
 RFS Document: A25082N0010 Rev: 1.2 1

 Frances Lau, May 27, 2003

REQUIREMENTS AND FUNCTIONAL SPECIFICATION

EVLA Correlator Chip Testing Software

Comparison of Functional Simulation Output with
Post-Place-and-Route Simulation Output

RFS Document: A25082N0010

Revision: 1.2

Frances Lau, May 27, 2003

National Research Council Canada
Herzberg Institute of Astrophysics

Dominion Radio Astrophysical Observatory

P.O. Box 248, 717 White Lake Rd
Penticton, B.C., Canada

V2A 6K3

 RFS Document: A25082N0010 Rev: 1.2 2

 Frances Lau, May 27, 2003

Table of Contents
1 REVISION HISTORY ... 4

2 INTRODUCTION... 5

3 CONTEXT... 5

4 OVERVIEW.. 5

5 REQUIREMENTS.. 7

5.1 FUNCTIONAL REQUIREMENTS ... 7
5.2 PERFORMANCE REQUIREMENTS.. 7
5.3 ENVIRONMENTAL REQUIREMENTS.. 7
5.4 INTERFACE REQUIREMENTS .. 8

6 FUNCTIONAL SPECIFICATIONS... 9

7 REFERENCES.. 14

 RFS Document: A25082N0010 Rev: 1.2 3

 Frances Lau, May 27, 2003

List of Figures

Figure 4-1 Block Diagram of Flow of Data in Testing Software…..……………………6

Figure 6-1 Flowchart of overall program structure…………………….…….….…..….10

Figure 6-2 Flowchart of the compareLag function…………………..………..…....…...12

Figure 6-3 Flowchart of the compareLagFile function……………….………...….…....12

Figure 6-4 Flowchart of the findMatch function………………………….……….……12

Figure 6-5 Flowchart of the compareMCB function ………………………….….….…13

Figure 6-6 Flowchart of the compareMCBRegFile function……………………..…….13

 RFS Document: A25082N0010 Rev: 1.2 4

 Frances Lau, May 27, 2003

1 Revision History

Revision Date Changes/Notes Author

1.0 May 8, 2003 Initial Revision Frances Lau

1.1 May 14, 2003 Revision Frances Lau

1.2 May 27, 2003 Revision to match actual design Frances Lau

 RFS Document: A25082N0010 Rev: 1.2 5

 Frances Lau, May 27, 2003

2 Introduction

This document describes the requirements and design concepts for a piece of testing
software that will compare the correlator chip functional simulation output with the post-
place-and-route (post-PAR) simulation output. It will analyze

a) the data frames [1] transmitted to the Long Term Accumulator (LTA) Controller
and

b) the contents of the Monitor and Control Bus (MCB) registers.

The software will be written in Ansi-C. It will be portable, capable of being run on
UNIX machines.

3 Context

This piece of software will be a fundamental part of the testing and verification aspect of
the correlator chip design process. The software will compare output produced by the
functional simulator with output produced post-place-and-route. Testing using this
software will increase confidence that the placed and routed chip is functionally
performing as required.

4 Overview

The data that will be compared are the data frames transmitted to the Long Term
Accumulator (LTA) Controller and the contents of the Monitor & Control Bus (MCB)
registers.

Data is transmitted to the LTA Controller in data frames, where each frame is the control,
status, and data for one Correlator Chip Cell (CCC). An independent frame is transmitted
for each CCC. Each data frame contains 267 Words (Word0 to Word266), as defined in
Figure 5-3 of the EVLA Correlator Chip Requirements and Functional Specification
document [1].

The data frames transmitted to the LTA Controller will be compared by analyzing lag
frame files. These lag frame files are ASCII representations of the correlator chip data
frames produced by the simulator. They contain eight digit hexadecimal numbers that
represent each word in the data frame, as well as some comments that decode the
hexadecimal numbers. The comments will be ignored in the comparison.

 RFS Document: A25082N0010 Rev: 1.2 6

 Frances Lau, May 27, 2003

The contents of MCB registers will be compared by analyzing ASCII files containing
representations of the bits in each register. The comments that decode the register
contents are ignored in the comparison.

A block diagram showing an overview of the flow of data is in Figure 4-1.

Interface2

lag_frames001.txt
lag_frames002.txt

.

.

.

mcb_reg001.txt
mcb_reg002.txt

.

.

.

lag_frames001.txt
lag_frames002.txt

.

.

.

mcb_reg001.txt
mcb_reg002.txt

.

.

.

Directory containing
post-PAR

simulation output

Directory containing
functional

simulation output

data frames

data frames

MCB registers

MCB registers

directory name

directory name

Figure 4-1: Block Diagram of Flow of Data in Testing Software

Process names of
directory supplied by user

Compare the contents of
the MCB registers

Compare the data frames
transmitted to the LTA

Controller

Output
(screen or file)

Testing Software

 RFS Document: A25082N0010 Rev: 1.2 7

 Frances Lau, May 27, 2003

5 Requirements

The following is a list of the requirements for this piece of testing software.

5.1 Functional Requirements

A) LTA Controller Data Frames

1. The program will compare the data frames from the functional simulation with the
data frames from the post-place-and-route simulation. For each functional
simulation data frame, it will try to find the matching post-place-and-route
simulation data frame. If an exact match is not found, the frame that matches
most closely will be flagged and the discrepancy will be indicated.

2. The words that are most critical to a match are:
- Word 1: the Correlator Chip Cell Number (CCC#)
- Word 4 and Word 5: the time stamps

The program will compare Word0 to Word5 first because these contain the CCC#
and timestamps. The rest of the words are compared only when a match in the
CCC# and timestamps is found.

3. This process will repeat for each file in the directory.

4. The data frames in the two files may be in a different order. The program should
be able to find the matching data frame even if it is not in order.

5. When one matching data frame is found, the program will continue to check if
there are any additional matching data frames.

B) MCB Registers

1. The MCB register files will be compared. Only the contents of the registers, not
the comments, will be analyzed.

5.2 Performance Requirements

1. The processing time and complexity of the program must be reasonable.

5.3 Environmental Requirements

1. The program will be run in a UNIX environment.

 RFS Document: A25082N0010 Rev: 1.2 8

 Frances Lau, May 27, 2003

5.4 Interface Requirements

1. The program will have a UNIX command line user interface.

2. To compile the program, the user can either type:

gcc -Wall -ansi -pedantic -o comparison comparison.c

or type make, and the makefile will automatically execute the above command.
Note that the -Wall -ansi -pedantic options are not mandatory, but they are
useful for debugging.

3. To execute the program, the user will enter the command comparison, followed
by the directory names at the command prompt. The syntax is below:

comparison [funcsim] [pparsim] > [outputfile.txt]

funcsim is the name of the directory for the functional simulation files
pparsime is the name of the directory for the post-place-and-route
simulation files
outputfile.txt is the name of the file where the results will be output. This
parameter is optional. If it is omitted, the results will be output on the screen.

If the user does not specify a directory name for the functional simulation and
post-place-and-route simulation files, the default directory names funcsim and
pparsim will be used.

4. The names of the files in the two directories must be identical. If they are not or
if a file is missing, an error message will be displayed and the user must correct
this before proceeding. Lag frame files must have the filename format
lag_frames*.txt. MCB register files must have the filename format
mcb_reg*.txt.

5. The user will have the option of having the results output on the screen or in a
file. If the user wants to have the output in a file, he/she must supply a filename.

6. If an exact match is found for a data frame, the program will output a message
indicating that a match was found for this CCC# and timestamp. If an exact
match is not found, the program will display an error message indicating the word
where a discrepancy was found. If no data frame is found with a matching data
frame and timestamp, a message will be displayed indicating this.

7. A summary of the errors and warnings found will be displayed. This includes
statistics summarizing the number of frames in each file.

 RFS Document: A25082N0010 Rev: 1.2 9

 Frances Lau, May 27, 2003

6 Functional Specifications
The program will compare the functional simulation output and the post-place-and-route
output from two sources:

a) the data frames transmitted to the LTA Controller, and
b) the contents of the MCB registers.

A similar method will be used for both comparisons. The flowchart in Figure 6-1
illustrates the overall program structure. A description of the functions that perform
general tasks is below.

General Functions

main

- Calls getDirNames to process the names of the directories where the files
are found.

- Calls compareLag to compare all the lag frame files in the directory.
- Calls compareMCB to compare all the MCB register files in the directory.

getDirNames

- Processes the directory and file names supplied by the user at the
command line.

- If the user omits a parameter, the program will revert to a default setting.
The directory names funcsim and pparsim will be used and the output
will be printed to the screen.

findFile

- After the contents of the directory is output into a file, findFile reads the
file in order to obtain the next filename.

outputFinalSumm

- Displays the total number of errors and total number of warnings for this
test case

 RFS Document: A25082N0010 Rev: 1.2 10

 Frances Lau, May 27, 2003

Start

Stop

getDirNames

compareMCB

compareLag

Figure 6-1: Flowchart of overall program structure

output
FinalSumm

 RFS Document: A25082N0010 Rev: 1.2 11

 Frances Lau, May 27, 2003

A) Functions for the Comparison of LTA Controller Interface Data Frames

Figure 6-2 illustrates compareLag, Figure 6-3 illustrates compareLagFile, and Figure 6-4
illustrates findMatch, the three main functions. A description of all the functions is
below.

compareLag

- Cycles through all the lag frame files in the directory.
- The names of the lag frame files in the directory are stored in a temporary

file so that they can be read.
- Calls compareLagFile to process each file.

compareLagFile

- Cycles through all the frames in the functional simulation file.
- Calls the findMatch function to find matches for each frame.
- Displays a summary of the results for this file.

findMatch
- Finds matches for each frame it is passed by cycling through all the frames

in the post-place-and-route simulation file.
- Compares Word 0 to Word 5. If a frame with a matching CCC# and

timestamp is found, the function compareRemainderOfFrame is called
(Note: Word 0 to Word 5 are compared because these words contain the
CCC# and the timestamps). The program will continue searching the
frames even when a match is found in order to check if there is more than
one matching data frame.

compareRemainderOfFrame
- Executed when we have found a frame that has matching CCC#,

Timestamp-0, and Timestamp-1.
- Compares Word 6 to Word 266 of these 2 frames only

toNextFrame
- Goes to the next frame in the file.
- The next frame is indicated by:

a) A blank line or a comment before Word0, and
b) The hexadecimal number beginning with ‘a’, since Word0 is

always aaaaaaaa.

readHex

- Reads the hexadecimal number, ignoring the comments at the end of each
line that decodes the hexadecimal number.

extractCCC
- Decodes Word1 to extract the CCC#.

 RFS Document: A25082N0010 Rev: 1.2 12

 Frances Lau, May 27, 2003

findMatch function

CCC# and
timestamps

match?

Any unprocessed
frames in the post-

PAR sim file?
(call toNextFrame)

compare
Remainder
OfFrame

end findMatch
function

yes

no

noyes

Figure 6-4: Flowchart of the findMatch function

readHex

extract
CCC

compareLag File
function

Any unprocessed
frames in the

functional sim file?
(call toNextFrame)

findMatch

End compareLag
File function

yes

no

Figure 6-3: Flowchart of
compareLagFile function

compareLag
function

Any unprocessed
data frame files in

directory?
(call findFile)

compare
LagFile

End compareLag
function

yes

no

Print
summary of

results

Figure 6-2: Flowchart of
compareLag function

Read contents
of directory into
temporary file

Output
result for
this frame

 RFS Document: A25082N0010 Rev: 1.2 13

 Frances Lau, May 27, 2003

B) Functions for the Comparison of MCB Register Files

The MCB register files will be compared using a similar method. Figure 6-5 illustrates
the function compareMCB and Figure 6-6 illustrates the function compareMCBRegFile,
the two main functions. A description of all the functions is below.

compareMCB
- Cycles through all the MCB Register files in the directory.
- Calls the compareMCBRegFile function to process each file.

compareMCBRegFile
- Cycles through each register of the MCB register file.
- Compares the contents of each register.
- Calls toNextMCBReg to go to the next line of the MCB register file,

ignoring the comments.

toNextMCBReg
- Goes to the next register in the file.
- The next register is indicated by:

a) The new line character ‘\n’ as the last character in the previous
line, and

b) ‘1’ or a ‘0’ as the first character of the current line.

compareMCB
RegFile
 function

Any unprocessed lines
left in functional sim and

post-PAR sim files?
(call toNextMCBReg)

End
compareMCBFile

function

yes

no

Read next
register in

post-PAR file

Read next
register in

func sim file

Contents of
registers equal?

Print error
message

Print
summary of

results

Figure 6-6: Flowchart of compareMCBRegFile functionFigure 6-5: Flowchart of compareMCB function

compareMCB
function

Any unprocessed MCB
reg files left in directory?

(call findFile)

compare
MCBRegFile

End
compareMCB

function

yes

no

yesno

 RFS Document: A25082N0010 Rev: 1.2 14

 Frances Lau, May 27, 2003

7 References

[1] Carlson, Brent, Requirements and Functional Specification: EVLA Correlator Chip,
July 26, 2002.

