Memo Review
Memo: 434 - Load Calibration at Millimeter and Submillimeter Wavelengths
Mangum, 2002Sep12
Reviewer: Stephane Guilloteau (unsolicited)
Date Received: 2002Oct04
Review:
This paper presents a derivation of the expected accuracy of the
calibration systems. However, it contains a major error for the
one-load case which leads to extremely significant overestimates of the
errors in that system. The author assumes tau_s and tau_i to be
independent variables, which is not true. In fact tau_s and tau_i are
essentially 100 % correlated. In general, at frequency nu,
tau_s (t) = tau_i(t) + Delta_tau(nu)
where Delta_tau(nu) is essentially a constant in time because it mostly
depends on Oxygen. There are frequencies where the relationship between
tau_s and tau_i is not that simple, but the high correlation remains
(e.g. around the 183 GHz water vapor line).
So Eq.19 is erroneous, and all results for one-load (and
semi-transparent) vane based on the opacity are wrong.
Moreover, the estimated variation of Jm of up to 10 % is not justified.
In fact, simple atmospheric models show that Jm should not vary this
much. The effect of variations in Jm will depend on whether ABSOLUTE
calibration is desired or only RELATIVE calibration (i.e. stable as
function of time).
Further comments:
-----------------
I realized that most quantities are defined only in the Appendix. This
is rather inconvenient for the most important ones (e.g. f, R_i)
Page 3: In Eq.2, there is a parameter called "f" which is not defined,
and does not seem to correspond to anything real. If I take the
definition from the appendix, then Eq.2 is incorrect since part of the
beam remains coupled to other terms.
Page 3: Eq.3 corresponds to the Single-Dish case. There is a slightly
different equation for an interferometer, which actually makes the
system temperature appear explicitely later on.
Page 3-4: It would be good to remind people that G_s = 1/(1+R_i) and
G_i = R_i/(1+R_i) if R_i is the image to signal gain ratio
Page 5: Section 4.1. R_i appears in Eq.13 but is defined nowhere (well,
only in Appendix)
Page 5: Section 4.2. It is written f_1 = f_2 = f, but what is f?
That $f$ appears in Eq.14, and does not seem to correspond to any
physical quantity.
Page 6: Section 4.3. Here we can understand from f_1 = f and f_2 = 1-f
that f is the vane transmission, but it would be good to write it
explicitely.
Section 5.1: Js and Ji are not independent variables. They are 100 %
correlated. Eq.17 actually does not use them as free variables. The
free variables are Tload(1,2) n_l, R_i, tau_s, f1, f2 as used in Eq.17.
Section 5.2: As above, plus tau^s and tau^i which are also not
independent variables. However, here Eq.18 erroneously assumes tau_s
and tau_i to be independent. This is wrong. In most cases,
tau_s = tau_i + Cte, so they are 100 % correlated. In fact, in the low
opacity case, it is easy to see that tau_s and tau_i appear with
opposite signs in Eq.15. Taking them as independent leads to a totally
erroneous conclusion. In the homogeneous temperature case
(Jm = Jspill = Jload), the derivative of Eq.15 vis a vis tau is zero.
The true "free" parameters to be used Tau_s, and Tau_s-Tau_i which is
in most cases a constant in time.
Page 14: Why does Jsky_hot depend on Jm, if it is "emission which
terminates to ground"? I would assume it is "emission which terminates
to SKY".