars' and Venus' middle atmopheres Authors: E. Lellouch Abstract: Mapping CO lines is a powerful tool to study the dynamics of the middle atmospheres of Mars (~30-70 km) and Venus (70-110 km) because their observation allows a simultaneous determination of (i) the local CO abundance (ii) the local thermal field (iii) the wind velocity from Doppler shift. All three parameters are related. The great originality is provided by the direct wind measurements which are out of reach to space missions. The high spatial resolution and the possibility to quickly acquire images will provide snapshots of the atmospheric circulation and the possibility of measuring local structures (e.g. jets, waves....). contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------ ----------- - - -- -- --- ---- ---- ---- ---- --------- -------- ------------ ------------ ----------- ---- Venus ecliptic Y Y Y Y N .5 20 115 CO .05 km/s 500 km/s 300 K 0.1 K 150 K 1 K N/A 10 h Venus ecliptic Y Y Y Y N .5 20 110 13CO .05 km/s 500 km/s 300 K 0.1 K 15 K 1 K N/A 10 h Venus ecliptic Y Y Y Y N .5 20 230 CO .05 km/s 500 km/s 300 K 0.1 K 150 K 0.2 K N/A 10 h Venus ecliptic Y Y Y Y N .5 20 220 13CO .05 km/s 500 km/s 300 K 0.1 K 15 K 0.2 K N/A 10 h Venus ecliptic Y Y Y Y N .5 20 345 CO .05 km/s 500 km/s 300 K 0.1 K 150 K 0.2 K N/A 5 h Venus ecliptic Y Y Y Y N .5 20 330 13CO .05 km/s 500 km/s 300 K 0.1 K 15 K 0.2 K N/A 5 h Mars ecliptic Y Y Y Y N .5 20 115 CO .05 km/s 500 km/s 200 K 0.1 K 100 K 1 K N/A 10 h Mars ecliptic Y Y Y Y N .5 20 110 13CO .05 km/s 500 km/s 200 K 0.1 K 10 K 1 K N/A 10 h Mars ecliptic Y Y Y Y N .5 20 230 CO .05 km/s 500 km/s 200 K 0.1 K 100 K 0.2 K N/A 10 h Mars ecliptic Y Y Y Y N .5 20 220 13CO .05 km/s 500 km/s 200 K 0.1 K 10 K 0.2 K N/A 10 h Mars ecliptic Y Y Y Y N .5 20 345 CO .05 km/s 500 km/s 200 K 0.1 K 100 K 0.2 K N/A 5 h Mars ecliptic Y Y Y Y N .5 20 330 13CO .05 km/s 500 km/s 200 K 0.1 K 10 K 0.2 K N/A 5 h total time 100 h Notes: Timing/geometry not critical, as long as the disk is resolved with 10s of pixels on a side, and enough short spacings are measured to get the large-scale structure of the disk. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: The three-dimensional water cycle of Mars Authors: E. Lellouch Abstract: The water cycle on Mars is a key subject in martian research and a focus of space missions to Mars. As compared to space missions, the great interest of ALMA will be the possibility to determine the vertical profile of water (through HDO), i.e. to retrieve true 3-D fields of water. The ultimate goal is the understanding of exchanges and interactions between the atmosphere and the sources of water (regolith, polar caps). contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------ ----------- - - -- -- --- ----- ---- ---- ---- ------ -------- ------------- ---------- ---------- ---- Mars ecliptic Y Y Y Y N .2-.5 2-20 226 HDO 1 km/s 400 km/s 200 K 0.01 K 2 K 0.1 K N/A 2-40 h Mars ecliptic Y Y Y Y N .2-.5 2-20 242 HDO 1 km/s 400 km/s 200 K 0.01 K 2 K 0.1 K N/A 2-40 h total time ~160 h Notes: Observations to be undertaken 10 times over the ~two year martian year (i.e., one sol), spaced fairly regularly. When Mars is further away, higher resolution is needed, and hence more integration time. This needs to be done in combination with the above proposal, since the CO observations will be necessary to get the thermal profile, which is needed to back out the water vapor abundance/profile. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Chemistry in the atmospheres of Venus and Mars Authors: E. Lellouch Abstract: The chemistry of Mars and Venus atmospheres remains poorly understood, as in particular, few species have been detected while photochemical models predict more are present. Species such as O2, O3, H2O2, H2CO, NO should be observed on Mars. For those species for which detection is certain (O2, O3), spatial and seasonal variability, and correlation with water vapor variations should be studied. On Venus, species such as HCl, H2S, SO2 must be observed and monitored as possible tracers of active volcanism. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------ ----------- - - -- -- --- ---- ---- ---- ----------- ------- -------- ------------ ---------- --------- ---- Venus ecliptic Y Y Y Y N 1 20 217 SO2 + H2S 10 km/s 8 GHz 300 K .01 K 3 K .05 K N/A 20x0.5 h Venus ecliptic Y Y Y Y N 1 20 626 HCl 5 km/s 8 GHz 300 K .01 K 3 K .05 K N/A 20x0.5 h Mars ecliptic Y Y Y Y N 1 10 234 O16O18+H2CO .1 km/s 100 km/s 200 K .01 K 2 K .07 K N/A 12x2 h Mars ecliptic Y Y Y Y N 1 10 230 O3 + H2O2 .1 km/s 100 km/s 200 K .01 K 2 K .07 K N/A 12x2 h Mars ecliptic Y Y Y Y N 1 10 350 NO .1 km/s 100 km/s 200 K .01 K 2 K .05 K N/A 12x2 h total time 92 h Notes: Venus observations are monitoring, and need to be separated over two years or so. Mars observations should be separated over a similar period -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Composition and dynamics of giant planet stratospheres Authors: E. Lellouch Abstract: ALMA can tackle a variety of problems related to giant planet stratospheres: (i) composition - search for new species (ii) dynamics from mapping of tracer species (including CO, HCN on Neptune, and CO, HCN,CS, injected from SL9 impact, on Jupiter) (iii) dynamics from direct wind measurements (iv) origin of external water from HDO search. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ----------- ------- -------- ------------ ---------- --------- ---- Jupiter ecliptic Y Y Y Y N 2 40 230 CO .05 km/s 20 km/s 150 K .01 K 5 K .03 K N/A 6x1 h Jupiter ecliptic Y Y Y Y N 2 40 266 HCN .05 km/s 20 km/s 150 K .01 K 5 K .03 K N/A 6x1 h Jupiter ecliptic Y Y Y Y N 2 40 350 CO + HCN .05 km/s 20 km/s 150 K .01 K 5 K .03 K N/A 6x1 h Jupiter ecliptic Y Y Y Y N 2 40 230 HDO 1 km/s 200 km/s 150 K .01 K 20 mK 2 mK N/A 2x12 h Jupiter ecliptic Y Y Y Y N 2 40 255 HC3N+CH3CN 1 km/s 200 km/s 150 K .01 K 5 K .05 K N/A 2x1 h Jupiter ecliptic Y Y Y Y N 2 40 245 CS 1 km/s 200 km/s 150 K .01 K 5 K .05 K N/A 2x1 h Jupiter ecliptic Y Y Y Y N 2 40 245* ?? 1 km/s 200 km/s 150 K .01 K 5 K .05 K N/A 6x1 h Jupiter ecliptic Y Y Y Y N 2 40 350* ?? 1 km/s 200 km/s 150 K .01 K 5 K .05 K N/A 6x1 h Jupiter ecliptic Y Y Y Y N 2 40 650* ?? 1 km/s 200 km/s 150 K .01 K 5 K .05 K N/A 6x1 h Saturn ecliptic Y Y Y Y N 2 15 230 CO .05 km/s 20 km/s 110 K .01 K 4 K .05 K N/A 6x1 h Saturn ecliptic Y Y Y Y N 2 15 266 HCN .05 km/s 20 km/s 110 K .01 K 4 K .05 K N/A 6x1 h Saturn ecliptic Y Y Y Y N 2 15 350 CO + HCN .05 km/s 20 km/s 110 K .01 K 4 K .05 K N/A 6x1 h Saturn ecliptic Y Y Y Y N 2 15 245* ?? 1 km/s 200 km/s 110 K .01 K 4 K .05 K N/A 6x1 h Saturn ecliptic Y Y Y Y N 2 15 350* ?? 1 km/s 200 km/s 110 K .01 K 4 K .05 K N/A 6x1 h Saturn ecliptic Y Y Y Y N 2 15 650* ?? 1 km/s 200 km/s 110 K .01 K 4 K .05 K N/A 6x1 h Uranus ecliptic Y Y N Y N 1 4 230 CO .05 km/s 20 km/s 80 K .01 K 3 K .1 K N/A 6x1 h Uranus ecliptic Y Y N Y N 1 4 266 HCN .05 km/s 20 km/s 80 K .01 K 3 K .1 K N/A 6x1 h Uranus ecliptic Y Y N Y N 1 4 350 CO + HCN .05 km/s 20 km/s 80 K .01 K 3 K .1 K N/A 6x1 h Uranus ecliptic Y Y N Y Y 1 4 245* ?? 1 km/s 200 km/s 80 K .01 K 3 K .1 K N/A 6x1 h Uranus ecliptic Y Y N Y Y 1 4 350* ?? 1 km/s 200 km/s 80 K .01 K 3 K .1 K N/A 6x1 h Uranus ecliptic Y Y Y Y Y 1 4 650* ?? 1 km/s 200 km/s 80 K .01 K 3 K .1 K N/A 6x1 h Neptune ecliptic Y Y N Y N .5 2 230 CO .05 km/s 20 km/s 80 K .01 K 25 K .5 K N/A 6x0.5 h Neptune ecliptic Y Y N Y N .5 2 266 HCN .05 km/s 20 km/s 80 K .01 K 25 K .5 K N/A 6x0.5 h Neptune ecliptic Y Y N Y N .5 2 350 CO + HCN .05 km/s 20 km/s 80 K .01 K 25 K .5 K N/A 6x0.5 h Neptune ecliptic Y Y N Y Y .5 2 245* ?? 1 km/s 200 km/s 80 K .01 K 25 K .5 K N/A 6x0.5 h Neptune ecliptic Y Y N Y Y .5 2 350* ?? 1 km/s 200 km/s 80 K .01 K 25 K .5 K N/A 6x0.5 h Neptune ecliptic Y Y Y Y Y .5 2 650* ?? 1 km/s 200 km/s 80 K .01 K 25 K .5 K N/A 6x0.5 h total time 154 h Notes: The '??' lines are searches, either for molecules not currently known, or blind. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Search for broad lines in the tropospheres of the giant planets Authors: E. Lellouch Abstract: A few molecular lines are expected to be formed in giant planet tropospheres (at 0.1-1 bar), and as such, to be broad (several GHz). Observing them would provide new information on the composition of giant planet tropospheres. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ---- ------- ----- ------------ ---------- --------- ------ Jupiter ecliptic Y Y Y Y N 2 40 230 CO 20 km/s 8 GHz 150 K .01 K 5 K .01 K N/A 6x10 m Jupiter ecliptic Y Y Y Y N 2 40 350 CO 20 km/s 8 GHz 150 K .01 K 5 K .01 K N/A 6x10 m Jupiter ecliptic Y Y Y Y N 2 40 267 PH3 20 km/s 8 GHz 150 K .01 K 30 K .01 K N/A 6x10 m Saturn ecliptic Y Y Y Y N 2 15 230 CO 20 km/s 8 GHz 110 K .01 K 4 K .01 K N/A 6x10 m Saturn ecliptic Y Y Y Y N 2 15 350 CO 20 km/s 8 GHz 110 K .01 K 4 K .01 K N/A 6x10 m Saturn ecliptic Y Y Y Y N 2 15 267 PH3 20 km/s 8 GHz 110 K .01 K 20 K .01 K N/A 6x10 m Uranus ecliptic Y Y N Y N 1 4 230 CO 20 km/s 8 GHz 80 K .01 K 3 K .01 K N/A 6x10 m Uranus ecliptic Y Y N Y N 1 4 350 CO 20 km/s 8 GHz 80 K .01 K 3 K .01 K N/A 6x10 m Uranus ecliptic Y Y N Y N 1 4 267 PH3 20 km/s 8 GHz 80 K .01 K 20 K .01 K N/A 6x10 m Neptune ecliptic Y Y N Y N .5 2 230 CO 20 km/s 8 GHz 80 K .01 K 4 K .01 K N/A 6x10 m Neptune ecliptic Y Y N Y N .5 2 350 CO 20 km/s 8 GHz 80 K .01 K 4 K .01 K N/A 6x10 m Neptune ecliptic Y Y N Y N .5 2 267 PH3 20 km/s 8 GHz 80 K .01 K 20 K .01 K N/A 6x10 m total time 12 h -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Chemical-dynamical couplings in Titan's atmosphere Authors: E. Lellouch Abstract: Titan's atmosphere, rich in hydrocarbons, nitriles and oxygenated compounds, is the place for strong chemical-dynamical couplings at these species exhibit strong seasonal variability, are influenced by the global circulation patterns, and participate in the atmospheric thermal balance. ALMA will map at 0.2" species such as CO, HCN, HC3N, CH3CN. Search for new species like CH3CCH, CH2NH, DCN etc... will be performed. Stratospheric winds will be measured and thermal profiles retrieved in all strong lines. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ---------- ------- ------ ------------ ---------- --------- ------ Titan ecliptic Y Y N Y N .2 .8 230 CO .2 km/s 2 GHz 80 K .01 K 30 K .5 K N/A 2x10 h Titan ecliptic Y Y N Y N .2 .8 255 HC3N+CH3CN .05 km/s 20 MHz 80 K .01 K 30 K 1 K N/A 2x10 h Titan ecliptic Y Y N Y N .2 .8 266 HCN .1 km/s 1 GHz 80 K .01 K 30 K 1 K N/A 2x10 h Titan ecliptic Y Y N Y N .2 .8 345 CO .2 km/s 2 GHz 80 K .01 K 30 K .5 K N/A 2x10 h Titan ecliptic Y Y N Y N .2 .8 355 HCN .1 km/s 1 GHz 80 K .01 K 30 K 1 K N/A 2x10 h Titan ecliptic Y Y Y Y N .2 .8 245* ?? .05 km/s .5 GHz 80 K .01 K 5 K .5 K N/A 2x10 h Titan ecliptic Y Y Y Y N .2 .8 350* ?? .05 km/s .5 GHz 80 K .01 K 5 K .5 K N/A 2x10 h Titan ecliptic Y Y Y Y N .2 .8 650* ?? .05 km/s .5 GHz 80 K .01 K 5 K .5 K N/A 2x10 h total 160 h Notes: The '??' lines are searches, either for molecules not currently known, or blind. observations repeated twice to get variability. DCN @ 490 GHz can't be done with initial bands. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Volcanism at Io Authors: E. Lellouch Abstract: Io's atmosphere is dominated by active volcanism that directly injects species like SO2, SO, NaCl into the atmosphere. This atmosphere shows unique spatial and temporal variability, which remains poorly characterized. ALMA can map the detected species, measure Doppler shifts that are due to planetary-wide circulation regimes or to plasma interactions and search for many new potential atmospheric molecules (OCS, S2O, KCl, Cl0...) as well as determine chlorine and sulfur isotopic ratios. All this bears implications on the composition of ionian lavae, magmas and interior. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ---------- -------- ------- ------------ ----------- --------- ------- Io ecliptic Y Y Y Y N .2 1.1 ~230 many .05 km/s 50 km/s 100 K .01 K 20 K 2 K N/A 10x10 h total 100 h Notes: If a volcanic "event" occurs, this could be a TOO observation, otherwise is just time-critical. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: The atmospheres of Triton, Pluto and other transneptunians (TNO) objects Authors: E. Lellouch Abstract: Triton and Pluto have detectable tenuous atmospheres with ~10 microbar pressure. These primarily N2 atmospheres exhibit slow time variation due to volatile migration and surface temperature changes. ALMA can search for new species in these atmospheres, in particular CO and HCN. Similarly the largest known TNOs, whose sizes approach 1500 km, may be able to retain atmospheres, and search for CO is warranted. Search for a possible atmosphere around Charon is warranted. High resolution observations of the atmospheres of Pluto and Triton could possibly allow for determination of winds therein (see the above discussions on this for Mars, Venus, and Titan). contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ---------- -------- ------- ------------ ----------- --------- ------- many ~ecliptic Y Y N N N .05 ~.05 230 CO .2 km/s 50 km/s 50 K .01 K ?? K 2 K N/A 4x24 h many ~ecliptic Y Y N N N .05 ~.05 266 HCN .2 km/s 50 km/s 50 K .01 K ?? K 2 K N/A 4x24 h many ~ecliptic Y Y N N N .05 ~.05 ~350 CO + HCN .2 km/s 50 km/s 50 K .01 K ?? K 2 K N/A 4x24 h Pluto/Triton ecliptic Y Y N N N .01 .1 230 CO 0.02 km/s 50 km/s 50 K .01 K ?? K .1 K N/A 4x6 h total 312 h Notes: The resolution here is not what is required during observation, but rather the size of the body, which is what is needed for the brightness temp rms calculation. These are point source detections - i.e., we don't *want* the body resolved (any resolution *worse* than this is OK), except for the dynamics one. Note that with the right correlator setup, the dynamics observation could be simultaneous with the coarser resolution one. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Albedos, sizes and surface properties of transneptunian objects Authors: E. Lellouch Abstract: The distribution of size in the Kuiper Belt is an indicator of formation and collisional evolution processes. Knowledge of the albedo of the objects is needed to correctly interpret their spectra, and to search for possible correlations in the albedo-size-color space that would trace their dynamical and collisional history. This can be obtained by measuring the continuum thermal flux of these objects. For the largest of these objects, mm lightcurves (i.e. the variation of the thermal flux with the object rotational phase) can be obtained, providing additional information on the object surface properties, particularly the thermal inertia. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ---------- -------- ------- ------------ ----------- --------- ------- many ~ecliptic Y Y N N N .05 ~.05 345 N/A N/A 16 GHz 1 mJy .1 K N/A N/A 140x1 h total 140 h Notes: The resolution here is not what is required during observation, but rather the size of the body, which is what is needed for the brightness temp rms calculation. These are point source detections - i.e., we don't *want* the body resolved (any resolution *worse* than this is OK). Each detection (to .1 K rms) takes about an hour. There might be 100 or so bodies, then some monitoring for the larger ones. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: A complete picture of an Earth-grazing short-period comet Authors: D. Bockelee-Morvan, N. Biver, F. Henry Abstract: With ALMA it will be possible to determine the relative abundances of a number of species in the coma of a short-period Earth-grazing comet, for comparison with determinations in Oort cloud (long-period) comets. All species identified in comet Hale-Bopp should be detected, leading to the first extensive chemical characterisation of a Jupiter family comet. In addition, several isotopic species will be detected (e.g. HDO, DCN, H13CN, HC15N, CS C- and S isotopes), whose abundances are key indicators of the origin of cometary material. Mapping of a few key lines will be made for comparison of the gas jets morphology to dust jets, and to identify molecules released by grains or formed by molecule decomposition in the coma. Simultaneous monitoring of CO and HCN over a few days is crucial to investigate sublimation and gas dynamic processes at the surface and above the nucleus as the nucleus is rotating. Continuum maps will provide the dust distribution of large sized particles and the dust-to-gas ratio. Attempt will be made to detect the nucleus (probably of order ~1 km radius) on the largest baselines. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ---------- -------- ------- ------------ ----------- --------- ------- comet any Y Y Y Y N 1 big ~230 many .1 km/s 20 km/s 10 mJy .1 K .005-.5 K ** N/A 2x36 h comet any Y Y Y Y N 1 big ~230 N/A N/A 8 GHz 10 mJy .1 K N/A ?? ?? +++ comet any Y Y Y Y N 1 big ~345 many .1 km/s 20 km/s 10 mJy .1 K .005-.5 K ** N/A 2x36 h comet any Y Y Y Y N 1 big ~345 N/A N/A 8 GHz 10 mJy .1 K N/A ?? ?? +++ total 144 h Notes: ** - SNR of 20-50 required for the lines. ++ - continuum done simultaneously with the lines, in another IF. Polarization should be taken if the correlator can be configured to do so, but not as a driver. Two such Earth-grazers might be observed in a 3-year period. These are time-critical, but will occur at a known time. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: A TOO observation of an Oort cloud comet Authors: D. Bockelee-Morvan, N. Biver, F. Henry Abstract: This is a target-of-opportunity program for observing a bright new comet with a water production rate of 1.E29 mol/s. Statistically, such a comet appears once per year. With ALMA it will be possible to determine the relative abundances of a number of species in its coma, for comparison with other Oort cloud comets and Jupiter family comets. Minor species identified in comet Hale-Bopp should be detected. In addition, several isotopic species will be observed (e.g. HDO, DCN, H13CN, HC15N, CS C- and S isotopes), whose abundances are key indicators of the origin of cometary material. The observations are very similar to the Earth-grazing comet example. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ---------- -------- ------- ------------ ----------- --------- ------- comet any Y Y Y Y N 1 big ~230 many .1 km/s 20 km/s 10 mJy .1 K .005-.5 K ** N/A 3x36 h comet any Y Y Y Y N 1 big ~230 N/A N/A 8 GHz 10 mJy .1 K N/A ?? ?? +++ comet any Y Y Y Y N 1 big ~345 many .1 km/s 20 km/s 10 mJy .1 K .005-.5 K ** N/A 3x36 h comet any Y Y Y Y N 1 big ~345 N/A N/A 8 GHz 10 mJy .1 K N/A ?? ?? +++ total 216 h Notes: ** - SNR of 20-50 required for the lines. ++ - continuum done simultaneously with the lines, in another IF. Polarization should be taken if the correlator can be configured to do so, but not as a driver. One such comet might be observed per year. These will be truly TOO observations, occurring at a completely unpredictable time. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Observations of the great comet of the decade Authors: D. Bockelee-Morvan, N. Biver, F. Henry Abstract: Bright new comets (here referred as comets A), with water production rates ~5E29 molecules/s at perihelion (q~1AU), can be observed statistically once every decade at geocentric distances of typically 1 AU. Active comets (QH2O~1E29 molecules/s) coming close to Earth (~0.1 AU) might be as well expected (comets B) during the first years of operation of ALMA. Observations with ALMA will allow: 1) to characterize their molecular and isotopic composition. New isotopic and molecular species will be searched for. 2) to map the spatial distribution of dust and molecular species with ALMA with unprecedented spatial resolution (specially for comets B), and study its evolution with nucleus rotation. 3) for the most productive comets (comets A), to monitor their dust and gaseous activity as a function of heliocentric distance. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ---------- -------- ------- ------------ ----------- --------- ------- comet any Y Y Y Y N 1 big ~230 many .1 km/s 20 km/s 10 mJy .1 K .005-.5 K ** N/A 3x36 + 10x2 h comet any Y Y Y Y N 1 big ~230 N/A N/A 8 GHz 10 mJy .1 K N/A ?? ?? +++ comet any Y Y Y Y N 1 big ~345 many .1 km/s 20 km/s 10 mJy .1 K .005-.5 K ** N/A 3x36 + 10x2 h comet any Y Y Y Y N 1 big ~345 N/A N/A 8 GHz 10 mJy .1 K N/A ?? ?? +++ total 256 h Notes: ** - SNR of 20-50 required for the lines. ++ - continuum done simultaneously with the lines, in another IF. Polarization should be taken if the correlator can be configured to do so, but not as a driver. One of each of type A & B comets might be observed over a 3 year period (plus monitoring). These will be truly TOO observations, occurring at a completely unpredictable time. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Characterization of the Jupiter-family comet population Authors: D. Bockelee-Morvan, N. Biver, F. Henry Abstract: About 30 comets have been observed by millimetre/submillimetre spectroscopy. A large diversity is observed in the relative abundances of parent molecules, such as HCN, CO, H2S, H2CO ... etc. However, only a few Jupiter-family comets could have been investigated because of their low activity, while they may present distinct composition with respect to Oort cloud comets. The sensitivity of ALMA opens a new window for establishing their composition. We propose to observe a few Jupiter-family comets (other than Earth-grazers) spectroscopically. We also propose to observe at least a few of them for thermal emission from the nucleus, at least Comet 81P/Wild 2 (target of NASA Stardust mission) and 10P/Tempel 2. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ---------- -------- ------- ------------ ----------- --------- ------- comet any Y Y Y Y N 1 big ~230 many .1 km/s 20 km/s 10 mJy .1 K .005-.5 K ** N/A 4x36 h comet any Y Y Y Y N 1 big ~230 N/A N/A 8 GHz 10 mJy .1 K N/A ?? ?? +++ comet any Y Y Y Y N 1 big ~345 many .1 km/s 20 km/s 10 mJy .1 K .005-.5 K ** N/A 4x36 h comet any Y Y Y Y N 1 big ~345 N/A N/A 8 GHz 10 mJy .1 K N/A ?? ?? +++ comet any Y Y Y Y N 1 big ~345 N/A N/A 8 GHz 10 mJy .1 K N/A ?? ?? 2x10 h total 308 h Notes: ** - SNR of 20-50 required for the lines. ++ - continuum done simultaneously with the lines, in another IF. Polarization should be taken if the correlator can be configured to do so, but not as a driver. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Is Hale-Bopp still alive? Authors: D. Bockelee-Morvan, N. Biver, F. Henry Abstract: CO outgassing is controlling cometary gaseous activity at large heliocentric distances. The CO J(2-1) line was detected in comet C/1995 O1 (Hale-Bopp) up to 14 AU from the Sun using the SEST telescope. At the beginning of 2011, Hale-Bopp will be at 31 AU from the Sun and Earth. With deep integration with ALMA, we may be able to recover the CO 230 GHz line. The line area over 0.6 km/s is expected to be 0.0006 K km/s (T main beam), for a CO production rate of QCO=1.1E27 mol/s. This production rate is expected if QCO decreases as the square of heliocentric distance (as observed between 1 and 14 AU). But modelling of sublimation processes often predict a much smaller decrease as due to sublimation from deep layers inside the nucleus. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time --------- ----------- - - -- -- --- ---- ---- ---- ---------- -------- ------- ------------ ----------- --------- ------- Hale-Bopp 00:30 -85.5 Y Y Y N N 1 ?? 230 CO 20 kHz 20 km/s N/A 10 mK 1 mK N/A 100 h total 100 h Notes: The time criticality here is not so much related to a true TOO type observation, but rather related to the relative geometry of the comet and the array. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Chiron distant activity Authors: D. Bockelee-Morvan, N. Biver, F. Henry Abstract: (2060) Chiron is a Centaur which orbits around the Sun between 8.5 and 18.9 AU and presents cometary-like activity, with a well developed dust coma and frequent outbursts. CO outgassing is likely at the origin of this activity, while CN is the only gaseous species detected in the coma. We propose to search for the CO J(2-1) and HCN J(1-0) lines with unprecedented sensitivity with ALMA. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------ ----------- - - -- -- --- ---- ---- ---- ---------- -------- ------- ------------ ----------- --------- ------- Chiron ecliptic Y Y Y N N 1 ?? 89 HCN 10 kHz 20 km/s N/A 10 mK 1 mK N/A 20 h Chiron ecliptic Y Y Y N N 1 ?? 230 CO 10 kHz 20 km/s N/A 10 mK 1 mK N/A 20 h total 40 h Notes: The time criticality here is not so much related to a true TOO type observation, but rather related to the relative geometry of the comet and the array. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: CO nucleus outgassing of 29P/Schwassmann-Wachmann 1 Authors: D. Bockelee-Morvan, N. Biver, F. Henry Abstract: Comet 29P/Schwassmann-Wachmann 1 is an unusual comet which orbits on an almost circular orbit at ~6 AU from the Sun. It shows a well developed dusty coma and recurrent outbursts. CO is the only detected parent molecule (through millimeter observations), and likely one of the main drivers of this activity. Maps of the CO J(2-1) line profiles show that part of the CO is not directly released by the nucleus, but presents a much more extended distribution due to diffuse production in the coma by possibly icy grains or a parent species, like CO2. By filtering the diffuse CO coma, interferometric maps will unravel CO outgassing from the nucleus and the kinematics of the inner coma. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time -------- ----------- - - -- -- --- ---- ---- ---- ------ -------- ------- ------------ ----------- --------- ------- 29P/S-W1 ecliptic Y N Y Y N .5 ?? 230 CO 10 kHz 20 km/s N/A 1 K .2 K N/A 40 h total 40 h -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Mapping the continuum emission from the giant planets Authors: B. Butler, M. Gurwell Abstract: Continuum observations of the atmospheres of the giant planets can be used to infer composition and temperature in the deep atmospheres of these bodies (see, e.g., de Pater & Massie 1985). Multi-wavelength observations then reveal the profile with pressure. Such observations can be used to infer dynamics and see seasonal changes (see, e.g., Hofstadter & Butler 2003). Belts and zones can be mapped on Jupiter and Saturn; discrete cloud features might be seen on Neptune (and Uranus?). contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ------ -------- ----- ------------ ----------- --------- ---- Jupiter ecliptic Y Y Y Y N 2 40 90 N/A N/A 8 GHz 150 K .1 K N/A N/A 10x.25h Jupiter ecliptic Y Y Y Y N 2 40 230 N/A N/A 8 GHz 150 K .1 K N/A N/A 10x.25h Jupiter ecliptic Y Y Y Y N 2 40 345 N/A N/A 8 GHz 150 K .1 K N/A N/A 10x.25h Jupiter ecliptic Y Y Y Y N 2 40 650 N/A N/A 8 GHz 150 K .1 K N/A N/A 10x.25h Saturn ecliptic Y Y Y Y N 2 40 90 N/A N/A 8 GHz 110 K .1 K N/A N/A 10x.25h Saturn ecliptic Y Y Y Y N 2 40 230 N/A N/A 8 GHz 110 K .1 K N/A N/A 10x.25h Saturn ecliptic Y Y Y Y N 2 40 345 N/A N/A 8 GHz 110 K .1 K N/A N/A 10x.25h Saturn ecliptic Y Y Y Y N 2 40 650 N/A N/A 8 GHz 110 K .1 K N/A N/A 10x.25h Uranus ecliptic Y Y Y Y N 2 40 90 N/A N/A 8 GHz 80 K .1 K N/A N/A 10x.25h Uranus ecliptic Y Y Y Y N 2 40 230 N/A N/A 8 GHz 80 K .1 K N/A N/A 10x.25h Uranus ecliptic Y Y Y Y N 2 40 345 N/A N/A 8 GHz 80 K .1 K N/A N/A 10x.25h Uranus ecliptic Y Y Y Y N 2 40 650 N/A N/A 8 GHz 80 K .1 K N/A N/A 10x.25h Neptune ecliptic Y Y Y Y N 2 40 90 N/A N/A 8 GHz 80 K .1 K N/A N/A 10x.25h Neptune ecliptic Y Y Y Y N 2 40 230 N/A N/A 8 GHz 80 K .1 K N/A N/A 10x.25h Neptune ecliptic Y Y Y Y N 2 40 345 N/A N/A 8 GHz 80 K .1 K N/A N/A 10x.25h Neptune ecliptic Y Y Y Y N 2 40 650 N/A N/A 8 GHz 80 K .1 K N/A N/A 10x.25h total 40 h Notes: This might be combined in some ways with the mapping of broad tropospheric lines entry above, but really is probably separate. Each of these observations can be short, and would involve scanning across the band (although it makes no sense to observe more often than one weighting function per scale height), and then should be repeated for longitudinal and seasonal coverage - i.e., in a single hour, you could probably do all of the bands, all across them, for a single object (hence the .25 hours per observation per band per object). -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Mapping the surfaces of the Moon, Mercury and Mars Authors: B. Butler Abstract: ALMA will be able to map with unprecedented accuracy and fidelity the millimeter wavelength emission from the solid surfaces of the terrestrial planets (with the exception of Venus). Such maps will provide us with information on the thermal and electrical properties of the surface and near-surface, as well as the surface texture - see e.g. Rudy et al. 1987; Mitchell & de Pater 1994. For Mercury, the question of the presence of a molten liquid core may be answered if the accuracy is good enough. In addition, the temperature can be determined in the polar cold traps, which might be locations of water ice stability (this will require high resolution). For Mars, results will be compared to those returned from spacecraft in orbit at the time. This might also be true for the Moon. Maps should be made at all wavelengths, many of which will have to be mosaics because of the large size of the bodies (notably the Moon). contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- ----------- - - -- -- --- ---- ---- ---- ------ -------- ----- ------------ ----------- --------- ---- Moon ecliptic Y Y Y Y N 2 1800 90 N/A N/A 8 GHz 200 K 2 K N/A 5 K .1 K 6 h Moon ecliptic Y Y Y Y N 2 1800 230 N/A N/A 8 GHz 200 K 2 K N/A 5 K .1 K 6 h Mars ecliptic Y Y Y Y N .1 10 90 N/A N/A 8 GHz 200 K 2 K N/A 5 K .1 K 6 h Mars ecliptic Y Y Y Y N .1 10 230 N/A N/A 8 GHz 200 K 2 K N/A 5 K .1 K 6 h Mars ecliptic Y Y Y Y N .1 10 345 N/A N/A 8 GHz 200 K 2 K N/A 5 K .1 K 6 h Mars ecliptic Y Y Y Y N .1 10 650 N/A N/A 8 GHz 200 K 2 K N/A 5 K .1 K 6 h Mercury ecliptic Y Y Y Y N .1 10 90 N/A N/A 8 GHz 450 K 2 K N/A 10 K .1 K 6 h Mercury ecliptic Y Y Y Y N .1 10 230 N/A N/A 8 GHz 450 K 2 K N/A 10 K .1 K 6 h Mercury ecliptic Y Y Y Y N .1 10 345 N/A N/A 8 GHz 450 K 2 K N/A 10 K .1 K 6 h Mercury ecliptic Y Y Y Y N .1 10 650 N/A N/A 8 GHz 450 K 2 K N/A 10 K .1 K 6 h Mercury ecliptic Y Y Y Y N .05 10 345 N/A N/A 8 GHz 450 K 2 K N/A 10 K .1 K 6 h total 66 h Notes: The mosaics of the Moon will contain some million or so pointings and must be done in OTF interferometer mode. The noise in 10 msec is plenty good enough though, even to get the 0.1 K in polarized brightness. Mercury should be observed at conjunction, which occurs frequently enough that it shouldn't be a problem. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Mapping the surfaces of large icy bodies Authors: B. Butler Abstract: ALMA will be able to map with unprecedented accuracy and fidelity the millimeter wavelength emission from the solid surfaces of the larger icy bodies in the solar system, including jovian, saturnian, uranian and neptunian satellites, Pluto & Charon, and the larger of the TNOs. Such maps will provide us with information on the thermal and electrical properties of the surface and near-surface, as well as the surface texture - which may hold clues to composition - see, e.g., Muhleman & Berge 1991; Jewitt 1994; Lellouch et al. 2000. When Pluto and Charon are imaged, they should be sufficiently far apart that they can be distinguished. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------------ -------- - - -- -- --- ---- ---- ---- ------ -------- ----- ------------ ----------- --------- ------ icy sat/TNO ecliptic Y Y N N N .1 .1-1 345 N/A N/A 8 GHz 50-100 K 1 K N/A 1 K .1 K 40x2 h Pluto/Charon ecliptic Y Y N N N .01 .1 345 N/A N/A 8 GHz 40 K 1 K N/A 1 K .1 K 4x6 h total 104 h -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Structure and composition of Saturn's rings Authors: B. Butler Abstract: Observations at millimeter wavelengths will constrain the size distribution and properties of the rings of Saturn - see, e.g., Grossman et al. 1989; van der Tak et al. 1999. In addition, structures (density waves, e.g.) will be observed, allowing for constraints on their formation mechanism. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------ -------- - - -- -- --- ---- ---- ---- ------ -------- ----- -------------- ----------- --------- ----- Saturn ecliptic Y Y Y Y N .1 30 90 N/A N/A 8 GHz 10-100 K .5 K N/A 1 K .1 K 4x4 h Saturn ecliptic Y Y Y Y N .1 30 345 N/A N/A 8 GHz 10-100 K .5 K N/A 1 K .1 K 4x4 h Saturn ecliptic Y Y Y Y N .1 30 650 N/A N/A 8 GHz 10-100 K .5 K N/A 1 K .1 K 4x4 h total 48 h -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Mapping the surfaces of larger asteroids Authors: B. Butler Abstract: The larger main belt asteroids can be mapped in a way similar to the terrestrial planets, yielding similar information (see that abstract). Information on the structure of the surface and near-surface will help constrain the formation history of these bodies. This kind of observation will also be a requirement for using these bodies (those with diameter >~ 200 km) as secondary calibrators, as their brightness distribution (or at the very least their millimetric light curve) will have to be well known. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ---- -------- - - -- -- --- ---- ---- ---- ------ -------- ----- -------------- ----------- --------- ------ MBA ecliptic Y Y N N N .05 .1-1 345 N/A N/A 8 GHz ~100 K 1 K N/A 3 K .1 K 60x1 h MBA ecliptic Y Y N N N 1 .1-1 90 N/A N/A 8 GHz ~100 K 1 K N/A 3 K .1 K 15x1 h MBA ecliptic Y Y N N N 1 .1-1 230 N/A N/A 8 GHz ~100 K 1 K N/A 3 K .1 K 15x1 h MBA ecliptic Y Y N N N 1 .1-1 650 N/A N/A 8 GHz ~100 K 1 K N/A 3 K .1 K 15x1 h total 105 h Note: In an hour, you can do about 10 of the mapping obsns, as the sensitivity in 5 minutes is enough to get 1 K. With roughly 150 of these bodies, and 4 or so observations for each of them for full surface coverage, that gives about 60 1 hour sessions. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Sizes and albedoes of NEAs Authors: B. Butler Abstract: Thermal emission observations of NEAs, when combined with optical/NIR observations, will provide accurate measures of their sizes and albedoes. This is very similar to the situation with MBAs, where early sizes and albedoes determined from optical observations were found to be seriously in error in many instances when confronted with the more accurate determination from observations of the emission (the crossover wavelength for emission vs. reflection is of order 10 microns). There are generally ~10 NEA opportunities per year. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ---- -------- - - -- -- --- ---- ----- ---- ------ -------- ----- -------------- ----------- --------- ------ NEA ecliptic Y Y N N N any small 345 N/A N/A 8 GHz ~200 K 1 K N/A 3 K .1 K 30x1 h total 20 h Note: These will be mostly TOO observations, occurring at truly unpredictable times. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Astrometry of NEAs and TNOs Authors: B. Butler Abstract: ALMA will provide valuable input on the positions, and hence orbits, of NEAs and TNOs - a valuable tool in determining the formation and orbit history and evolution of these bodies. For NEAs, this is particularly important, as observations can be carried out in daytime. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ------- -------- - - -- -- --- ---- ----- ---- ------ -------- ----- -------------- ----------- --------- ------- NEA/TNO ecliptic Y Y N N N any small 345 N/A N/A 8 GHz 40-200 K 1 K N/A 3 K .1 K 60x.5 h total 30 h Note: These will be mostly TOO observations, occurring at truly unpredictable times. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Radar observations of NEAs Authors: B. Butler Abstract: Radar observations are a powerful way to measure surface and near-surface properties of solid bodies. In addition, orbit and spin state are accurately measured this way - see, e.g., de Pater et al. 1994. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ---- -------- - - -- -- --- ---- ----- ---- ------ -------- ------ ---------- --------------- -------------- ----- NEA ecliptic Y Y N N N .05 small 90 radar ~1 Hz 10 kHz N/A 1000 Jy 10 mJy 100 Jy 10 mJy 4x3 h total 12 h Note: These will be purely TOO observations, occurring at unpredictable times. This presumes the existence of a radar transmitting 100 kW through a 50-m aperture at 90 GHz, and that the NEA comes by at the right time (when the array is in spread out configuration). It also presumes that the correlator (or some other data acquisition hardware or software) can provide the necessary frequency resolution. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Radar observations of comets Authors: B. Butler Abstract: Radar observations of comets provide information on nucleus size and rotation, and on the size distribution and shape of the particles in the halo (if detected). They are nearly unique in this ability - see, e.g., Harmon et al. 1999. Only fairly productive comets can be detected this way, either a Earth-grazing short period comet, a productive long-period comet, or the 'comet of the century.' contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ----- -------- - - -- -- --- ---- ----- ---- ------ -------- ------ ---------- --------------- -------------- ----- comet ecliptic Y Y N N N .1 large 90 radar ~1 Hz 10 kHz N/A 100 Jy? 10 mJy 10 Jy? 10 mJy 4x3 h total 12 h Note: These will be purely TOO observations, occurring at unpredictable times. This presumes the existence of a radar transmitting 100 kW through a 50-m aperture at 90 GHz, and that the comet comes by at the right time (when the array is in spread out configuration), though for this it is not as critical as for the NEA radar observation - the halo might be quite large anyway. It also presumes that the correlator (or some other data acquisition hardware or software) can provide the necessary frequency resolution. -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- Title: Search for extrasolar planets via astrometry of nearby stars Authors: B. Butler Abstract: The orbit of any planet around its central star causes that star to undergo a reflexive circular motion around the star-planet barycenter. By taking advantage of the incredibly high resolution of ALMA in its widest configuration, we may be able to detect this motion. Taking the stellar catalogs of Gliese & Jahreiss (1988) and Hipparcos (Perryman et al. 1997), and computing how many of these might have detectable wobble gives: companion mass # G&J # Hipp 5*jovian 200 800 jovian 120 180 neptunian 30 0 Details are in Butler & Wootten (2000). Realistically, we might expect to monitor some few hundred of these, perhaps up to 1000, notably the solar-type ones in the G&J catalog (of which there are 130 total). Each observation takes about 1 minute, so with overhead this might be 1 day total for each set of observations (for 1000 stars), which would be spread over several days to get the required sky coverage. We will require at least 3 different epochs, and likely more - a reasonable estimate might be one set of observations per 6 months, meaning 6 total sets of observations in 3 years. contin line poln name RA&DEC m T SD CA sub resn size freq line dfreq BW fd rms fd rms fd rms time ----- -------- - - -- -- --- ---- ----- ---- ---- ------ ------ ------------------ ------------ ----------- ------ stars any Y Y N N N .01 small 345 N/A N/A 8 GHz ~.1-10 mJy .1 mJy N/A N/A 6x24 h total 144 h Notes: these are moving, albeit relatively slowly, but it will have to be accounted for properly since this is astrometry. The timing is not critical, except to separate the sessions by some period of roughly 6 months.