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ABSTRACT

We model the time variability of ∼9000 spectroscopically confirmed quasars in SDSS Stripe 82 as a damped
random walk (DRW). Using 2.7 million photometric measurements collected over 10 yr, we confirm the results
of Kelly et al. and Kozłowski et al. that this model can explain quasar light curves at an impressive fidelity
level (0.01–0.02 mag). The DRW model provides a simple, fast (O(N) for N data points), and powerful statistical
description of quasar light curves by a characteristic timescale (τ ) and an asymptotic rms variability on long
timescales (SF∞). We searched for correlations between these two variability parameters and physical parameters
such as luminosity and black hole mass, and rest-frame wavelength. Our analysis shows SF∞ to increase with
decreasing luminosity and rest-frame wavelength as observed previously, and without a correlation with redshift.
We find a correlation between SF∞ and black hole mass with a power-law index of 0.18 ± 0.03, independent of
the anti-correlation with luminosity. We find that τ increases with increasing wavelength with a power-law index
of 0.17, remains nearly constant with redshift and luminosity, and increases with increasing black hole mass with
a power-law index of 0.21 ± 0.07. The amplitude of variability is anti-correlated with the Eddington ratio, which
suggests a scenario where optical fluctuations are tied to variations in the accretion rate. However, we find an
additional dependence on luminosity and/or black hole mass that cannot be explained by the trend with Eddington
ratio. The radio-loudest quasars have systematically larger variability amplitudes by about 30%, when corrected for
the other observed trends, while the distribution of their characteristic timescale is indistinguishable from that of
the full sample. We do not detect any statistically robust differences in the characteristic timescale and variability
amplitude between the full sample and the small subsample of quasars detected by ROSAT. Our results provide
a simple quantitative framework for generating mock quasar light curves, such as currently used in LSST image
simulations.
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1. INTRODUCTION

The optical variability of quasars has been recognized since
they were first identified (Matthews & Sandage 1963). Indeed,
most quasars are variable (∼90% at the 0.03 mag rms level;
Sesar et al. 2007), and the variations in brightness are aperi-
odic and on the order of 20% on timescales of months to years
(e.g., Hook et al. 1994; Vanden Berk et al. 2004). Further-
more, the smooth power spectra suggest a chaotic, or stochas-
tic, origin for the variability. A range of models have been
advanced to describe quasar variability, including supernova
bursts, microlensing, and accretion disk instabilities (Aretxaga
et al. 1997; Hawkins 1993; Kawaguchi et al. 1998; Trèvese &
Vagnetti 2002). These models are discussed and compared in
Hawkins (2007). Reverberation mapping studies (e.g., Peterson
et al. 2005) show that the broad emission lines respond to con-
tinuum fluctuations, therefore providing strong evidence that
the variability is intrinsic to the quasars. A number of studies
have utilized standard accretion disk models to demonstrate that
the optical–UV variability of quasars could be driven by a vari-
able accretion rate (e.g., Pereyra et al. 2006; Li & Cao 2008; Liu
et al. 2008). Blackburne & Kochanek (2010) find evidence in the
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light curves of microlensed quasars that the optical variability
is caused by a change in the effective area of the accretion disk.

Recently, Kelly et al. (2009, hereafter KBS09) proposed a
model where the optical variability is described by a damped
random walk (DRW; a self-correcting term added to a random
walk model that acts to push any deviations back toward the
mean value). They proposed that the variability timescale might
be identified with the thermal timescale of accretion disks, as
also proposed by Collier & Peterson (2001). A thermal origin
of the variability would explain why quasars become bluer as
they brighten (e.g., Giveon et al. 1999; Trèvese et al. 2001; Geha
et al. 2003).

Although the physical causes have yet to be proven, it has
been established by KBS09 and Kozłowski et al. (2010a, here-
after Koz10) that a DRW can statistically explain the observed
light curves of quasars. Using 100 well-sampled single-band
light curves compiled from the literature, KBS09 show that this
stochastic process is capable of modeling complex quasar light
curves at an impressive fidelity level (0.01–0.02 mag). Koz10
applied the model to the Optical Gravitational Lensing Exper-
iment (OGLE) light curves (Udalski et al. 1997; Udalski et al.
2008) of mid-infrared-selected quasars behind the Magellanic
Clouds from Kozłowski & Kochanek (2009). Their analysis
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shows that this stochastic model is robust enough to efficiently
select quasars from other variable sources (see Schmidt et al.
2010 for a different method of selecting quasars based on vari-
ability). The model has only three free parameters: the mean
value of the light curve, the driving amplitude of the stochastic
process, and the damping timescale. The predictions are only
statistical and the random nature reflects our uncertainty about
the details of the physical processes.

Instead of applying a model to observed light curves for indi-
vidual quasars, numerous studies have looked at the ensemble
variability of quasars, particularly in samples where individual
light curves are not available. Significant progress in the de-
scription of quasar variability has been made by employing the
Sloan Digital Sky Survey (SDSS) data (Vanden Berk et al. 2004,
hereafter VB04; Ivezić et al. 2004, hereafter I04; de Vries et al.
2005; Wilhite et al. 2005, 2006, 2008; Sesar et al. 2006). For
example, the size and quality of the sample analyzed by VB04
(two-epoch photometry for 25,000 spectroscopically confirmed
quasars) allowed them to constrain how quasar variability in the
rest-frame optical/UV regime depends upon rest-frame time lag
(up to ∼2 yr), luminosity, rest wavelength, redshift, the pres-
ence of radio and X-ray emission, and the presence of broad
absorption line systems. Using repeated SDSS photometric ob-
servations, Wilhite et al. (2008) confirmed the result of Wold
et al. (2007) that variability is correlated with black hole mass
and show that this is independent of the anti-correlation be-
tween variability and luminosity established by many studies.
This led them to suggest that the amplitude of variability may
be driven by the quasar’s Eddington ratio, implying differences
in accretion rate.

These studies typically quantify the observed optical vari-
ability of quasars using a structure function (SF) analysis (see
also Hughes et al. 1992; Collier & Peterson 2001; Bauer et al.
2009; Kozłowski et al. 2010b), where the SF is the rms mag-
nitude difference as a function of the time lag (∆t) between
measurements. This autocorrelation-like function is less sensi-
tive to aliasing and other time-sampling problems than a power
spectral distribution (PSD). By studying the magnitude differ-
ence distribution for appropriately chosen subsamples with fixed
values of absolute i-band magnitude (Mi), rest-frame time lag
(∆tRF, in days), and wavelength (λRF, in Å), the mean depen-
dence of the SF on these quantities was inferred by I04 to be

SFmodel = A[1 + B Mi]
(

∆tRF

λRF

)C

mag, (1)

with A = 1.00 ± 0.03, B = 0.024 ± 0.04, and C =
0.30 ± 0.05. A qualitatively similar result was obtained by
VB04. Kozłowski et al. (2010b), in the first large study of the
mid-IR SFs of quasars, also found lower variability for higher
luminosities and longer wavelengths, but the temporal slope of
the ensemble SFs was significantly steeper than in the optical. In
addition, there is evidence for a turnover in the SF on long time
lags (I04; Rengstorf et al. 2006; Wold et al. 2007). Studies by de
Vries et al. (2005) and Sesar et al. (2006) using SDSS combined
with earlier Palomar Observatory Sky Survey measurements for
40,000 SDSS quasars constrained quasar continuum variability
on timescales of 10–50 yr in the observer’s frame. They report
that the characteristic timescale, which in this context is the
time lag above which the SF flattens to a constant value, is
of order 1 yr in the quasar rest frame. Using a shot-noise
light curve model, de Vries et al. (2005) found evidence for
multiple variability timescales in long-term ensemble variability
measurements, while Collier & Peterson (2001) found a wide

range of different timescales in their analysis of individual light
curves, and even evidence for multiple timescales in a single
active galactic nucleus (AGN).

These analyses of ensemble variability are based on a funda-
mental assumption that photometric observations at two epochs
for a large number of quasars will reveal the same statistical
properties as well-sampled light curves for individual objects.
This assumption has been tested by MacLeod et al. (2008) using
light curves for spectroscopically confirmed quasars observed
roughly 50 times over 8 yr in SDSS Stripe 82 (S82). They found
that while the mean SF for individual sources is consistent with
Equation (1), the contribution of the mean trends to the observed
dispersion in variability properties is minor compared to an in-
trinsic stochasticity of unknown origin. Further investigation of
this stochastic behavior is one of the main goals of this study.

In order to better understand the relationship between the two
types of data analyses (individual versus ensemble quasar vari-
ability), and to begin linking to physical models, we apply the
DRW model to the ugriz light curves of ∼9000 spectroscopi-
cally confirmed SDSS S82 quasars. This large sample greatly
benefits from the robust, accurate, five-band SDSS photometry.
We estimate the variability parameters following Koz10, who
demonstrated that their approach is more statistically powerful
than the forecasting methods used by KBS09. We also note that
both the Koz10 and KBS09 approaches are much faster than
that used by Schmidt et al. (2010), requiring only O(N) rather
than O(N2) operations to determine the model parameters for a
light curve with N data points.

In Section 2, we describe the model, define our variability
parameters, and demonstrate their relationship to those utilized
in previous studies. In Section 3, we introduce the S82 data set
and outline our initial light curve selection. In Section 4, we
present the best-fit variability parameters for our final sample
of light curves and estimate their scatter due to the limited
time sampling of SDSS. We also estimate the sensitivity of
our results to variations in the slope of the model power
spectrum on long timescales. In Section 5, we describe the
relationship between the long-term variability parameters and
physical parameters such as wavelength, absolute magnitude,
black hole mass, and Eddington ratio. Using these results, we
also provide a prescription for simulating mock quasar light
curves. In Section 6, we explore the variability properties of
subsamples detected at radio and X-ray wavelengths. Finally,
we summarize our results in Section 7.

2. METHODOLOGY

We model the time variability of quasars as a stochastic
process described by the exponential covariance matrix

Sij = σ 2 exp(−|ti − tj |/τ ) (2)

between times ti and tj. As detailed by KBS09 and
Koz10, this corresponds to a DRW (more specifically, an
Ornstein–Uhlenbeck process) with a damping timescale τ , also
called the characteristic timescale, and a long-term standard de-
viation of variability8σ . Following Koz10, we model the light
curves and estimate the parameters and their uncertainties using
the method of Press et al. (1992), its generalization in Rybicki
& Press (1992), and the fast computational implementation de-
scribed in Rybicki & Press (1995). Koz10 demonstrate that

8 The σ used here is related to the σ used in KBS09 (σKBS) and the parameter
σ̂ used in Koz10 as σKBS = σ̂ = σ

√
2/τ .
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this approach is more statistically powerful than the forecasting
methods used by KBS09, while still having computation times
scaling linearly with the number of data points.

2.1. Structure Function for the Damped Random Walk Model

For our analysis, we express the long-term variability in terms
of the SF in order to relate to our previous studies and to
those of two-epoch samples. The first-order SF is SF2(∆t) =
2σ 2[1 − ACF(∆t)] (e.g., Hughes et al. 1992), where the auto-
correlation function for a DRW is ACF(∆t) = exp (−|∆t |/τ )
(Equation (A6) in KBS09). This ACF results in the SF:9

SF(∆t) = SF∞(1 − e−|∆t |/τ )1/2. (3)

Asymptotic values of the SF at large and small ∆t are

SF(∆t & τ ) ≡ SF∞ =
√

2σ,

SF(∆t ( τ ) = σ

√
2|∆t |
τ

= SF∞

√
|∆t |
τ

. (4)

The form SF ∝ |∆t |β is equivalent to a power spectral
distribution PSD ∝ f α , where α = −2β − 1 (see the Appendix
of Bauer et al. 2009; KBS09). The SF at small time lags is
therefore equivalent to a power spectral distribution PSD ∝
f −2. We adopt SF∞ and τ as our two main variability model
parameters.

2.2. Model Light Curves

Equipped with a statistical description of quasar variability,
we generate well-sampled light curves in order to (1) demon-
strate the relationship between our variability parameters and
the traditional SF analyses of many previous works and (2) to
estimate the systematic effects that the sampling rate and light
curve length have on the fitted parameters. The latter is espe-
cially important because the S82 data are fairly sparse. As shown
below and in Section 4.2, these indeed have a large impact.

A light curve is generated using only three input parameters:
SF∞, τ , and the mean value of the light curve, µ. The magnitude
X(t) at a given timestep ∆t from a previous value X(t − ∆t) is
drawn from a normal distribution with a mean and variance
given by

E(X(t)|X(t − ∆t)) = e−∆t/τX(t − ∆t) + µ(1 − e−∆t/τ )
Var(X(t)|X(t − ∆t)) = 0.5(SF∞)2(1 − e−2∆t/τ ) (5)

(Equations (A4) and (A5) in KBS09). The asymptotic variance
of the time series is then 0.5(SF∞)2. The top panel of Figure 1
shows a segment of a well-sampled light curve generated
using τ = 20 days, SF∞ = 0.14 mag, and a time sampling
of 0.1(∆t/τ ). The structure function, SF(∆t), is computed by
collecting the differences in magnitude for all points in the light
curve separated by a given time lag, ∆t . The distribution of
magnitude differences (∆m) is Gaussian by construction and
the rms of the ∆m distribution is the SF value for that time lag.

When fitting values for SF∞ and τ for a given light curve,
the length of time that it spans plays an important role. For
example, in Figure 1, the SF computed for the full light curve
length of 1500τ (82 yr) is much smoother than that computed
for three equal sections, each spanning 27 yr. Therefore, the

9 The functional form of SF(∆t) fit to the long-term SDSS–POSS data in
Sesar et al. (2006), see their Equation (5), is similar but not identical to the
functional form given by Equation (3).

Figure 1. Top panel shows a segment of a simulated light curve with τ = 20 days
and SF∞ = 0.10 mag. In the bottom panel, triangles, squares, and crosses
represent the SF computed for the first, second, and third sections of the total light
curve, respectively (each has a length of 500τ ). The increased scatter in SF(∆t)
at large time lags is due to the finite length of each light curve section—the
scatter decreases when using the entire light curve length of 1500τ (as shown
by the solid line). The short-dashed line is a power-law fit, SF(∆t) ∝ ∆tβ with
β = 0.3, to the data points with 0.15 < ∆t/τ < 3. The long-dashed line is the
true function SF = SF∞[1 − e−∆t/τ ]1/2.
(A color version of this figure is available in the online journal.)

determination of variability parameters for S82 quasars will be
affected by their light curve lengths, which are typically 10τ .
When the light curve is too short, it is easy to overestimate τ
because there is no information on the timescale of the break
(where SF(∆t) flattens to SF∞). The model will reproduce
the observed variance in the light curve by overestimating
SF∞ * (SF∞)true(τ/∆t)1/2, and therefore σ̂ = SF∞/

√
τ is

the more robustly estimated model parameter when τ cannot be
well determined.

2.3. Comparison with Published Work

Before interpreting the form of SF(∆t), we summarize the
major differences between our S82 analysis and previous
studies based on ensemble SFs. The ensemble SF is computed
using only a few observations of many quasars, combining
all magnitude differences to find SF(∆t). Using an ensemble
approach is beneficial because it enables one to constrain the
average variability properties when it is difficult to constrain
such quantities for individual quasars. Indeed, even with well-
sampled light curves, spurious breaks in the individual SFs
are common (Emmanoulopoulos et al. 2010). However, in
previous works (e.g., I04; de Vries et al. 2005), the characteristic
timescale is defined as the time lag at which the ensemble SF(∆t)
flattens to a constant value, and thus it represents some complex
average over the intrinsic τ distribution. In contrast, by applying
a stochastic model to the individual S82 light curves, we are
relatively insensitive to time sampling issues (for details, see
KBS09), and we obtain a model fit for every quasar in each
filter described by the parameters SF∞ and τ .
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A power-law fit to SF(∆t) has previously been a common way
to describe SF(∆t), and even to reject certain classes of models
(e.g., Kawaguchi et al. 1998; VB04; I04). However, Figure 1
shows that the best-fit power-law index is extremely sensitive
to the fitted range of ∆t/τ . For example, for 0.1 < ∆t/τ < 1,
SF(∆t) is well fit by a power law with an index of ∼0.5, while
for 0.15 < ∆t/τ < 3, we obtain a strongly biased power-law
index of 0.3. Furthermore, each quasar has its own values of τ
and SF∞ and the ensemble SF is a convolution of the individual
SFs with their distribution in parameters,

SF(∆t) =
∫

dτdSF∞
d2n

dτdSF∞
SF(∆t |τ, SF∞), (6)

where SF(∆t |τ, SF∞) (Equation (3)) is the SF at time ∆t for
a quasar with variability parameters τ and SF∞. Hence, the
ensemble SF is only indirectly related to the SF for any particular
quasar and results based on fitting a power law to observed
ensemble SFs should be interpreted with caution.

3. THE SDSS STRIPE 82 QUASAR DATA SET

The SDSS (York et al. 2000) provides homogeneous and
deep (r < 22.5) photometry in five passbands (ugriz; Fukugita
et al. 1996; Gunn et al. 1998; Smith et al. 2002) accurate to
0.02 mag, of almost 12,000 deg2 in the Northern galactic cap
(NGC), and a smaller, but deeper, survey of 290 deg2 in the
Southern galactic hemisphere. For this 290 deg2 area known
as S82, there are on average more than 60 available epochs
of observations. These data were obtained in yearly “seasons”
about 2–3 months long over the last decade and the cadence
effectively samples timescales from days to years. The light
curve lengths are effectively shorter than the actual period of the
survey because the better-sampled supernova observations begin
about 5 yr into the survey. Because some observations were
obtained in non-photometric conditions, improved calibration
techniques have been applied to SDSS S82 data by Ivezić et al.
(2007) and Sesar et al. (2007), and we use their results. For these
data, photometric zero-point errors are 0.01–0.02 mag.

We have compiled a sample of 9275 spectroscopically con-
firmed quasars in S82 with re-calibrated ugriz light curves (see
also Bhatti et al. 2010). Most (8974) of these are in the SDSS
Data Release 5 (DR5) Quasar Catalog (Schneider et al. 2007)
and the remaining are newly confirmed DR7 (Abazajian et al.
2009) quasars. Summed over all bands and epochs, the data
set includes 2.7 million photometric measurements. For 41%
of the sample, the random photometric errors are smaller than
0.03 mag. Only 1% have errors !0.1 mag in g, r, and i, and
2.4% have errors exceeding 0.25 mag in u and z filters. In C.
L. MacLeod et al. (2010b, in preparation), these light curves,
as well as a much larger sample of quasars with two SDSS
epochs selected from 12,000 deg2 of the sky, will be made pub-
licly available. We adopt the K-corrected i-band absolute magni-
tudes from Schneider et al. (2007), and virial black hole masses
and bolometric luminosities where available from Shen et al.
(2008). The Shen et al. masses were estimated from emission
line widths (Hβ for z < 0.7, Mg ii for 0.7 < z < 1.9, and C iv
for z > 1.9). However, we note that at low spectroscopic signal-
to-noise, black hole masses tend to be overestimated (Denney
et al. 2009).

3.1. Initial Light Curve Selection

The DRW model was fit to all available ugriz light curves for
9275 S82 quasars. Summed over five bands, there are 46,375

best-fit values of the characteristic (damping) timescale τ and
long-term SF∞. For further analysis, we select light curves that
satisfy the following criteria.

1. First, we remove light curves with fewer than 10 observa-
tions. The top-left panel of Figure 2 shows the distribution
of the number of observations (Nobs) per light curve before
this cut, which reduces our sample to 45,814. At a given
Nobs, the distribution of the ratio of light curve length to τ is
similar to that at all other values of Nobs. Therefore, any sys-
tematic effects of Nobs on derived parameter distributions
should be small.

2. We then require that the stochastic model must provide a
better fit than uncorrelated noise. Following Koz10, we
select light curves with a likelihood improvement over
simply broadening the measurement errors of ∆Lnoise ≡
ln (Lbest/Lnoise) > 2, where Lbest is the likelihood of the
stochastic model and Lnoise is that for the noise solution
where τ → 0. The top right panel of Figure 2 shows the
distribution of ∆Lnoise before this cut, which removes 14%
of u and z light curves, whose photometric errors are larger.
About 7% of our light curves (82% of which are u or z band)
are removed in this step,10 reducing our total to 42,623.

3. Finally, we remove cases where τ is merely a lower
limit due to the length of the light curve. We define
∆L∞ ≡ ln (Lbest/L∞), where L∞ is the likelihood that
τ → ∞, indicating that the light curve length is too short to
accurately measure τ . The bottom left panel shows a peak
at ∆L∞ = 0 and we exclude these objects by requiring
that ∆L∞ > 0.05. Most (95%) of the rejected light curves
have lengths <τ ; 76% have τ ! 104 days, and 64% have
SF∞ ! 1 mag. The latter is due to the fact that as the τ value
becomes long and uncertain, the model will necessarily
overestimate SF∞ in order to keep the overall light curve
rms fixed (see Section 2.2).
The rejected light curves tend to be higher redshift quasars
because stronger time dilation leads to shorter rest-frame
light curve lengths, making it increasingly difficult to
constrain long rest-frame τ . This criterion removes 22%
of our sample, leaving a total of 33,112 values of τ and
SF∞. Because we are limited by the duration of the S82
survey, this is a significant loss, and therefore our final
τ distribution is biased low, but the bias should not be
significant considering our results in Section 4.2.

The resulting light curves are well fit by the stochastic model,
as can be seen from the distribution of χ2/Ndof shown in
the bottom right panel in Figure 2, where Ndof is the number
of degrees of freedom. The expected Gaussian distribution
with rms =

√
2/Ndof is also shown in the panel, where we

have averaged over the Ndof distribution of the light curves.
The observed distribution is centered at χ2/Ndof = 1.1. This
difference is some combination of errors in the estimated errors,
outliers in the light curves, and any poorly modeled physics.
Koz10 noted a similar difference in their analysis of OGLE
light curves. Only 5% of the light curves have χ2/Ndof > 1.5,
confirming that most quasars are variable (at the ∆Lnoise > 2
level), and that a DRW is a good description of quasar variability.

10 A detailed analysis of the use of this variability model to select candidate
quasars will be presented elsewhere (C. L. MacLeod et al. 2010a, in
preparation).
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Figure 2. Initial light curve selection. Top left: the distribution of the number of observations per light curve for the r (solid) and u (dashed) bands. Top right: distribution
of ∆Lnoise. We define light curves with ∆Lnoise ! 2 to be more consistent with uncorrelated noise rather than our model. Bottom left: distribution of ∆L∞; light curves
with ∆L∞ ! 0.05 likely have run-away timescales. In this panel and the previous panel, the x-axes are truncated at 0.5 and 5, respectively, but the histograms continue
to greater values. Bottom right: distribution of χ2 per degrees of freedom (Ndof ) for the DRW model (solid line). The expected Gaussian distribution based on Ndof is
also shown (dashed). The hashed region in each panel shows the values rejected from our final sample.
(A color version of this figure is available in the online journal.)

Figure 3. Top: distributions of the best-fit rest-frame timescale τ (left) and long-
term structure function SF∞ (right) for the S82 quasars (33,112 light curves).
The filled histograms show the fits for quasars with absolute i-band magnitude
in the range −27 < Mi < −26 (the median Mi for the whole sample is −25.46).
Bottom: relationship between τ and SF∞. A power law shown by the dashed
line is fit to the medians (open white circles), with the slope listed in the top-right
corner. Contours show regions containing 90%, 70%, 50%, and 20% of the total
number of points. The star symbols label the four regions in parameter space
from which the sample light curves in Figure 4 (labeled A through D) were
chosen. The observed-frame τ distribution lacks many of the short timescales
observed in Koz10. This is likely due to either the better time sampling of the
OGLE light curves or stellar contamination in their sample.
(A color version of this figure is available in the online journal.)

4. VARIABILITY PARAMETERS FOR
STRIPE 82 QUASARS

4.1. Observed Distributions

We assume the variability to be intrinsic to the quasars and
convert the timescales to the rest frame (dividing by (1 + z))
before further analysis. The long-term SF should be independent
of redshift other than through evolution in physical parameters
and this view is confirmed by KBS09. Figure 3 shows the
distributions in SF∞ and rest-frame τ found for the S82 quasars.
If we consider only the brighter (i < 19) quasars, based on
the best-fit mean magnitude, the distributions are generally
similar but biased toward lower asymptotic amplitudes (peaked
at 0.12 mag). The distributions are consistent with what was
found in KBS09 and Koz10; however, in these studies, there are
not as many objects with runaway (τ → ∞) timescales because
of the improved time sampling of the OGLE survey and many of
the light curves in the KBS09 sample. Also, the observed-frame
τ distribution lacks many of the short timescales observed in
Koz10; this is likely due to either the better time sampling of
the OGLE light curves or unrecognized stellar contamination in
their sample.

The bottom panel of Figure 3 shows that the best-fit variability
parameters are highly correlated with each other, indicating that
quasars with larger asymptotic amplitudes of variability also
have longer characteristic timescales. We fit a power-law slope
of 1.3 ± 0.01 dex dex−1 for all 33,112 data points and this trend
persists within each ugriz band as well. Note that a correlation
between τ and SF∞ is expected even if τ is independent of the
driving amplitude of short-term variations, σ̂ = SF∞/

√
τ . Since

the power-law slope of 1.3 is steeper than that expected if τ and
σ̂ are independent (∼0.2, see below), the timescale must also
be correlated with the amplitude of short-term variability. We
confirm that this correlation is intrinsic, rather than an artifact
of short light curve lengths, in Section 4.2.
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Figure 4. Each panel shows a sample light curve from a certain region of τ , SF∞ space (the four regions A–D are indicated with stars in the bottom panel of Figure 3).
Data points with error bars show the observed S82 data. Solid lines show the weighted average of the DRW model light curves that are consistent with the data (see
Section 2). Dotted lines show the ±1σ range of these possible stochastic models about the average.
(A color version of this figure is available in the online journal.)

The approximate values for τ and SF∞ can often be guessed
from light curves by simple visual inspection. Figure 4 shows
representative light curves from several regions of τ − SF∞
space, indicated by stars in Figure 3. The weighted average of
all model light curves consistent with the data is also shown and
the “error snake” is the ±1σ range of those light curves about
this mean. The top panel shows a light curve with a relatively
short τ—this is due to the large amount of variability within each
season (i.e., each grouping of points), as compared to that in the
second panel, which shows a curve with a much larger τ . The
third panel shows a light curve with a relatively low SF∞, while
the bottom panel shows one with a larger SF∞, as can be seen by
the larger difference in median r-band magnitude between about
10 and 11 yr. Note the outlier in the third panel: outliers such as
these are generally responsible for higher values ofχ2/Ndof . The
(data−model) brightness difference provides a convenient way
to identify outliers and they may be an indicator of variability
behavior not captured by the DRW model. However, they may
also be caused by occasional non-Gaussian photometric errors
and thus their analysis requires a detailed and careful study (e.g.,
by utilizing control samples of appropriately chosen nearby non-
variable stars). Since the model provides satisfactory fits for
the overwhelming majority of objects (see Section 3.1), we do
not further investigate such outliers in this work. We have also
searched for periodic signals in observed light curves and did
not find any convincing cases. This analysis is summarized in
the Appendix.

4.2. The Effect of S82 Time Sampling and Estimate
of Fitting Errors

There are three contributions to the scatter in the best-
fit variability parameters τ and SF∞. First, the fitting errors,

including those due to insufficient time sampling and light curve
length, will introduce some scatter. Second, trends with physical
parameters (see Section 5) result in a certain distribution width.
There may also be scatter due to other sources of variability
that are not captured by the model, such as flares, or other
activity related to radio emission, for example. Here, we carry
out two tests in order to understand how the best-fit parameters
are affected by the limited data sampling of S82.

Since the correlation between τ and SF∞ seen in Figure 3
might be expected if the light curves are not sampled over
sufficiently long periods of time (see Section 2.2), we first
test whether the correlation is real or simply an artifact. We
generated light curves as described in Section 2.2 using the time
sampling and photometric uncertainties of the S82 data. For each
object, the input parameters τin and SF(∞)in are randomly drawn
from a uniform distribution in log τ and log SF∞ limited by the
dotted rectangle in the left panel of Figure 5. These artificial
light curves are then fit to obtain τout and SF(∞)out, and the
resulting distribution is shown by the contours in Figure 5. The
open circles show data points that do not satisfy ∆Lnoise > 2
(3% of all input points)—these are concentrated at small τout
and SF(∞)out. The closed circles show those that do not satisfy
∆L∞ > 0.05 (21% of all input points)—these have been
smeared to large values of τout and SF(∞)out. After omitting
points with ∆Lnoise " 2 and ∆L∞ " 0.05, the distribution
of the output estimates is similar to the input distribution and
shows no strong correlation between τout and SF(∞)out. This
suggests that the correlation in Figure 3 is largely real, and not
an artifact of sampling and fitting procedures. These results also
justify the selection cuts outlined in Section 3.1. The right panel
of Figure 5 shows the expected correlation that the larger the
overestimate of τ , the larger the overestimate of SF∞, with a
slope between them following that expected by Equation (4) (for
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Figure 5. Test of biases in best-fit parameters. Left: the input variability parameters τ and SF∞ were drawn from a uniform distribution in log τ and log SF∞ limited
by the dotted rectangle. The contours show the output distribution after applying the cuts described in Section 3.1 and the dashed line is a linear regression between
the output parameters (with the slope listed on the panel). Solid, blue circles show the objects which do not satisfy ∆L∞ > 0.05 (these make up 21% of the starting
sample, where 13% are saturated at τ = 105 days). The small black dots show the input values for these rejected points. Open, red circles show the 3% that do not
satisfy ∆Lnoise > 2. Right: relationship between τout/τin and SFout/SFin. The slope of the cleaned output distribution is listed. The sharp edge is due to the saturation
limit of τ = 105 days. The contours show the 90%, 70%, 50%, and 20% levels.

Figure 6. Top panel: data points with error bars show the observed light curve
for a quasar in our final sample, the solid line shows the weighted average of
all consistent model light curves, and the dotted lines show the ±1σ range of
possible stochastic models (see Section 2). Bottom panel: a “regenerated” light
curve using Equation (5) and the estimated values of τ and SF∞ listed in the
top panel. Due to the poor time sampling of the light curve, the best fit to the
“regenerated” light curve has a run-away timescale (listed at the bottom), with
∆L∞ = 0.003.

∆t ( τ ). We repeated the test using a uniform input distribution
in log σ̂ (the driving amplitude of short-term variations) rather
than in log SF∞, where σ̂ = SF∞/

√
τ . In this case, we find

that the output τ and SF∞ are correlated with a power-law
slope of 0.18 ± 0.01. Since this slope is smaller than that for
the observed distribution in Figure 3, the σ̂ and τ must be
intrinsically correlated for the S82 sample as well.

For our second test, we used the best-fit τ , SF∞, and µ for
the S82 sample to generate new light curves with the same time
sampling and photometric uncertainties as the S82 data. By
comparing the output and input parameter distributions, we can
estimate how much the intrinsic stochasticity and the time sam-
pling issues affect the results. Figure 6 compares an observed
and “regenerated” light curve, where the differences are due to
the stochastic nature of the process. The fit parameters for the
“regenerated” light curve can be very different because of how

the particular realization is affected by the time sampling, as
illustrated in Figure 6. Figure 7 shows the ratio of output to
input distributions for both τ and SF∞. The input distributions
normalized by their median values are also shown to illustrate
their dynamic range. These two distributions are compared to
each other in order to estimate the effect of fitting errors (the
ratio of output to input should be a delta function centered at 1
for perfect time sampling). The bottom right panel shows that
the correlation between τ and SF∞ becomes slightly weaker
than that seen in Figure 3. Based on these results, we conclude
that the uncertainties due to sparse sampling and limited lengths
of the S82 light curves can account for 71% of the spread in
SF∞ and 57% of that in τ . As shown in Section 2.2, very long
light curve lengths are needed to estimate accurate timescales
and asymptotic amplitudes. Nevertheless, the observed distri-
butions indicate that the underlying intrinsic distributions of τ
and SF∞ have finite widths that are similar to the observed
widths.

4.3. Relationship between the Individual SFs
and the Ensemble SF

The distribution of τ is important to consider when relating
the ensemble SF, such as those determined using two-epoch data
sets, to the SFs for individual light curves. The analysis based on
two-epoch data measures the mean value of the SF, but provides
no information about the SF variance among individual objects.
To measure the latter, individual light curves must be available.

MacLeod et al. (2008) analyzed individual light curves for
S82 quasars in order to test the common assumption that
photometric observations at two epochs for a large number of
quasars will reveal the same statistical properties seen in light
curves for individual objects. They found that the dependence
of the mean SF computed using SFs for individual light curves
on luminosity, rest-frame wavelength, and time lag is indeed
qualitatively and quantitatively similar to that derived from two-
epoch observations of a much larger sample. However, they
also found that the scatter in the light-curve based SFs for fixed
values of Mi, λRF, and ∆tRF is very large, and in fact, similar
to the scatter for the whole sample (see Figure 8). This large
scatter was attributed to an intrinsic stochasticity of unknown
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Figure 7. Results from “regenerating” light curves derived from the observed τ and SF∞ (see Section 4.2). The solid, black lines in the top panels show the distribution
of input SF∞ (left) and τ (right) normalized by the median input value, and the ratio of output-to input-values are shown by the red, dashed lines. The bottom panels
show the scatter in the output-to-input ratios (left), and the relationship between the output parameters (right). Listed in each bottom panel is the slope of a linear fit
(dashed line) to the median values (open circles). Contours show the 90%, 70%, 50%, and 20% levels.
(A color version of this figure is available in the online journal.)

Figure 8. Symbols with error bars show the distribution of SFobs/SFmodel
from Figure 2 in MacLeod et al. (2008), where SFobs is the observed SF for
individual S82 light curves for a fixed observed-frame time lag of 1 yr, and
SFmodel = 1(1 + 0.03 Mi )(∆tRF/λRF)0.47. The distribution from the ensemble
analysis by I04 (based on two-epoch SDSS data) is shown by the dashed
curve, scaled by a factor of 0.2. The dotted histogram is the distribution of√

median(τ )/τ from this work, where τ is the characteristic timescale for each
light curve. Its agreement with the SFobs/SFmodel distribution for individual
light curves shows that most of the scatter pointed out by MacLeod et al. (2008)
is due to a finite width of the τ distribution.
(A color version of this figure is available in the online journal.)

origin. The new model-based analysis discussed here allows us
to explain this puzzling result as a consequence of the finite
width of the τ distribution.

An important piece of information missing from the MacLeod
et al. (2008) analysis is the existence of a characteristic timescale
τ . In MacLeod et al. (2008), the individual SFs were computed
following the standard approach with a fixed observer’s frame
time lag of 1 yr (and with rest-frame time lags spanning
100–300 days). However, Equation (4) indicates that the SF at
small time lags should be proportional to 1/

√
τ , indicating that

the observed SFs will vary between quasars even if they have
similar SF∞. Indeed, the distribution of

√
median(τ )/τ has an

almost identical shape and width as that of SF/SFmodel (see
Figure 8). We therefore conclude that variations in τ are
responsible for most of the scatter in SF(∆t ( τ ) for quasars
with similar luminosity, rest wavelength, and time lag. In
addition, it is likely that the τ distribution is responsible for
the exponential tails of the magnitude difference distribution
for quasars reported by I04 and Sesar et al. (2006; see C. L.
MacLeod et al. 2010b, in preparation, for further discussion).
Therefore, the published SF results based on two-epoch data
sets can only be interpreted in the context of Equation (6).

4.4. Dependence on the Underlying PSD

The analysis throughout this paper assumes that the vari-
ability is described by a DRW, which has a PSD described by
PSD ∝ f −2 at frequencies f > (2πτ )−1, flattening to a constant
at lower frequencies. In this section, we investigate the sensitiv-
ity of our resulting parameter distributions to the possibility that
the low frequency part of the PSD is not flat. For example, the
X-ray variability of Seyfert galaxies is well described by a bro-
ken power law with a slope of −2 at high frequencies, breaking
to a shallower slope (−1) at low frequencies (Arévalo et al.
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Figure 9. First three panels: simulated light curves using τ = 5.8 days, rms = 0.124 mag, and a PSD described by PSD ∝ f α , with α = −2 for f > (2πτ )−1, and
α = −1 (red; top left), α = 0 (blue; top right), or α = −1.9 (green; bottom left) for f < (2πτ )−1. The lines in the last panel show each PSD from which the light
curves are generated, with the black dotted line indicating the break frequency. As a check, the PSD was then computed for the simulated light curves, shown with
colored dots. The y-axis in the bottom right panel is in arbitrary units.

2008a). Since the optical and X-ray variations are correlated
(Arévalo et al. 2008b), it is plausible that the optical variability
might have a similar underlying PSD. On the other hand, as
reviewed by McHardy (2010), the optical and X-ray fluctua-
tions are only correlated on timescales which are shorter than
the typical characteristic optical timescale (i.e., on timescales
corresponding to the 1/f 2 part of the optical power spectra). If
the DRW is a good description for the optical variability, then
we might expect that the optical and X-ray fluctuations are no
longer correlated on timescales longer than τ , as the optical
fluctuations resemble white noise on these timescales.

We consider three cases for a broken, or bending, PSD
described by PSD ∝ f −2 at high frequencies and PSD ∝ f α

at low frequencies. The first case is where α = 0, which is
a DRW. The second case is where α = −1, and the third
is where α = −1.9, which is nearly a constant power-law
slope. In each case, ∼7000 light curves are simulated using
the algorithm from Timmer & Koenig (1995) with the chosen
PSD. For each realization, the break frequency is set to (2πτ )−1

and the total rms is fixed, using the observed r-band τ and rms
values for the S82 quasars that satisfy the selection criteria in
Section 3.1. Therefore, the observed distributions in Figure 3
(for the r band) are the “input” values. Figure 9 shows three
example light curves simulated using α = −1 (red), α = 0
(blue), or α = −1.9 (green). The lines in the last panel show
each PSD from which the light curves are generated, with the
black dotted line indicating the break frequency. As a check, the
PSD was computed for each simulated light curve, and as seen
by the colored dots, the shapes match the input.

Each light curve was simulated over 100 yr and then truncated
to the 30–40 yr segment in order to account for the additional
variability and bias in the inferred SF∞, which may result
from a red noise leak or an incorrect specification of the PSD
model (see Uttley et al. 2002). The simulated light curves were
then modeled as a DRW to obtain the (“output”) parameter
distributions shown in Figures 10 and 11. For Figure 10, the
simulated observations are spaced every 5 days over 10 yr
with typical errors of 0.01 mag, and for Figure 11, the S82
window function is imposed (i.e., all light curves have the S82

time sampling and photometric accuracy). The filled histograms
show the input distributions and are the same for both figures.

It is clear from comparing the input and output parameter
distributions that τ and SF∞ map simply onto the values of
the power-spectral break timescale and amplitude. Indeed, the
correlation between τ and SF∞ is preserved in the output
distributions, as seen in the bottom right panels of Figures 10
and 11. However, as seen in the top and bottom left panels, as
the PSD slope at low f steepens to α = −1.9, the number of
“run-away” timescales (where τ saturates at 105 days) increases
due to the fact that τ can no longer be constrained. Whereas for
the S82 data, ∼20% of light curves were rejected as run-away
cases (see step 3 of Section 3.1), for an α = −1.9 PSD, the
run-away fraction is 30%. This significant increase rules out
the α = −1.9 PSD as the correct model, as we do not see this
large run-away fraction in the data. The fractions are similar for
the α = −1 and α = 0 cases, suggesting that the correct model
has −1 < α < 0. The increasing fraction of run-away τ with
decreasing α allows one to distinguish between each PSD in the
well-sampled case, as seen in the top right panel of Figure 10. In
this panel, the difference between the χ2

pdf for the best-fit DRW
and that for a τ → ∞ solution, ∆χ2

∞ = χ2/Ndof − χ2
∞/Ndof ,

is shown for each input PSD. The total distribution shows two
peaks; that on the left corresponds to cases where the model is
able to constrain τ . For well-sampled light curves (Figure 10),
the case with α = 0 (dashed line) yields an overall lower ∆χ2

∞
and therefore a more likely DRW fit, as expected. However,
for the S82 sampling, it is difficult to distinguish between the
red and blue lines (α = 0 and −1), and the (input) observed
distribution is similar to both. Therefore, within the limited S82
sampling, we are unable to distinguish reliably between a DRW
and a 1/f PSD on long timescales.

5. DEPENDENCE OF VARIABILITY PARAMETERS ON
LUMINOSITY, WAVELENGTH, REDSHIFT, AND

BLACK HOLE MASS

Next, we discuss correlations between each of the variabil-
ity parameters, τ and SF∞, and the four available physical



No. 2, 2010 MODELING THE TIME VARIABILITY OF S82 QUASARS 1023

Figure 10. In the top panels, the filled histogram shows the (“input”) distributions of τ and ∆χ2
∞ = χ2/Ndof − χ2

∞/Ndof for r-band S82 light curves (∼7000 total).
This distribution of τ , along with the r-band rms values, is used to generate ∼7000 realizations of noise processes with α = −2 for f > (2πτ )−1 and α = 0,
α = −1, or α = −1.9 for f < (2πτ )−1. The dashed blue, solid red, and dotted lines show the best-fit (“output”) distributions when modeling these three processes,
respectively, as a DRW. Here, the simulated observations are spaced every 5 days over 10 yr with typical errors of 0.01 mag. The output σ̂ , SF∞, and τ are compared
to the input values in the next three panels. In the last panel, the correlation between the output log(SF∞) and log(τ ) is shown using a linear fit to the median values
(open circles), with the slopes listed in the legend for each case. Contours show regions containing 90% of the data points.

parameters: rest-frame wavelength (λRF), redshift (z), absolute
i-band magnitude (Mi), and black hole mass (MBH). It is impor-
tant to fit a multiple regression to each of the physical param-
eters, functions of the form τ (λRF,Mi,MBH, z), because of the
correlations between physical parameters. For example, when
searching for a correlation between SF∞ and MBH, one must
take into account that a more luminous quasar hosts a more
massive black hole (e.g., Kollmeier et al. 2006), or else a trend
with luminosity may be mistaken for a trend with black hole
mass. A similar example is the well-known luminosity–redshift
(L–z) degeneracy seen in flux-limited samples of quasars. Mag-
nitude limits result in the illusion that only the most luminous
quasars are seen at high z and therefore the observed L increases
with z independent of reality. Having a large sample size helps
to alleviate these degeneracies. For example, one can look for
trends using two-dimensional grids in any two physical parame-
ters of interest. The numbers of data points per two-dimensional
bin of Mi and redshift, and similarly for Mi and MBH, are
shown in the bottom panels of Figure 12. The two left panels of
Figure 12 show the selection effect that quasars at higher red-
shift must have higher luminosities to be included in the survey.
From the two-dimensional distribution in the top left panel, we
can see that this L–z degeneracy is essentially independent of
MBH. Furthermore, shorter rest-frame wavelengths are probed
at higher redshifts for two reasons: first, quasars emitting at
shorter rest wavelengths must be at higher redshifts in order to

be observed within the ugriz filters, and second, quasars at high
redshifts are closer to their Eddington limit as a result of the
L–z degeneracy, and possibly cosmological downsizing (e.g.,
Kollmeier et al. 2006). Therefore, any dependence of variabil-
ity on wavelength must be accounted for when considering a
dependence with redshift (or luminosity).

When fitting power laws to a large number of data points
throughout this paper, we fit to the median values in each bin of
the independent variable, where all bins have the same number
of data points N. The errors in the medians are computed as
0.93(IQR)/

√
N − 1, where IQR is the 25%–75% interquartile

range, and these constrain our formal errors in the power-law
slopes.

5.1. Trends with Rest-frame Wavelength

We start by examining the wavelength dependence of the
variability parameters. Since there are multiple bands for
each quasar, this dependence can be determined for individ-
ual sources for which z, Mi, and MBH are fixed. The rest-frame
wavelength is found by dividing the observed bandpasses (3520,
4800, 6250, 7690, and 9110 Å for ugriz, respectively) by (1+z).
We fit a power-law f ∝ (λRF/4000 Å)B to the estimates of
τ and SF∞ for every quasar observed in at least two filters
(∼8000 quasars). The median values are B = 0.17 ± 0.02 and
−0.479 ± 0.005 for τ and SF∞, respectively. We searched for
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Figure 11. As in Figure 10, except with the S82 time sampling and photometric accuracy imposed on the simulated light curves.

significant correlations between B and other physical parameters
and did not find any. We use these median values to correct for
the wavelength dependence of τ and SF∞ before searching for
their correlations with other physical parameters in Sections 5.2,
5.3, and 6.

This method of fixing B before investigating other correlations
naturally eliminates any degeneracies between rest wavelength
and the other physical parameters. This is especially important in
the case of the variability amplitude, SF∞. Figure 13 shows how
the two variability parameters vary with λRF in each of the ugriz
filters. The median power law from the above analysis, shown
as a straight line stretching across all wavelengths, accurately
traces the overall trend. However, when the data are fit to
ensembles of quasars in each band separately, the slopes for
SF∞, shown by the short lines for each filter, are very different
(∼0.4). This difference is a consequence of the correlation
between L and z: for a given band, shorter λRF corresponds
to higher z, but at higher z, quasars have higher L and thus
smaller SF∞ (see below), creating a bias in the inferred slope of
the wavelength dependence.

5.2. Trends with Luminosity, Redshift, and Black Hole Mass

In the upper panels of Figure 14, the median values of SF∞
and τ are shown as a function of absolute magnitude (Mi)
and redshift. The SF parameters are normalized to a fixed rest
wavelength of 4000 Å using the fitted power-law dependences
of (λRF/4000 Å)B with B = −0.479 and 0.17 for SF∞ and
τ , respectively, from Section 5.1, before finding the median
in each pixel. For SF∞, the anti-correlation with luminosity
clearly dominates any trend with redshift. The τ distribution also

shows negligible correlation with redshift. The bottom panels
show the dependence on MBH. Using a grid of Mi versus MBH
allows one to search for trends in the variability parameters while
accounting for the selection effect that more luminous galaxies
host more massive black holes. A positive correlation between
SF∞ and MBH is apparent independent of the correlation with
Mi. This is in agreement with the result from Wilhite et al.
(2008), who used ensemble SFs. The τ parameter shows a clear
correlation with MBH, which dominates any trend with Mi.

Motivated by these qualitative results, we fit a power law of
the form

log f = A + B log
(

λRF

4000 Å

)
+ C(Mi + 23)

+ D log
(

MBH

109 M,

)
+ E log(1 + z), (7)

to all SF∞ and τ data points in each ugriz band separately,
keeping B fixed to −0.479 and 0.17, respectively, in order to
avoid the bias discussed in Section 5.1. While there is a lot
of scatter in the variability parameters for fixed Mi, MBH, and
λRF (see Section 4.2), Equation (7) describes the mean trends
well. The best-fit coefficients, averaged over the five bands,
are reported in the first and sixth rows of Table 1. The best-fit
coefficients when simultaneously fitting all bands are consistent
with these averages. The reported error bars are computed from
the variation of the best-fit parameters over the five bands.

The dependence of τ on redshift and Mi is only marginally
detected and can be attributed to the L–z degeneracy: as redshift
increases, the best-fit τ decreases, while the coefficient for Mi
indicates that as luminosity increases, τ increases. When E
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Figure 12. Top panels show the distribution of quasars in redshift (left) and i magnitude (right) on a grid of MBH vs. Mi. Bottom panels show the number of data points
in bins of MBH (or redshift) vs. Mi.

Table 1
Best-fit Coefficients for Equation (7)

f A B (λRF) C (Mi) D (MBH) E (1 + z)

SF∞ −0.57 ± 0.01 −0.479 ± 0.005 0.117 ± 0.009 0.11 ± 0.02 0.07 ± 0.05
SF∞ −0.56 ± 0.01 −0.479 ± 0.005 0.111 ± 0.005 0.11 ± 0.02 ≡ 0
SF∞ −0.760 ± 0.009 −0.479 ± 0.005 0.193 ± 0.006 0.12 ± 0.02 ≡ 1
SF∞ −0.618 ± 0.007 −0.479 ± 0.005 0.090 ± 0.003a ≡ 0 ≡ 0

SF∞b −0.51 ± 0.02 −0.479 ± 0.005 0.131 ± 0.008c 0.18 ± 0.03 ≡ 0

τ 2.4 ± 0.2 0.17 ± 0.02 −0.05 ± 0.03 0.12 ± 0.04 −0.7 ± 0.5
τ 2.3 ± 0.1 0.17 ± 0.02 0.01 ± 0.03 0.12 ± 0.04 ≡ 0
τ 2.1 ± 0.1 0.17 ± 0.02 0.09 ± 0.03 0.13 ± 0.04 ≡ 1
τ 2.2 ± 0.1 0.17 ± 0.02 −0.01 ± 0.02 ≡ 0 ≡ 0

τ b 2.4 ± 0.2 0.17 ± 0.02 0.03 ± 0.04 0.21 ± 0.07 ≡ 0

Notes. In each row, the B coefficient was determined and fixed before fitting a multiple regression in all other parameters (see Section 5.1). The
cosmology used for determining Mi is ΩM = 0.30, ΩΛ = 0.70, and h = 0.70 (Schneider et al. 2007), whereas that used in the MBH estimates
is ΩM = 0.26, ΩΛ = 0.74, and h = 0.71 (Shen et al. 2008). This difference should only have a 1% effect on the best-fit coefficients.
a Based on K-corrected magnitudes. Without the K-correction, this coefficient changes to 0.079 ± 0.003.
b Measurement errors in MBH of 0.2 dex have been included in the fitting. These coefficients are recommended when applying the model.
c Based on K-corrected magnitudes. Without the K-correction, this coefficient changes to 0.113 ± 0.006.

is fixed to zero, the dependence on Mi has low significance,
while the correlation with MBH remains the same (seventh
row of Table 1). For illustration, when E is fixed to 1 (so
τ ∝ (1 + z), third and eighth rows), a spurious dependence
on Mi emerges. Therefore, the controlling variable for the
characteristic timescale is clearly MBH, suggesting that more
massive black holes vary on longer timescales. Similarly, with

E fixed to 0 for SF∞ (second row), the C (Mi) and D (MBH)
coefficients remain largely unchanged, confirming that there
is no significant correlation between amplitude and redshift.
Therefore, we force the final adopted model to have no redshift
dependence (E = 0). Table 1 also provides fits with D fixed to
zero so that SF∞ and τ can be estimated in the absence of black
hole mass information (fourth and ninth rows).
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Figure 13. Distribution of the rest-frame timescale τ (top panel) and long-term
structure function SF∞ (bottom panel) as a function of rest-frame wavelength
λRF. The different contours show the 70% and 30% levels for the u, g, r, i,
and z (from left to right) bands. The best-fit power law for each subsample is
shown with the same line style as the contours. The thick gray (red in online
version) line connecting the left and right axes shows the median power-law
slope derived by fitting individual quasars (see the text), and has a value of
B = 0.17 and −0.479 for τ and SF∞, respectively. The slope within each band
from fitting ensembles of quasars can be quite different from the overall slope
because of the L–z degeneracy (see the text).
(A color version of this figure is available in the online journal.)

Of the analyzed parameters, the probable errors for black hole
mass estimates are the largest: of order 0.2–0.4 dex (Marconi
et al. 2008; Vestergaard & Peterson 2006). When ignored, these
large statistical uncertainties result in underestimated values
for D (Kelly 2007). With an assumed random uncertainty of
0.2 dex in the black hole mass measurements, we find the best-
fit coefficients reported in the fifth and tenth rows of Table 1
(continuing to assume that E = 0). It can be seen that including
mass uncertainties of 0.2 dex increases D from ∼0.1 to ∼0.2
for both τ and SF∞ (a bias of about 2–3 formal statistical fitting
errors). The coefficients in the fifth and tenth rows represent
our best-fit model for the variability parameters and we assume
these values in the remaining sections.

The best-fit model shows a smaller slope for the correlation
between τ and MBH of 0.21 ± 0.07 than the value of 1.0 ± 0.4
found by KBS09. The two results are still marginally statistically
consistent given the large uncertainties in KBS09. Moreover,
their sample contains relatively lower mass and luminosity
quasars than those analyzed in this study, and this difference
might result in additional biases. Koz10 also noted that the
KBS09 results may be affected by contamination from host
galaxy emission, a problem which will be far smaller for the
generally more luminous SDSS quasars.

5.3. The Eddington Ratio as the Driver of Variability?

Since the Eddington ratio, L/LEdd, is dependent on lumi-
nosity and black hole mass, the trends for SF∞ in Table 1
might be explained if SF∞ is simply driven by L/LEdd. To
test this, we estimated L/LEdd as the ratio of the bolometric lu-

minosities from Shen et al. (2008) to the Eddington luminosity,
LEdd = 1.5 × 1038(MBH/M,) erg s−1. Figure 15 shows L/LEdd
as a function of MBH and Mi, and demonstrates that lines of
constant L/LEdd are similar in slope to those of constant SF∞
(see Figure 14). The median SF∞ versus the median L/LEdd for
each bin is shown in the right panel, where we find a power-law
slope of −0.23 ± 0.03. This significant anti-correlation was
also found by Wilhite et al. (2008), Bauer et al. (2009), and
Ai et al. (2010). KBS09 did not report such an anti-correlation;
however, they did not compare L/LEdd with SF∞ but rather
with SF∞/

√
τ , the driving amplitude of short-term variability.

If L/LEdd is the sole driver of the quasar variability amplitude
SF∞, we would expect that the coefficients for Mi and MBH are
related as D = 2.5 C. However, we find D = (1.37 ± 0.23)C,
4.7σ away from the presumed slope of 2.5. This suggests an
additional source of variability, such as a dependence on lumi-
nosity or on MBH in addition to the dependence on L/LEdd.
Moreover, if we ignore this additional source, the result that
SF∞ depends on L/LEdd supports a scenario where the ampli-
tude of the optical variability is determined by the accretion rate
(see discussion in Wilhite et al. 2008).

If the Eddington ratio is a proxy for the quasar’s age (e.g.,
Martini & Schneider 2003), then a lower Eddington ratio, and
thus a larger amplitude of variability, could indicate a dwindling
fuel supply and a more variable rate at which it is supplied
to the black hole. However, it is unlikely that the observed
variability is due to fluctuations in the external fuel supply to
the disk because the fluctuation timescales of 10–10,000 days
are very short compared to the viscous timescales of 105–107

days that should control large-scale changes in the accretion
rate. Moreover, these fluctuations in the fueling rate will also be
smoothed out and damped as they travel inward, and will likely
have effectively disappeared by the time they reach the optical
emitting region (e.g., see discussion in Churazov et al. 2001).
Instead, the origin of the fluctuations is probably more local.

Another possibility is that the dependence on L/LEdd may
simply be a reflection of the dependence on wavelength, which
in turn depends on the disk radius. If a higher L/LEdd means
a hotter disk, then the optical flux originates at a larger radius.
Assuming that longer wavelengths are emitted further out in the
disk, the lower SF∞ at longer wavelengths would lead to the anti-
correlation between SF∞ and L/LEdd. In thin disk theory (e.g.,
see Frank et al. 2002), the characteristic radius for emission
at wavelength λRF scales as Rλ ∝ M

2/3
BH (L/LEdd)1/3λ

4/3
RF , and

the thermal timescale is related to the orbital timescale as
tth ∝ torb ∝ R3/2/

√
MBH. Therefore, under the assumption

that τ is related to the thermal timescale, and that variability at
wavelength λRF is dominated by the scale Rλ, τ scales with λRF,
MBH, and L as

τ ∝ M
1/2
BH (L/LEdd)1/2λ2

RF. (8)

Since LEdd ∝ MBH, this means τ scales as

τ ∝ L1/2λ2
RF, (9)

which does not match the observed scaling of τ ∝
L−0.075λ0.17

RF M0.21
BH . If we assume that τ is related to the viscous

timescale,
τ ∝ L7/60λ

5/3
RF M

2/3
BH , (10)

still in conflict with the measured values.
The variability timescale simply does not show the strong

dependence on λRF, MBH, and L expected from these simple
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Figure 14. Top panels: the long-term rms variability SF∞ (left) and characteristic timescale τ (right) are shown as colors on a grid of redshift and absolute i-band
magnitude Mi. The SF∞ parameters are normalized to a fixed rest wavelength using the fitted power-law dependences of (λRF/4000 Å)B with B = −0.479 and 0.17
for SF∞ and τ , respectively. The lines of constant variability (dashed) show that SF∞ is independent of redshift. Bottom panels: as in the top panels but with black
hole mass MBH on the x-axis.

Figure 15. Left: the Eddington ratio for S82 quasars (estimated using masses and bolometric luminosities from Shen et al. 2008) is shown as colors on a grid of Mi vs.
MBH, with dashed lines of constant L/LEdd over-plotted. Right: long-term rms variability (corrected for wavelength dependence) is shown as a function of L/LEdd
(open circles are medians in each bin). The slope of the linear fit to the medians is listed on the panel.

scalings. Therefore, using this naive scaling, we are not able to
relate the observed τ to either a thermal or viscous timescale
of the radius associated with the wavelength of the variability.
However, in reality there is a range of radii, which corresponds

to a range in timescales, contributing to the observed flux in
each band, and this will cause some degree of smoothing.
Also, the radial regions might overlap for each band, causing a
single radius to contribute flux in multiple bandpasses, and this
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Figure 16. Determination of p(MBH|Mi ) (see Equation (11)). The histograms in
the top three panels show the distribution of black hole masses for S82 quasars
with absolute magnitudes within 0.5 mag of the value listed in the upper right
corners. In the bottom panel, the mean value of log (MBH/M,) from each
histogram is plotted against Mi.

might attenuate some of the dependences on λRF, MBH, and L.
Finally, our observed power-law indices may be biased due to
the uncertainty in the bolometric correction.

5.4. A “Recipe” for Generating Mock Light Curves

Given the success of the DRW model in explaining a
large body of observations, it represents a simple quantitative
framework for generating mock quasar light curves. The optical
light curves can be simulated for quasars at different redshifts
and for a wide range of luminosity and black hole mass, which
provides the basis for quantitative modeling and optimization
of quasar variability surveys. The model presented has already
been implemented as a part of the simulation effort in support of
the Large Synoptic Survey Telescope (LSST; Ivezić et al. 2008).

At a given redshift, a simulated value for absolute magnitude
can readily be drawn from an adopted luminosity function (e.g.,
Croom et al. 2009 and references therein). An estimate for the
black hole mass is also required in order to apply our model
and it can be generated using the adopted absolute magnitude as
follows. According to the Shen et al. (2008) results, the quasar
luminosity and black hole mass are strongly correlated (see
the bottom right panel of Figure 12). Using Shen et al. (2008)
values, we quantify this correlation in Figure 16. At a given Mi,
the MBH distribution has a finite width due to the distribution of

Eddington ratios and measurement errors. Both effects can be
well described using a Gaussian distribution:

p(log MBH|Mi) = 1√
2πσ

exp
[
− (log MBH − µ)2

2σ 2

]
, (11)

where µ = 2.0–0.27 Mi and σ = 0.58 + 0.011 Mi (the black
hole mass is expressed in solar mass units).

With adopted values for Mi and MBH, the variability am-
plitude and the characteristic timescale can be estimated using
Equation (7). We note that choosing a timescale from an adopted
value for SF∞ by utilizing the correlation seen in Figure 3 (and
drawing from a Gaussian distribution similar to Equation (11))
is not as accurate as using Equation (7) and the adopted values of
MBH and λRF. Finally, given a mean magnitude and wavelength,
a quasar light curve can easily be generated using Equation (5).

6. VARIABILITY PROPERTIES OF RADIO- AND
X-RAY-DETECTED QUASARS

Previous studies, based mostly on two-epoch data sets, found
that radio-loud quasars are marginally more variable than radio-
quiet quasars for rest-frame time lags in the range 50–400 days
(e.g., VB04, and references therein). It was also found that
X-ray-detected quasars are significantly more variable than
X-ray-undetected quasars at rest-frame time lags up to 250 days.

The large size and the availability of light curves for our
sample allow us to revisit these results with more statistical
power. In addition, the DRW model and our best-fit results from
Table 1 provide a convenient method to account for various
selection effects. For example, it is possible that subsamples
selected by various means, such as the requirement of radio
or X-ray detections, have different distributions of luminosity
and black hole mass. In this case, they would display different
variability behavior not because of intrinsic differences in the
variability mechanism, but rather because of the trends captured
by Equation (7). A comparison of the ratio of observed and
predicted variability parameters for any subsample and the full
sample will automatically take into account these sampling
effects, and this is the main statistical method we use in this
section. We first discuss a radio subsample and then analyze a
sample of quasars with X-ray detections.

6.1. Radio-detected Subsample

We use the unified radio catalog of Kimball & Ivezić (2008) to
access the FIRST and NVSS data (20 cm continuum data) for our
objects. We refer the reader to this paper and references therein
for details about these radio surveys and object association.
Figure 17 shows the radio-detected fraction of quasars in
S82 as a function of magnitude. The overall fraction (5%) is
considerably lower than that in the NGC footprint of the SDSS
for the magnitude range 19 < i < 20 (White et al. 1997; Ivezić
et al. 2002). This is due to a difference in targeting algorithms
between the two surveys and results in nearly 300 quasars with
both optical light curves and radio data. When available, we use
NVSS values for radio flux, but otherwise we adopt the FIRST
integrated flux. The radio-loudness parameter Rg is calculated
exactly as the Ri in Ivezić et al. (2002), but using g magnitudes
instead. We assume a spectral index of −0.5 for the optical and
0 for the radio (because this sample is dominated by the core
radio emission; see Kimball & Ivezić 2008) when computing
the K-correction.

Table 2 compares the mean properties for various subsamples
detected in the radio to the radio-undetected subsample (essen-
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Figure 17. Top: the number of FIRST radio detections (thick line, multiplied
by 10) as compared to the total number of quasars (thin line) as a function of i
magnitude in the NGC footprint of the SDSS. Middle: as in the top panel but
for S82. Bottom: fraction of quasars in the NGC (thin line) and in S82 (thick
line) samples that have radio detections. Between i = 19 and 20, the fraction of
radio-detected quasars is considerably lower in S82 than in the NGC.

tially the full sample due to small fraction of radio-detected
objects). For each subsample, the mean τ and SF∞ are listed,
as well as the mean ratio of the observed values to those pre-
dicted using Equation (7) and the measured values of λRF, Mi,
and MBH. The mean values are computed iteratively with ±3σ
outliers excluded. Errors are reported as the (clipped) rms di-
vided by

√
N − 1, where N is the number of data points in the

distribution. Numbers of objects are lower for columns involv-
ing model quantities because black hole mass estimates are not
available for all objects.

Table 2 shows that only the variability amplitude of the
radio-loudest quasar subsample (Rg ! 3) is significantly
different (>3σ deviation) from the behavior of the full sample.
The radio-loudest quasars have systematically larger variability
amplitudes, when corrected for trends described by Equation (7),
by about 30%, compared to the full sample dominated by radio-
quiet objects, in agreement with VB04.

6.2. X-ray-detected Subsample

For the analysis of variability properties of quasars detected at
X-ray wavelengths, we use data from the ROSAT All-Sky Survey
(RASS; Voges et al. 1999). The X-ray subsample consists
of 82 quasars with RASS full-band count rates greater than
10−3 counts s−1, taken from the Schneider et al. (2007) catalog.
As can be seen from Table 2, the variability properties of
this subsample are statistically indistinguishable from the full
sample. VB04 detected a significant increase in SF at rest time
lags below 250 days for their X-ray subsample, but on long
timescales there was no significant difference. It is plausible
that their result for short timescales was influenced by small
sample size and τ effects discussed in Section 4.3.

7. SUMMARY AND CONCLUSIONS

We have used the DRW model of KBS09 and Koz10 to model
the optical/UV variability of ∼9000 SDSS S82 quasars with the
ugriz light curves. The data set includes 2.7 million photometric
measurements collected over 10 yr. We confirm that this is a
good model of quasar variability, and quantify the dependence
of two variability parameters, the long-term rms variability SF∞,
and the damping timescale τ , on physical parameters such as
wavelength, luminosity, black hole mass, and Eddington ratio.
Our main results are as follows.

1. A stochastic process with an exponential covariance func-
tion characterized by an amplitude and timescale provides
a good fit to observed quasar light curves, as shown by
KBS09 and Koz10, using smaller samples with less wave-
length coverage, but better time sampling.

2. The long-term rms variability, SF∞, has a mode at ∼0.2 mag
and characteristic timescales, τ , are roughly 200 days in
the rest frame, as found previously by KBS09 and Koz10.
These timescales are consistent with thermal timescales, but
simple accretion disk models fail to reproduce the observed
scaling of τ with physical parameters.

3. Quasars with similar physical parameters can have different
characteristic timescales for variability. It is now clear that
the distribution of τ accounts for most of the scatter in the
SF on short timescales for quasars with similar luminosity,
rest wavelength, and time lag, which explains the puzzling
results from MacLeod et al. (2008). Results from fitting a
power law to observed ensemble SFs should be interpreted
with caution.

4. The variability timescale is correlated with the long-term
rms variability with a slope of 1.30 ± 0.01 dex dex−1.
Quasars that have large long-term variability amplitudes
generally vary on longer characteristic timescales. The
amplitude of short-term variations is also correlated with τ .
This conclusion is unaffected by any time sampling issues
in the S82 data set.

5. The DRW corresponds to a PSD proportional to 1/f 2 at
frequencies f > (2πτ )−1, flattening to a constant at lower
frequencies. At large f, the data are in great agreement
with PSD ∝ 1/f 2. In terms of the SF, this means that
SF ∝ (∆t)1/2. Whereas previous analyses of the SF obtained
a power-law slope of β = 0.3, here we demonstrated that
this would be a consequence of fitting the data around the
“knee” (turn-over) of the SF. Our constraints for small f are
much weaker. As discussed in Section 4.4, due to a lack
of sufficient long-timescale information, we are unable to
distinguish between a 1/f 0 or a 1/f PSD at frequencies
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Table 2
Mean Variability Properties of Radio and X-ray Subsamples

Subsample 〈 log τ 〉 N 〈 log(τ/τp)〉 N 〈 log SF∞〉 N 〈 log(SF∞/SF∞,p)〉 N

No radio 2.305 ± 0.005 6989 −0.003 ± 0.007 4467 −0.634 ± 0.003 7067 0.018 ± 0.003 4508
No radio i < 19 2.327 ± 0.013 1519 −0.013 ± 0.013 1279 −0.721 ± 0.006 1527 0.003 ± 0.006 1287
Radio 2.26 ± 0.03 277 −0.07 ± 0.05 154 −0.70 ± 0.02 283 −0.03 ± 0.02 154
Radio i < 19 2.24 ± 0.06 105 −0.08 ± 0.06 73 −0.81 ± 0.03 108 −0.08 ± 0.03 74
Rg " 3 2.30 ± 0.05 135 −0.01 ± 0.07 68 −0.57 ± 0.02 137 0.11 ± 0.03 68
Rg < 3 2.28 ± 0.03 211 0.00 ± 0.04 133 −0.73 ± 0.02 219 −0.06 ± 0.02 140
Rg < 2 1.99 ± 0.14 30 −0.21 ± 0.14 19 −0.88 ± 0.07 30 −0.12 ± 0.06 19
Resolveda 2.29 ± 0.05 111 0.00 ± 0.06 63 −0.63 ± 0.02 111 0.04 ± 0.03 63
Unresolveda 2.24 ± 0.04 167 −0.13 ± 0.07 91 −0.73 ± 0.03 172 −0.06 ± 0.03 91
X-ray 2.41 ± 0.05 81 0.03 ± 0.06 59 −0.60 ± 0.03 82 0.01 ± 0.03 58
No X-ray 2.307 ± 0.005 6950 −0.004 ± 0.007 4559 −0.638 ± 0.003 7020 0.017 ± 0.003 4598

Notes. τ and SF∞ are the observed timescales and asymptotic amplitudes of optical variability (Section 4), while τp and SF∞,p refer to those predicted
from Equation (7), using the coefficients in the fifth and tenth rows of Table 1. Errors are reported as the rms divided by

√
N − 1, where N is the number

of data points, listed after each column. Numbers of objects are lower for columns involving model estimates because black hole mass estimates are
not available for all objects. Only the variability amplitude for the radio-loudest quasar subsample (Rg " 3) is significantly different (>3σ deviation)
from the behavior of the full sample.
a The morphological radio classes are defined using the integrated and peak FIRST fluxes as in Kimball & Ivezić (2008).

f < (2πτ )−1 using the data and computational technique
described here.

6. The rest-frame variability parameters show a negligible
trend with redshift, suggesting that they are intrinsic to
the quasars, and these properties do not evolve over cosmic
time for fixed physical parameters of the quasar (MBH, Mi,
and λRF).

7. For fixed luminosity and black hole mass, τ increases
with increasing rest-frame wavelength with a power-law
index of 0.17 and SF∞ decreases with a power-law index
of −0.48. The latter result is similar to previous findings
(e.g., MacLeod et al. 2008; VB04). Koz10 also observed
that the variability increases to shorter λ, but they kept τ
fixed in their fits. If wavelength is a proxy for radius in the
accretion disk, this implies that the characteristic timescales
are longer and the variability amplitudes are smaller in the
outer regions than in the inner regions.

8. The long-term variability SF∞ is strongly anti-correlated
with luminosity as found in previous studies such as VB04,
Wilhite et al. (2008), and references therein. By studying the
median SF∞ in the plane of absolute magnitude and black
hole mass, we can separate the anti-correlation of amplitude
with luminosity from the positive correlation with black
hole mass. As suggested in Wilhite et al. (2008), these trends
may be largely explained if the amplitude of variability
is tied to changes in the accretion rate in the disk and is
simply related to the Eddington ratio. However, despite the
strong anti-correlation between SF∞ and L/LEdd (which
accounts for most of the dependence on Mi and MBH), the
exact dependence with Mi and MBH is not consistent with
L/LEdd as the sole driver of quasar variability.

9. The damping timescale τ appears to be nearly independent
of luminosity and correlated with MBH with a power-
law index of 0.21 ± 0.07. The mild discrepancy with the
KBS09 result (1.0 ± 0.4) may be due to the different range
of sampled luminosity and black hole mass, as well as
contamination by host galaxy emission in many of the very
low luminosity systems they consider (see Koz10).

10. While the mean variability parameters can be related to
physical parameters, for fixed values of Mi, λRF, and MBH,
there is still a large scatter around the mean values, similar
to the variance of the observed distributions. Some of that

scatter can be attributed to measurement and fitting errors
(∼60% for τ and ∼70% for SF∞), but there is enough
evidence for residual stochastic nature of quasar variability.
Therefore, it cannot be assumed that quasars with similar
Mi, λRF, and MBH will necessarily have similar variability
properties.

11. The radio-loudest quasars have systematically larger vari-
ability amplitude by about 30%, while the distribution of
their characteristic timescale is indistinguishable from that
of the full sample. There are no statistically robust differ-
ences in the characteristic timescale and variability ampli-
tude between the full sample and a small subsample of
quasars detected by ROSAT.

With this paper, and results from KBS09 and Koz10, the abil-
ity of the DRW model to quantitatively describe quasar variabil-
ity is well established. As emphasized by Koz10, this means that
variability studies can become fully quantitative because the en-
tire process of identifying and assigning parameters to quasars
can be simulated to allow estimates of completeness and pa-
rameter biases. In particular, an important next step is to deter-
mine the variability equivalents of luminosity functions, i.e., the
intrinsic distributions of the variability parameters. While our
results represent a good first step in this direction, we caution
that a non-negligible fraction of the S82 quasars have indeter-
minately long timescales. If, following KBS09, we identify the
characteristic timescale with the thermal timescale, then the next
question is whether there are additional timescales (such as the
dynamical or viscous timescale), or sources of variability. For
example, Blackburne & Kochanek (2010) recently found evi-
dence for changes in disk size with changes in luminosity using
gravitational microlensing. Such searches for additional sources
of variability will likely require better sampled light curves and
over a longer timescale.

The prospect of advancing these studies of quasar variability
now faces a bottleneck. The S82 quasars have the advantage
of sample size, wavelength coverage, and spectroscopy, but the
light curves have poor sampling and modest overall lengths,
leading to significant problems for accurately estimating τ
when it is long. The quasars behind the Magellanic Clouds
(Kozłowski & Kochanek 2009) are a smaller sample without
spectroscopic confirmation, but have superb, long-term light
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curves that continue to be extended because of the continuing
microlensing projects. Improving on our present results in the
short term depends on either reviving the monitoring of S82 or
spectroscopically confirming the Magellanic Cloud quasars.

Resuming the monitoring of S82 is challenging with the
decommissioning of the SDSS imaging system. The best short-
term prospects are the Pan-STARRS project (Kaiser et al. 2002),
the Palomar-QUEST project (Schweitzer et al. 2006), or using
the DECam being built for the Dark Energy Survey (Honscheid
et al. 2008). Since the challenge is to constrain long timescales,
the presence of a multiple-year gap is mainly a complication
for ensuring that problems in matching photometric bands are
not interpreted as a form of long-term variability. Obtaining
spectra of the Magellanic Cloud quasars is in some ways easier
because the quasar magnitudes and densities are well suited
to the AAOmega fiber spectrograph on the Anglo-Australian
Telescope and, to a lesser degree, the IMACS spectrograph on
Magellan.

The more general, Northern monitoring projects such as Pan-
STARRS and Palomar-QUEST will slowly build light curves for
essentially all the SDSS quasars, but at present their cadences are
not ideal (see Schmidt et al. 2010) and it will take nearly a decade
to build the long duration light curves needed for the analysis.
In the long term, observations will be significantly improved
with the advent of next-generation sky surveys. Most notably,
the LSST (Ivezić et al. 2008) will obtain accurate, well-sampled
light curves for millions of AGNs. The observed distribution of
rest-frame characteristic timescales for S82 quasars spans the
range from about 10 days to 1000 days (cf. Figure 3). To probe
the timescales as short as 0.1τ , and assuming a characteristic
redshift of 2, the light curves should be sampled every 3 days
in the observer’s frame, which is in good agreement with the
baseline cadence of LSST. With a 10 year long survey, the length
of the light curves will be in the range (1–200)τ . A combination
of the SDSS, Pan-STARRS, DES, and LSST data for ∼10,000
S82 quasars would span well over two decades, with multi-
band photometry obtained for hundreds of epochs, and would
represent the best sample to date for studying the optical
continuum variability of quasars. In particular, such a data
set would enable a robust measurement of the low-frequency
behavior of their PSD (cf. point 5 above). For illustration, the
LSST photometric errors in the r band will be <0.02 mag for
r < 22, and there are roughly 2–3 million AGNs with r < 22
in the 20,000 deg2 covered by the main LSST survey (see Table
10.2 in the LSST Science Book; Abell et al. 2009). Each of
these objects will be observed about 1000 times, yielding a
database of over 2 billion photometric measurements. This data
set, roughly a thousand times larger than that analyzed here,
will enable a significant improvement in our understanding of
quasar variability.
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APPENDIX

SEARCH FOR PERIODIC LIGHT CURVES

Although a stochastic process has proven to be an accurate
statistical description of quasar light curves, any discovery
of periodic behavior (even of a single source) would have
interesting physical implications. However, a periodogram can
only be used as an indicator of significant periodicity in a signal
as compared to pure white noise (i.e., having no signal at all).
Since quasars are genuinely variable, as described by a DRW
(i.e., a red noise process; see KBS09), one can only evaluate
the significance of the periodicity when also allowing for the
signal covariance that is also present (see Markwardt et al. 2009;
Gotz et al. 2009; Cenko et al. 2009, and references therein).
Nevertheless, as a quick test for outstanding cases of periodicity
among the S82 light curves, we analyzed 8863 light curves for
evidence of periodicity using the Lomb–Scargle periodogram
(Lomb 1976; Scargle 1982). The threshold for considering the
strongest peak in the periodogram as candidate evidence for
periodicity was set following Horne & Baliunas (1986), with
an adopted false alarm probability of 0.05. However, this is the
threshold for ruling out white noise in favor of periodicity and
therefore provides no information on how a periodic description
compares to a colored noise process such as a damped random
walk. To determine the latter, a different threshold is needed
(see Koz10). When adopting the threshold for ruling out white
noise in favor of periodic variability, we identify 88 light curves
as good candidates.

A close inspection of the period distribution for the full sample
and the selected 88 candidates shows important differences:
while the full sample displays a fairly flat distribution ranging
from 100 days to values exceeding 10,000 days, the period
distribution for 88 candidates is bimodal. The first peak with
22 objects corresponds to aliasing at roughly one year sampling
cadence, while the second peak is centered on periods of about
6–7 yr, similar to the total length of observations. We have
visually inspected the light curves and phased light curves for
all 88 candidates. It turns out that candidates with proposed

http://www.sdss.org/
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Figure 18. Six examples of candidate light curves showing significant periodicity as compared to pure noise (see the Appendix). The phased light curves are shown
on the left, where the phase is the fractional part of the ratio of time to the period (i.e., the phase zero point is arbitrary). The best-fit period is listed on the bottom of
each panel. The full light curves are shown on the right, where the solid lines show the weighted average of all consistent DRW model light curves, and the dotted lines
show the ±1σ range of possible stochastic models (see Section 2). The best-fit DRW parameters are listed at the bottom of the right panels, along with the reduced χ2.
(A color version of this figure is available in the online journal.)

periods of the order one year have light curves consistent with
aliasing, while those with longer periods typically have only one
observed “oscillation” that might not be used as robust evidence
for periodicity (six examples are shown in Figure 18). Therefore,
our search for periodic light curves in the S82 quasar sample has

not yielded any convincing cases. Again, it is important to note
that in cases such as in Figure 18, the periodogram indicates
that these sources with long τ are likely to be periodic, not
because they show true periodicity, but because it computes the
likelihood relative to the wrong null hypothesis (white noise
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rather than colored noise). Moreover, the fact that <5% of
the light curves exceed the threshold for periodicity being a
better description than pure white noise is a further indication
that the periodogram is not a very powerful statistic for poorly
sampled light curves, since it is clear from the previous sections
that quasar light curves are not white noise, but rather are well
described by a DRW. In fact, the single “oscillation” observed
for the best candidate long period objects is entirely expected
from colored noise processes such as a DRW (see right panels
of Figure 18). Therefore, this analysis is further evidence that a
DRW is a good description of quasar light curves.
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Ivezić, Ž., Tyson, J. A., Allsman, R., Andrew, J., Angel, R., & the LSST

Collaboration. 2008, arXiv:0805.2366
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Ivezić, Ž., et al. 2007, AJ, 134, 973
Kaiser, N., et al. 2002, Proc. SPIE, 4836, 154
Kawaguchi, T., Mineshige, S., Umemura, M., & Turner, E. L. 1998, ApJ, 504,

671
Kelly, B. C. 2007, ApJ, 665, 1489
Kelly, B. C., Bechtold, J., & Siemiginowska, A. 2009, ApJ, 698, 895 (KBS09)
Kimball, A. E., & Ivezić, Ž. 2008, AJ, 136, 684
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