
 Corr Chip TVP: A25082N0001 Rev: DRAFT 1

 B. Carlson, August 26, 2004

TEST AND VERIFICATION PLAN

EVLA Correlator Chip

TVP Document: A25082N0001

Revision: DRAFT

Brent Carlson, August 26, 2004

National Research Council Canada
Herzberg Institute of Astrophysics

Dominion Radio Astrophysical Observatory

P.O. Box 248, 717 White Lake Rd
Penticton, B.C., Canada

V2A 6K3

 Corr Chip TVP: A25082N0001 Rev: DRAFT 2

 B. Carlson, August 26, 2004

Table of Contents
1 REVISION HISTORY ... 4

2 INTRODUCTION... 5

3 OVERVIEW.. 6

4 PRE-FABRICATION TEST PLAN.. 7
4.1 INCREMENTAL RTL CODING AND TESTING ... 7

4.1.1 CMAM functionality qualification .. 7
4.1.2 Cross-clock domain signals .. 7

4.2 CHIP FUNCTIONAL TESTING (TEST CASE GENERATION AND VERIFICATION) 8
4.2.1 Behavioural simulation and comparison with RTL simulation... 8

4.3 RANDOM/QUASI-RANDOM INPUT TESTING.. 9
4.4 CRITICAL DESIGN REVIEW... 9

4.4.1 Detailed design/code walk-through .. 10
4.4.2 Detailed test case review .. 10
4.4.3 Review of vendor analysis, and final wrap-up.. 10

4.5 POST-PLACE-AND-ROUTE (PPAR) QUALIFICATION AND GATE-LEVEL SIMULATION 11
4.5.1 Cross-clock domain signals .. 11

5 PROTOTYPE TEST PLAN... 13
5.1 TEST CASE VERIFICATION... 13
5.2 “SKY” TESTING AT THE VLA-SITE ... 14
5.3 ENVIRONMENTAL TESTING... 14

6 PRODUCTION TEST PLAN .. 15

7 REFERENCES.. 16

8 APPENDIX I – FUNCTIONAL TEST CASE EXAMPLE ... 17

9 APPENDIX II – FUNCTIONAL TEST RESULTS EXAMPLE.. 22

10 APPENDIX III – GUI ANALYSIS OF FUNCTIONAL TEST EXAMPLE 24

11 APPENDIX IV – MODELSIM WAVE WINDOW OUTPUT EXAMPLES............................... 26

12 APPENDIX V – C BEHAVIOURAL SIMULATION CODE... 30

 Corr Chip TVP: A25082N0001 Rev: DRAFT 3

 B. Carlson, August 26, 2004

 List of Abbreviations and Acronyms

ASIC – Application Specific Integrated Circuit. This is a chip built to perform a specific
set of functions. This is also referred to as a “custom chip” or “custom ASIC”.

EVLA – Expanded Very Large Array. This is the project that the EVLA correlator,
including the EVLA correlator chip is being built for.

FPGA – Field Programmable Gate Array. A programmable chip that contains an array
of logic functions surrounded by programmable interconnects.

FSM – Finite State Machine. Logic that implements some controller function that
contains a finite number of states, responds to input stimuli, and produces output signals.

PAR – Refers to Place and Route of the correlator chip.

PPAR – Refers to Post Place and Route of the correlator chip.

RTL – Register Transfer Language. This is synthesizable Verilog (VHDL is another
industry standard that is not used for the correlator chip) code used to build the chip’s
logic functions. RTL is a subset of the entire HDL (Hardware Description Language)

Structured ASIC – This is an ASIC that contains a sea of gates or cells and a fixed
number of specialized functions such as PLLs and memory. The Strucutred ASIC is
frozen to perform fixed functions once metal interconnect layers are added in the design
and manufacturing process.

VLA – Very Large Array. Array of 27, 25 m antennas in New Mexico built in the 1970s
and operating since ~1980.

VLSI – Very Large Scale Integration.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 4

 B. Carlson, August 26, 2004

1 Revision History

Revision Date Changes/Notes Author

I/C
DRAFT

June 26, 2003 Incomplete DRAFT for discussion
purposes

B. Carlson

DRAFT August 26, 2004 DRAFT initial complete release B. Carlson

 Corr Chip TVP: A25082N0001 Rev: DRAFT 5

 B. Carlson, August 26, 2004

2 Introduction

This document describes the test and verification plan for the EVLA Correlator Chip.
Detailed requirements and functionality can be found in the EVLA Correlator Chip RFS
document [1].

The Correlator Chip is the heart of the correlator and there are 64 of them on every
Baseline Board, with a minimum of 160 of these boards in the system. Because of speed,
logic density, cost, and quantity it is necessary to implement this chip in a full-custom
VLSI ASIC (Application Specific Integrated Circuit) or in a “structured ASIC” device.
(The correlator chip is about a 3.5 million gate design, and has about a 4 W power
dissipation—implementation of this device in an FPGA is, at this point in time,
technologically impossible and not feasible in terms of power and cost.) Fabrication of
the chip is an expensive and lengthy process and necessarily requires careful testing at all
stages of development to minimize the chance of failure and thus increased cost and
development time. Depending on where a failure is found, it can cost from a few dollars
to several million dollars to fix the problem. Clearly, testing and qualification of the
correlator chip is crucial to the successful implementation of the correlator system.

It should be noted that the plan for testing the correlator chip outlined in this document
has changed from that envisioned in the correlator Conceptual Design Review in
November 2001. In that review, the plan was to implement a scaled-down version (i.e.
fewer lags) of the chip in an FPGA, test the FPGA on the sky at the VLA site with EVLA
antennas, and then proceed with implementation of the ASIC for production of the
correlator. The plan outlined in this document has changed somewhat, eliminates the
FPGA implementation and test, and proceeds directly to the ASIC implementation. The
FPGA prototype testing was eliminated due to problems in getting even a scaled-down
version of the FPGA to place and route at speed, power dissipation, packaging, ASIC
conversion, and cost.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 6

 B. Carlson, August 26, 2004

3 Overview

This section presents a brief overview of the plan for testing and verifying the
functionality and performance of the correlator chip. Since the chip will be fabricated as
a full custom or structure ASIC, testing and verifying the functionality and performance
of the chip is important at all stages of development. For this reason, a rigorous
procedure for testing the chip before moving to the next stage of implementation is
contemplated.

The main phases/steps in testing and verifying the performance and functionality of the
correlator chip are as follows:

1. Incremental RTL coding and testing of correlator chip modules.

2. Correlator chip RTL functional testing with test cases developed to exercise the
chip in as many of its intended operating modes as possible. Comparison with
behavioural simulation results.

3. Correlator chip RTL functional testing with random or psuedo-random inputs
(random test bench).

4. Critical Design Review of the correlator chip design, RTL code, test bench, test
cases, and test plan.

5. Correlator chip gate-level (post-place-and-route—PPAR) testing and verification
with RTL functional test results.

6. Correlator chip PPAR testing and verification with the random test bench.

7. Physical prototype chip verification and testing.

8. Production chip verification and testing.

Each of these elements will be described in more detail in following sections.

Any vendor/manufacturing specific testing required in the chip implementation is beyond
the scope of this test plan and is not included.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 7

 B. Carlson, August 26, 2004

4 Pre-fabrication Test Plan

This section describes the test and verification plan for testing the chip before physical
prototypes are fabricated. Rigour in this testing is absolutely essential to ensure that the
prototypes function as intended.

4.1 Incremental RTL Coding and Testing

During the development of the RTL code for the chip, an incremental code and test
strategy is used. This methodology is the first level of testing that, if performed
rigorously, helps to ensure that further (functional) testing is only required to find obscure
bugs that are the result of unanticipated interactions between functional blocks. There are
no quantifiable data products from this testing, rather testing is done to the engineer’s
satisfaction for the particular function under test.

4.1.1 CMAM functionality qualification

An important module that dominates the silicon area and power dissipation of the chip,
and is important for the fundamental operation of the correlator is the Complex Multiply-
Accumulate Module or the “cmam”. It is critically important that this module is
producing correct results and thus extra effort must go into verifying that this is the case.

The synthesizable cmam module is compared within the simulator (Modelsim) with a
non-synthesizable, but functionally equivalent module that exactly replicates its
behaviour, but that is built using simple arithmetic equations. This behavioural model
produces an output that must be exactly equivalent, at the bit level, with the synthesizable
module that will eventually be implemented in silicon. This comparison is essential to
ensure that there are no logic errors in the synthesizable module that could introduce
systematic biases in the implemented correlator chip results. If iteration of the cmam is
required during chip place-and-route (PAR) (e.g. to add or remove pipelining), then the
behavioural model is updated accordingly and the test is re-run before the modified
design is accepted.

4.1.2 Cross-clock domain signals

Any signals that cross from one clock domain to another (such as would be the case with
microprocessor configuration and status), are clocked into the destination clock domain
with 2 stages of flip-flops before entering the destination logic.

If more than one bit is clocked into another clock domain, and the destination domain
contains a finite state machine (FSM), then logic is included to ensure that both bits
change at the same time before entering the FSM.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 8

 B. Carlson, August 26, 2004

4.2 Chip functional testing (test case generation and verification)

A top-level, sophisticated test bench allows configuration and testing of the chip in as
many different modes as can be envisioned. The plan is to ensure that the test
cases/configurations that are created will encompass any possible configurations created
during the lifetime of the chip, and to ensure that as close as possible to 100% fault
coverage (i.e. exercising 100% of the logic in the chip) is achieved.

A standard set of test vectors for X and Y input data streams are used to provide the chip
with data for each test. Each set of test vectors has a recognizable result in the lag and
frequency domains. A Windows-based GUI and a MatLab analysis program (developed
by Aardvark Resources) facilitate verification that each test case is set up as intended,
and to facilitate comparison of data produced by the correlator chip simulator with the
behavioural simulator described in section 4.2.1 below.

The output files from this functional correlator chip RTL simulation will be frozen and
saved as “golden files” for bit-by-bit comparison with the correlator chip PPAR
simulations. This comparison is a crucial step that ensures that all functional and timing
requirements have been met in the ASIC implementation of the design.

It is possible that the final RTL simulation and the resulting final golden files may not be
completed until such time as the ASIC vendor indicates that there are no timing/power
issues in PAR, and that the RTL design can be frozen.

In addition, the test bench is built so that any inputs that should not matter to the chip for
the particular configuration and for any particular instants in time are set to “don’t cares”.
This ensures that if signals entering the chip “leak” into unexpected places and cause
errors, it will show up in the Modelsim wave window and the output files.

Refer to document A25082N0002 (TVP: EVLA Correlator Chip Functional Test
Cases) by Aardvark Resources for a detailed description of all functional test cases.

Refer to the appendix of this document for further information on functional testing.

4.2.1 Behavioural simulation and comparison with RTL simulation

A behavioural simulator written in C1, and derived from the simulation code used to
study the behaviour of the critical signal processing elements of the correlator (NRC
EVLA Memo# 001) is the “gold standard” against which correlator chip simulations are
compared.

The fundamental code for the correlator is very simple and it is possible to verify the
correctness of its output by inspection and with the knowledge of what the fundamental
output of the correlator should be from first principles. (This code is derived from code

1 Refer to Appendix V for a complete listing of this code.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 9

 B. Carlson, August 26, 2004

originally developed for testing in the development and successful implementation of the
space VLBI correlator [2].)

The test vectors that are fed into the behavioural simulator have two possible sources.
The first source is from a C program that produces a file of test vectors. This same file is
fed into the correlator chip test bench. The second source is from the correlator chip test
bench: the exact set of test vectors that went into the correlator chip simulation are
written to a file that can then go into the behavioural simulator. With proper structuring
of the data valid bits to eliminate unimportant differences in cmam pipeline delays
between the C code and the RTL code2, this test allows an exact bit-by-bit comparison of
the C behavioural simulation with the correlator chip simulation, verifying that they
produce exactly the same result.

The comparison of the C behavioural simulation results with the correlator chip
simulation forms a solid foundation to ensure that the correlator chip functions as it
should.

4.3 Random/quasi-random input testing

A separate test bench generates a combination of random and quasi-random data on all of
the inputs to the chip. This test bench can be set for purely random inputs or random
inputs on data lines, and quasi-random inputs on control lines that allow the chip to
produce some output data frames. This test is used to find bugs in FSMs that could cause
the chip to hang up. This test produces no useful output that can be compared with
anything. Determination of hung conditions and/or don’t cares is made by observing the
Modelsim wave window output.

4.4 Critical Design Review

A Critical Design Review of the correlator chip will be held after the correlator chip
ASIC vendor is chosen but before final synthesis and PAR of the chip commences.

The review committee will consist of a chairman and internal and external reviewers and
a final short report will be generated by the review committee before final sign-off of the
chip for implementation by the ASIC vendor.

It should be noted that much work has already been done by more than one vendor in
synthesis, PAR, and analysis of the design and so there should be no major surprises

2 i.e. blank data valid a short period of time before and after a dump command (dump_sync) occurs so that
differences in pipelining in the cmam between the RTL code and the C code are factored out.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 10

 B. Carlson, August 26, 2004

coming out of this review. This review is used as a final critical look at design, testing,
and power, speed, and packaging issues.

This review consists of three distinct parts and different sets of people will be required
for each part.

4.4.1 Detailed design/code walk-through

This is a line-by-line walk-through of each RTL module with the intent of trying to find
coding faults that could cause unusual or problematic behaviour in the actual device but
that may not show up in any simulations. For example, a FSM with a missing or
unaccounted for state could cause intermittent lock-up of the chip, but may not be found
in any simulations.

This walk-through is expected to take 2 days and attendance by the following people is
essential:

• Correlator chip engineer (B. Carlson)

• ASIC chip vendor engineer (TBD).

• External engineer from NRAO (TBD—optional)

4.4.2 Detailed test case review

This is a review of all of the functional test cases, the random test bench, and all test
results including comparisons with the behavioural simulation. Reviewers should have a
good understanding of the functionality of the correlator chip, and the functionality of the
correlator system.

This part of the review is expected to take 1 or 2 days and attendance by the following
people is essential:

• Correlator chip engineer (B. Carlson).

• ASIC chip vendor engineer (TBD).

• External engineer from NRAO (TBD).

• Test-case developer (R. Smegal).

• EVLA project scientist(s) (R. Perley, M. Rupen)

4.4.3 Review of vendor analysis, and final wrap-up

This is a review of the preliminary work done by the vendor in analysis of the correlator
chip design for feasibility in terms of cost, power, speed, packaging, and reliability as
well as a final wrap-up/summary of the first 2 parts of the review.

This part of the review is expected to take 1 day, and attendance by the following people
is anticipated:

 Corr Chip TVP: A25082N0001 Rev: DRAFT 11

 B. Carlson, August 26, 2004

• All people in attendance thus far.

• EVLA Correlator project manager (P. Dewdney).

• EVLA project manager (P. Napier).

4.5 Post-place-and-route (PPAR) qualification and gate-level simulation

The ASIC vendor will perform PPAR static timing analysis to find any timing violations.
The results of this analysis, as well as the characterization of some timing paths as false
paths or multi-cycle paths must be carefully reviewed to ensure that no errors exist. This
review will likely require a meeting between the ASIC vendor and the EVLA correlator
chip design engineer.

Once PAR is complete, the ASIC vendor generates the gate-level netlist (.vo file) and the
timing file (.sdf file) that are used for simulation. PPAR simulation is performed by a
contractor (Aardvark Resources) or the EVLA correlator chip designer, and the outputs
are compared with the RTL simulation golden files. Any differences in the output files
indicate a timing or synthesis problem that must be fixed before final approval to build
the chip can be given.

Due to potentially excessive simulation times, it may not be possible to perform a gate-
level simulation on every single test case run for the RTL simulation, and thus one or
maybe a few test cases that cover as much functionality of the chip should be run for
comparison with the RTL golden files.

The random test bench must be run on the PPAR results to ensure that no lock-up or
don’t care conditions occur in the final design. Analysis is the same as the RTL
simulation—observation of the Modelsim wave window results.

The IBIS or spice models for the I/O of the chip should be analyzed using Signal Vision
or IS_analyzer to ensure that there are no board-level communication problems—
although this will not likely be the case since everything is point-to-point LVTTL over
very short distances and with one load.

4.5.1 Cross-clock domain signals

There is a potential problem in the PPAR (gate-level) simulation that will not show up in
the actual chip or in the RTL simulation. This can occur when the two clock domains are
not frequency synchronized and is due to the way Modelsim deals with internal setup and
hold timing violations.

When an internal setup or hold violation occurs, Modelsim sets the output to a “don’t
care” state until the setup or hold violation is fixed on the next or subsequent clock cycle.
If this “don’t care” propagates into a FSM, then the FSM state is undefined and it will
never recover without a reset.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 12

 B. Carlson, August 26, 2004

This effect does not occur in the RTL simulation because there are no setup or hold
requirements. This effect does not occur in the actual chip implementation if the design
procedure outlined in section 4.1.2 is followed since the signal into the FSM will always
be a 0 or a 1, and the FSM will operate properly on either case.

One way to work around this problem is to set the clocks in the test bench so that they are
frequency synchronous and so that when a signal propagates into the other clock domain
it most likely will not have a setup or hold-time violation even though there is no static
timing analysis on that particular path. In the correlator chip, this means setting the
MCB_CLK input to 32 MHz rather then 33 MHz. This workaround is no guarantee,
though, and may require tweaking the 32 MHz clock phase in the test bench to avoid this
condition.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 13

 B. Carlson, August 26, 2004

5 Prototype Test Plan

A minimum of 200 correlator chip prototypes must be fabricated to meet the
requirements for chip testing and prototype correlator testing. This is enough chips to
populate 3 Baseline Boards. One Baseline Board will eventually be shipped to the VLA-
site for testing on the sky where it will stay for further testing, one board will be shipped
to the UK for e-MERLIN, and one will stay in Penticton for continued testing and
software development.

It is anticipated that for cost and risk reasons, only one Baseline Board will be initially
populated and tested. If testing is successful, the other two boards will be populated,
otherwise a board re-spin will be done before continuing with the population and testing
of the fixed board.

There are three components of testing the correlator chip prototypes described in the
following sub-sections.

5.1 Test case verification

The goal of this testing is to ensure that the prototype chips are performing as expected,
at speed, using the same set of test vectors as was used for the functional simulation and
the PPAR simulation.

The baseline plan is that the prototype chip test board will be the prototype Baseline
Board with vectors originating from the prototype Station Board. These Station Board
vectors originate as vectors loaded into the Delay Module memory. The vectors loaded
can be anything, and it is likely that they will be the same or similar vectors to what was
used for the RTL and PPAR simulations.

Since all high-speed connections to each correlator chip are point-to-point (except for the
low-speed MCB bus), it is likely that a separate test board for the correlator chip will not
be necessary. However, it is possible to build a special test board with an FPGA to
stimulate the correlator chip under test, but this incurs additional hardware and software
engineering time that we can ill afford.

In principle it should be possible to obtain exactly the same results from this test as from
the functional simulation, although in practice this may be difficult and time consuming
to do because of the long times between time-tick markers in the real system versus what
is used in the simulations. Every time there is a time-tick (SCHID_FRAME_), data gets
replaced with ID codes and is invalid data for correlation. In the real system, this time
tick is generated once every 10 milliseconds, whereas in the simulations it is typically
generated every few tens or hundreds of microseconds. Thus, the accumulated data, and
data valid counts will be slightly different in the two cases, precluding a direct bit-by-bit
comparison. However, statistical comparison of floating point data products in both the
lag and frequency domains should yield extremely close results and should be sufficient
to qualify the prototype chips for this stage of testing.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 14

 B. Carlson, August 26, 2004

5.2 “Sky” testing at the VLA-site

This will be the first time that data from the antennas will be processed in the correlator
chip and successful completion and qualification of the chip at this stage is crucial for the
entire project.

A number of test cases will be developed to ensure that the chip is functioning properly
and that there are no functional or performance problems. Among them, deep
integrations will be performed in the configurations most often required by the correlator
during EVLA observations.

Advice from NRAO VLA science and operations people will be required to develop the
test cases, and these test cases will be detailed in a separate correlator prototype test
document.

The deep integration times and the configurations tested should be approximately at the
95th percentile or better. For proper qualification, phase and amplitude closure tests and
image processing of deep integrations will be performed to try to find systematic errors
that may be present in the correlator chip due to incorrect functionality or performance
problems. Although there is no model to compare the results with (except for perhaps the
old VLA correlator) this is the final important qualifying test before the correlator chip is
approved for production.

5.3 Environmental testing

This testing is used to ensure that the chip meets all of its environmental operating
requirements. This includes timing into and out of the chip, operating temperature,
power dissipation, clock speed etc. This test will involve measurements, burn-in,
temperature cycling, vibration testing, and increasing the clock speed somewhat to
determine the chip’s performance robustness. The parameters for this testing are TBD
and will involve obtaining the ASIC vendor’s recommendations for this type of testing.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 15

 B. Carlson, August 26, 2004

6 Production Test Plan

At least 12000 and perhaps as many as 17000 correlator chips will be produced for the
full correlator build. These chips are tested by the ASIC manufacturer using “scan-
insertion” testing techniques that test each die before it is packaged. We will thus take
delivery of chips that are tested to ensure that all internal gates are switching.

There is no plan to test individual packaged chips before being soldered to destination
Baseline Boards. Thus, any testing of production correlator chips falls under the scope of
Baseline Board testing. Generally, this means JTAG and functional testing before the
boards are accepted from the manufacturer, and functional and burn-in testing at our site
before shipment to their final destination.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 16

 B. Carlson, August 26, 2004

7 References

[1] Carlson, B. REQUIREMENTS AND FUNCTIONAL SPECIFICATION, EVLA
Correlator Chip, A25082N0000, Revision 1.3, June 15, 200.

[2] Carlson, B.R., Dewdney, P.E., Burgess, T.A., Casorso, R.V., Petrachenko, W.T.,
Cannon, W.H., The S2 VLBI Correlator: A Correlator for Space VLBI and Geodetic
Signal Processing, Publications of the Astronomical Society of the Pacific, 1999, 111,
1025-1047.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 17

 B. Carlson, August 26, 2004

8 Appendix I – Functional test case example

This appendix includes an example of a functional test case used to verify that the
correlator chip is functioning properly in one of its intended configurations. For more
detailed information on the operation of the correlator chip, refer to [1].

// ***
// File name : tc14_jul17-04_v2.v
// Project : Correlator chip (25082) CORRCHIP_25082_TB_LIB
// Version : V2
// Company : National Research Council of Canada
// P.O. Box 248
// Penticton, BC, V2A 6K3
// Author : Brent Carlson
// phone: 250-490-4346
// email: Brent.Carlson@nrc.ca
//
// Contributors : Rick Smegal
//
//
// Design description:
// This file contains a single testcase for the top-level correlator chip testbench.
// This test is based on the original work by
// Brent Carlson and Frances Lau.
//
//
// ***
// ************************* REVISION HISTORY **
// ***
// FILE NAME DATE VERSION COMMENTS
// tc14_mar13-04_v1.v Mar 13, 2004 1 creation
// tc14_jul17-04_v2.v Jul 17, 2004 2 new test bench, SE_CLK mod 2
//
//
//
// ***
//
//
// ***
// ***
// BEGINNING OF TEST CASE GENERATION/INITIALIZATION
// ***
// ***
//

// Notation for correlator cell concatenation : inpX(begin_cell:end_cell)inpY
// Cells not listed are disabled by an undefined setting of CCC data switches;
// a hyphen indicates inputs with 'no-data';
// inputs not shown have data valids reset (0) unless otherwise indicated.

tc = 14;
test_description[tc] =
"# --
TEST 14:
ver: v2,04jul17
Synopsis: CONCAT AS QUADS, INP 0,1 ALL POLN PRODUCTS, MOD 2 CLK, 3 DUMPS ON X
Description:
Purpose of Test: all poln products with quad concatenation
Concatenation: 0(0:3)0, 0(4:7)1, 1(8:11)0, 1(12:15)1
Num of Dumps-input: 3-0, 3-1
Dump Control: X
Num samples/dump-inp: 20000-0, 20000-1
Distinct samp/dump: 10000-0, 10000-1
Active SE clocks: 0, 1
Modulo se_clk gen: 2-0, 2-1
Compare results with: behavioural simulation test vectors for data set DS4
Additional details:

--";

//--

 Corr Chip TVP: A25082N0001 Rev: DRAFT 18

 B. Carlson, August 26, 2004

// MCSR register:
// ---
// X_Y_DS | SyncER | TvER | AOV | OVR | PhEN | TVEN | CEN
// ---
// B7 B6 B5 B4 B3 B2 B1 B0
mcsr_mem[tc] = 8'b______1________0_______0_____0_____0______1______0______1;

//--
//--

// CCCSCR Input Selection:
// 00 = adjacent CCC
// 01 = primary CCC input
// 10 = secondary CCC input
// 11 = undefined: no lag frames produced
//
// CCC0,1 switch config register: (same for CCC2...CCC15)
// |--------- CCC1 ----------|---------- CCC0 -----------|
// ---
// Y-S1 | Y-S0 | X-S1 | X-S0 | Y-S1 | Y-S0 | X-S1 | X-S0
// ---
// B7 B6 B5 B4 B3 B2 B1 B0
cccscr_0_1_mem[tc] = 8'b___0______0______0______0______0______0______0______1;
cccscr_2_3_mem[tc] = 8'b___1______0______0______0______0______0______0______0;
cccscr_4_5_mem[tc] = 8'b___0______0______0______0______0______0______0______1;
cccscr_6_7_mem[tc] = 8'b___0______1______0______0______0______0______0______0;
cccscr_8_9_mem[tc] = 8'b___0______0______0______0______0______0______1______0;
cccscr_10_11_mem[tc] = 8'b_1______0______0______0______0______0______0______0;
cccscr_12_13_mem[tc] = 8'b_0______0______0______0______0______0______1______0;
cccscr_14_15_mem[tc] = 8'b_0______1______0______0______0______0______0______0;

//--
//--

// CCQR Input Selection:
// 0 = primary
// 1 = secondary
//
// CCQ0,1 switch config register
// --
// Q1-YSw1 | Q1-YSw0 | Q1-XSw1 | Q1-XSw0 | Q0-YSw1 | Q0-YSw0 | Q0-XSw1 | Q0-XSw0
// --
// B7 B6 B5 B4 B3 B2 B1 B0
ccqr_0_1_mem[tc] = 8'b_______1________1__________1________1_________0_________0_________0_________0;
ccqr_2_3_mem[tc] = 8'b_______1________1__________1________1_________1_________1_________1_________1;

//--
//--

// shift enable clock(X,Y-SE_CLK) generation for each test, for each input.
// On (1) or off (0).
//
// Input line number
// --
// 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// --
x_se_clk_mem[tc] = 8'b_____0_______0_______0_______0_______0_______0_______1_______1;
y_se_clk_mem[tc] = 8'b_____0_______0_______0_______0_______0_______0_______1_______1;

//--
//--

// Modulo shift enable clock (X,Y-SE_CLK) generation for each test, for each input.
// On (1) or off (0).
// Is only looked at if the corresponding bit in x/y_se_clk_mem for the same test is set (1).
// If modulo generation is on, then the se_clk is on when: !(samplenum % [input_number+2]).
// However, this can be overridden by set_modulo_mode_mem below.
// E.g. se_clk_0 would be on every other clock cycle, se_clk_1 would be on every third clock cycle etc.
// This could result in the detection of input synchronization errors since a given se_clk may not
// be 1 when schid_frame is asserted.
//
// modulo X,Y-SE_CLK generation is on (1) or off (0).
//
// Input line number
// --
// 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// --
x_se_clkmod_mem[tc] = 8'b__0_______0_______0_______0_______0_______0_______1_______1;
y_se_clkmod_mem[tc] = 8'b__0_______0_______0_______0_______0_______0_______1_______1;

 Corr Chip TVP: A25082N0001 Rev: DRAFT 19

 B. Carlson, August 26, 2004

//--
//--

// If modulo generation is on and this bit is reset (0), then modulo 2 clock
// generation is used no matter what the input number. If this bit is set (1),
// then modulo (input_number+2) generation is used.
//
set_modulo_mode_mem[tc] = 0;

//--
//--

// For each test, the contents of this memory is ANDed with the data valid lines
// for inputs X and Y.
//
// Input line number
// --
// 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// --
x_dvalid_mem[tc] = 8'b_____0_______0_______0_______0_______0_______0_______1_______1;
y_dvalid_mem[tc] = 8'b_____0_______0_______0_______0_______0_______0_______1_______1;

//--
//--

// This block defines temporary registers to hold data that
// is to be transmitted serially on one or more X,Y-DUMP_EN lines and assigns this data
// to a register corresponding to an active X,Y-DUMP_EN line.
// Different data may be assigned to each line, if required.
// The length of the serial sequence for dumpen and timestamp is defined by the
// parameter dts_len, and currently dts_len = 72.
// So, there are 72 bits total...here

fill_sync = 2'b01; // 2 bits

// Dump control bits:
// 000 = First dump of data into LTA. Just save data in LTA bin.
// 001 = Add to existing LTA data and save in LTA.
// 010 = Last dump: add data to LTA, and flag data as ready for readout.
// 011 = Speed dump: bypass LTA directly to output. Data bias removed.
// 100 = Correlator chip dumps, discards data, clears registers.
// 1X1 = Reserved.
// 11X = Reserved.

dump_command = 3'b010; // 3 bits: last dump

// Phase bin number that the data gets dumped/accumulated into.
// Note: PB15 is the bank number (0 or 1)
// With speed dumping, all 16 PB bits can be used for a total of 65,536 bins.

phase_bin = 55666; // 16 bits
recirc_blk = 233; // 8 bits
fill3 = 3'b111; // 3 bits

// Holdoff held high to disable correlation until lag shift registers
// fill up with data.
holdoff = 40'b0000000000000000000000000000000000001111; // 40 bits

// Either X or Y controls dumping, as defined by X/Y_DS (X/Y dump select) in the MCSR.
// Here, X controls dumping.
// dump_en is transmitted LSB first.
x_dumpen0_mem[tc] = {holdoff,fill3,recirc_blk,phase_bin,dump_command,fill_sync};
x_dumpen1_mem[tc] = {holdoff,fill3,recirc_blk,phase_bin,dump_command,fill_sync};

// these are dummies
x_dumpen2_mem[tc] = {70'bx,2'b0};
x_dumpen3_mem[tc] = {70'bx,2'b0};
x_dumpen4_mem[tc] = {70'bx,2'b0};
x_dumpen5_mem[tc] = {70'bx,2'b0};
x_dumpen6_mem[tc] = {70'bx,2'b0};
x_dumpen7_mem[tc] = {70'bx,2'b0};

//--
//--

// This block defines temporary registers to hold the TIMESTAMP data and assigns
// this data to a register corresponding to the X,Y-TIMESTAMP data line.

// Timestamps
ts_fillsync = 2'b01;
ts_0 = 222333444;

 Corr Chip TVP: A25082N0001 Rev: DRAFT 20

 B. Carlson, August 26, 2004

ts_1 = 555666777;
ts_endfill = 0;
x_timestamp_mem[tc] = {ts_endfill,ts_1,ts_0,ts_fillsync};

// The Y timestamp is ignored because X controls dumping.
ts_fillsync = 2'b01;
ts_0 = 'hffffffff;
ts_1 = 'hffffffff;
ts_endfill = 0;
y_timestamp_mem[tc] = {ts_endfill,ts_1,ts_0,ts_fillsync};

//--
//--

// These registers contains the dump period in 128 MHz clock cycles. All tests
// start with a dump and discard immediately after reset so that everything gets
// into a known state.
// The facility to set the dump period independently for each DUMP_EN line
// was added Feb. 5, 2004.
// NOTE: IT IS UP TO THE USER TO ENSURE THAT THERE
// ARE NO "COLLISIONS"...THUS, ALL OF THE DUMP_PERIOD_MEM(0...7) MUST BE
// HARMONICALLY RELATED.

// DEFAULT for tests in 128 MHz clock cycles is DUMP_PERIOD=5000

dump_period_mem0[tc] = 10000;
dump_period_mem1[tc] = 10000;
dump_period_mem2[tc] = 10000;
dump_period_mem3[tc] = 10000;
dump_period_mem4[tc] = 10000;
dump_period_mem5[tc] = 10000;
dump_period_mem6[tc] = 10000;
dump_period_mem7[tc] = 10000;

//--
//--

// Set how often, in 256 MHz clock cycles, the X,Y-SCHID_FRAME pulses are generated.
// **MUST** BE 512 * 2^n
// DEFAULT for tests in 256 MHz clock cycles SCHID_PERIOD=512

schid_period_mem[tc] = SCHID_PERIOD;

//--
//--

// Define memory that allows us to generate frame abort tests. If the mem is
// set (1), then every other dump for each CCC is aborted partway through
// transmission.

frame_abort_mem[tc] = 0; // set (1) to abort CCC first dump frames

//--
//--

// Generate input sync errs on the X and Y data at 256 MHz. If bit in this memory is set (1) then
// error generation occurs. If reset (0) then no error generation.

sync_err_mem[tc] = 0;

//--
//--

// Set how often errors are generated for each test.
// If TVEN=1, then this is how often in samples. If TVEN=0, then
// this is how often in terms of the input synchronization pattern (i.e. every
// sync_err_mod_mem sync patterns, the error is generated).

sync_err_mod_mem[tc] = 0;

//--
//--

// Set how much the Y dump_sync and dump_en is later than the X dump_sync and dump_en
// in terms of 128 MHz clock cycles.

y_dump_offset_mem[tc] = 3;

//--
//--

 Corr Chip TVP: A25082N0001 Rev: DRAFT 21

 B. Carlson, August 26, 2004

// Set how much the Y schid_frame is offset from the X schid_frame
// in terms of 128 MHz clock cycles.

y_schid_offset_mem[tc] = 6;

//--
//--

// Define X and Y station IDs for each test.
// define embedded identifiers...make them something easily recognized.

x_station_id_mem[tc] = 85;
y_station_id_mem[tc] = 170;

//--
//--

// Define X and Y sub-band IDs BASES. The actual sub-band ID is this plus the
// input number (0...7)

x_sbid_mem[tc] = 0;
y_sbid_mem[tc] = 0;

//--
//--

// The number of 128 MHz clock cycles that the simulation runs for. Once
// these number of clock cycles have elapsed, the LTA Controller emulator clears
// config_ready, waits for the remaining data frames to be read out and stored, and then
// tells the MCB interface emulator that it can RESET_pad the chip, load a new
// configuration, and then re-assert config_ready for the next test.
//
// NOTE: The first integration (dump interval) does not start until after the
// data has been synchronised and the first dump and discard occurs.
// This time is approximated in 128 MHz clock cycles by:
// (mcb_cen_set_wait*schid_period/512+128)*128/33 + first_dump_start + dts_len)
// This delay is approximately 2200 clock cycles for mcb_cen_set_wait=410,
// schid_period=512,first_dump_start=20, dts_len=72
// The time requred for configuration of the MCSR is not included in the above and
// additional time should allowed in setting the TEST_DURATION.

// DEFAULT test duration for tests in 128 MHz clock cycles is TEST_DURATION=10000

test_duration_mem[tc] = 35000; // dump period + additional 5000 cycles

//--
//--

$display("---Test Case %d initialized",tc);

// ***

 Corr Chip TVP: A25082N0001 Rev: DRAFT 22

 B. Carlson, August 26, 2004

9 Appendix II – Functional test results example

Examples of the “golden file” outputs produced by the functional test bench are presented
below. The first example is the MCB configuration register file that is created near the
end of test case execution when the configuration and status registers on the chip are read
out and then saved in an ASCII format. The second example is lag frame data output
acquired by the test bench from the correlator chip and written to an ASCII file.

MCB configuration/status register file example

TEST 14:
ver: v2,04jul17
Synopsis: CONCAT AS QUADS, INP 0,1 ALL POLN PRODUCTS, MOD 2 CLK, 3 DUMPS ON X
Description:
Purpose of Test: all poln products with quad concatenation
Concatenation: 0(0:3)0, 0(4:7)1, 1(8:11)0, 1(12:15)1
Num of Dumps-input: 3-0, 3-1
Dump Control: X
Num samples/dump-inp: 20000-0, 20000-1
Distinct samp/dump: 10000-0, 10000-1
Active SE clocks: 0, 1
Modulo se_clk gen: 2-0, 2-1
Compare results with: behavioural simulation test vectors for data set DS4
Additional details:

--
10000101 MCSR: X/Y_DS=1 SyncER=0 TvER=0 AOV=0 OVR=0 PhEN=1 TVEN=0 CEN=1

00000001 CCCSCR_0_1: CCC1: Y=adj X=adj CCC0: Y=adj X=pri
10000000 CCCSCR_2_3: CCC3: Y=sec X=adj CCC2: Y=adj X=adj
00000001 CCCSCR_4_5: CCC5: Y=adj X=adj CCC4: Y=adj X=pri
01000000 CCCSCR_6_7: CCC7: Y=pri X=adj CCC6: Y=adj X=adj
00000010 CCCSCR_8_9: CCC9: Y=adj X=adj CCC8: Y=adj X=sec
10000000 CCCSCR_10_11: CCC11: Y=sec X=adj CCC10: Y=adj X=adj
00000010 CCCSCR_12_13: CCC13: Y=adj X=adj CCC12: Y=adj X=sec
01000000 CCCSCR_14_15: CCC15: Y=pri X=adj CCC14: Y=adj X=adj

11110000 CCQR_0_1: Q1: YSw1=sec YSw0=sec XSw1=sec XSw0=sec Q0: YSw1=pri YSw0=pri XSw1=pri XSw0=pri
11111111 CCQR_2_3: Q3: YSw1=sec YSw0=sec XSw1=sec XSw0=sec Q2: YSw1=sec YSw0=sec XSw1=sec XSw0=sec

00000000 XSTATUS: X-SDATA1: 0000, X-SDATA0: 0000
00000000 YSTATUS: Y-SDATA1: 0000, Y-SDATA0: 0000
00000000 XSTATUS: X-SDATA3: 0000, X-SDATA2: 0000
00000000 YSTATUS: Y-SDATA3: 0000, Y-SDATA2: 0000
00000000 XSTATUS: X-SDATA5: 0000, X-SDATA4: 0000
00000000 YSTATUS: Y-SDATA5: 0000, Y-SDATA4: 0000
00000000 XSTATUS: X-SDATA7: 0000, X-SDATA6: 0000
00000000 YSTATUS: Y-SDATA7: 0000, Y-SDATA6: 0000
00000000 XSTATUS: X-PHASE1: 0000, X-PHASE0: 0000
00000000 YSTATUS: Y-PHASE1: 0000, Y-PHASE0: 0000
00000000 XSTATUS: X-PHASE3: 0000, X-PHASE2: 0000
00000000 YSTATUS: Y-PHASE3: 0000, Y-PHASE2: 0000
00000000 XSTATUS: X-PHASE5: 0000, X-PHASE4: 0000
00000000 YSTATUS: Y-PHASE5: 0000, Y-PHASE4: 0000
00000000 XSTATUS: X-PHASE7: 0000, X-PHASE6: 0000
00000000 YSTATUS: Y-PHASE7: 0000, Y-PHASE6: 0000
00000000 XSTATUS: X-DVALID: 00000000
00000000 YSTATUS: Y-DVALID: 00000000
11111100 XSTATUS: X-SE_CLK: 11111100
11111100 YSTATUS: Y-SE_CLK: 11111100
00000000 XSTATUS: X-DUMP_EN: 00000000
00000000 YSTATUS: Y-DUMP_EN: 00000000
00000000 XSTATUS: X-TIMESTAMP=0 X-SCHID_SYNC=0 X-DUMP_SYNCs=0
00000000 YSTATUS: Y-TIMESTAMP=0 Y-SCHID_SYNC=0 Y-DUMP_SYNCs=0

00000000 DESSR_0_7: 00000000
00000000 DESSR_8_15: 00000000

 Corr Chip TVP: A25082N0001 Rev: DRAFT 23

 B. Carlson, August 26, 2004

Lag frame data output file example

TEST 14:
ver: v2,04jul17
Synopsis: CONCAT AS QUADS, INP 0,1 ALL POLN PRODUCTS, MOD 2 CLK, 3 DUMPS ON X
Description:
Purpose of Test: all poln products with quad concatenation
Concatenation: 0(0:3)0, 0(4:7)1, 1(8:11)0, 1(12:15)1
Num of Dumps-input: 3-0, 3-1
Dump Control: X
Num samples/dump-inp: 20000-0, 20000-1
Distinct samp/dump: 10000-0, 10000-1
Active SE clocks: 0, 1
Modulo se_clk gen: 2-0, 2-1
Compare results with: behavioural simulation test vectors for data set DS4
Additional details:

--
aaaaaaaa W0: START SYNC WORD -- OK
e0010032 W1: B31=ASIC[1] Yin=1 Xin=1 YSyner=0 XSyner=0 ACC_OV=0 OVR=0 Rsrv=000000 NUM_CLAGS= 128 CCC= 6 Cmmd=010
c1aae055 W2: BBID-Y=6 SBID-Y= 1 SID-Y=170 BBID-X=7 SBID-X= 0 SID-X= 85
d97200e9 W3: LTA/Phase bin=55666 Recirc_blk-Y= 0 Recirc_blk-X=233
0d408a04 W4: TIMESTAMP-0= 222333444
211ecd59 W5: TIMESTAMP-1= 555666777
00004578 W6: DVCOUNT-Cntr= 17784
0000454f W7: DVCOUNT-Edge= 17743
00134380 W8: DATA_BIAS = 1262464
00135678 Lag 0 = 1267320
001345f6 Lag 0 = 1263094
00135e5e Lag 1 = 1269342
001340b8 Lag 1 = 1261752
001359d4 Lag 2 = 1268180
0013376c Lag 2 = 1259372
001357a8 Lag 3 = 1267624
0013333c Lag 3 = 1258300
.
.
.
00135e36 Lag 127 = 1269302
00134936 Lag 127 = 1263926
1c71c71c W265: END SYNC WORD -- OK
83f1011a W266: Checksum calculated OK

 Corr Chip TVP: A25082N0001 Rev: DRAFT 24

 B. Carlson, August 26, 2004

10 Appendix III – GUI analysis of functional test example

This appendix shows some example output from the Windows-based GUI that was built
to test the correlator chip test bench output.

This window shows a diagram of the correlator chip indicating what inputs are active,
how the input data is routed to the correlator chip cells (CCCs), and how the cells are
concatenated (grouping shown in yellow boxes).

 Corr Chip TVP: A25082N0001 Rev: DRAFT 25

 B. Carlson, August 26, 2004

These two images show the correlator chip output in amplitude and phase versus
frequency. In this case, there are 1024 spectral channels since all of the CCCs in the chip
have been concatenated for one correlation. In the data, there is one spectral line and a
continuum correlation.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 26

 B. Carlson, August 26, 2004

11 Appendix IV – Modelsim wave window output examples

This appendix contains some examples of Modelsim wave window displays that show
how the inputs are being stimulated in both the functional test case simulation and the
random input simulation.

Functional test case simulation examples.

This is a “wide-angle” view of one functional simulation that shows the input stimuli and
the resulting output data transfers on the LTA Controller Interface (LCI).

 Corr Chip TVP: A25082N0001 Rev: DRAFT 27

 B. Carlson, August 26, 2004

This is a zoomed-in picture showing the input stimuli, showing that when an input
doesn’t matter it is set to a don’t care state.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 28

 B. Carlson, August 26, 2004

Random input test bench simulation

Wide-angle Modelsim wave file view showing random inputs on the MCB and data lines,
and the generation of output frames with random frame abort requests.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 29

 B. Carlson, August 26, 2004

This is a zoomed-in picture showing the random input stimuli on the data, phase, and
control inputs.

 Corr Chip TVP: A25082N0001 Rev: DRAFT 30

 B. Carlson, August 26, 2004

12 Appendix V – C behavioural simulation code

This appendix contains the C program that forms the “gold standard” against which
correlator chip RTL and eventually PPAR simulations are compared. This code is very
simple and is derived from code used to study and develop an existing correlator [2].
Thus, there is great assurance that it is correct. Important code fragments and functions
are highlighted in bold.

/* Correlator simulator program to provide a reference correlation for testing
 * testvectors generated by noisegenCCtest that go to into the correlator chip
 * testbench.
 */
/* $Log: $ */

#include <stdio.h>
#include <math.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <unistd.h>
#include <simparms_CCtest.h>

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

#ifndef M_PI
#define M_PI 3.14159265358979323846264
#endif

/* X and Y cross-corr delay lines...only the LSN of each one contains actual
 * data read from the .vhex file. */
typedef struct
{
 int data;
 int phase;
 int dvalid;
} CROSSLAG_T;

typedef struct
{
 double in_phase;
 double quad;
} COMPLEX_T;

static CROSSLAG_T* X_lag_line=NULL;
static CROSSLAG_T* Y_lag_line=NULL;

/* insertion index for the X and Y delay lines */
static int crosslag_insert_index = 0;

static COMPLEX_T* crossaccum=NULL;

static int crosssample_count = 0;
static int crossinsert_count=0;

/* 3-level fringe stopping functions */
static int sin16[] = { 0, 1, 1, 1, 1, 1, 1, 0, 0, -1, -1, -1, -1, -1, -1,0 };
static int cos16[] = { 1, 1, 1, 0, 0, -1, -1, -1, -1, -1, -1, 0, 0, 1, 1,1 };

/* 5-level fringe stopping functions. */
static int sin16_5[] ={ 0, 1, 1, 2, 2, 2, 1, 1, 0, -1, -1, -2, -2, -2, -1,-1 };
static int cos16_5[] ={ 2, 2, 1, 1, 0, -1, -1, -2, -2, -2, -1, -1, 0, 1, 1,2 };

static int num_lags;
static int crosscorr_dellen;

static COMPLEX_T* localaccum=NULL;

 Corr Chip TVP: A25082N0001 Rev: DRAFT 31

 B. Carlson, August 26, 2004

static int testnum;
static int numdumps;
static int sample7bit=0;

/* FUNCTION PROTOTYPES */

static
void
crosscorrelate
(int xdata,
 int xphase,
 int xdvalid,
 int ydata,
 int yphase,
 int ydvalid);

static
void
output_crosscorr_data
(int testnumX,
 int testnumY,
 int dumpnum);

void
main
(int argc,
 char* argv[])
{
 long samplenum;
 int corrsamples; /* number of samples to correlate per dump */
 int dumpnum;
 int i;
 FILE* fpX;
 FILE* fpY;
 char fnameX[256];
 char fnameY[256];
 int testnumX;
 int testnumY;
 int itemp;
 int xdata, xphase, xdvalid;
 int ydata, yphase, ydvalid;
 int xdata_m;
 int ydata_m;

 if(argc != 7 && argc !=8)
 {
 fprintf(stderr,
 "Use: corrsimCCtest <#lags> <X-in#> <Y-in#> <#samples;0=all> <test#> <#dumps;0=all> (-7[7-
bit])\n");
 exit(-1);
 }
 itemp = sscanf(argv[1],"%d",&num_lags);
 if(itemp != 1)
 {
 fprintf(stderr,"***Error: could not determine #lags: '%s'\n",
 argv[1]);
 exit(-1);
 }
 if(num_lags % 2)
 {
 fprintf(stderr,"***Error: #lags %d must be even!\n",num_lags);
 exit(-1);
 }
 crosscorr_dellen = ((num_lags/2)+1);

 /* dynamically allocate memory for lag correlator structures */
 X_lag_line = (CROSSLAG_T*)malloc(sizeof(CROSSLAG_T)*crosscorr_dellen);
 Y_lag_line = (CROSSLAG_T*)malloc(sizeof(CROSSLAG_T)*crosscorr_dellen);

 crossaccum = (COMPLEX_T*)malloc(sizeof(COMPLEX_T)*num_lags);
 localaccum = (COMPLEX_T*)malloc(sizeof(COMPLEX_T)*num_lags);

 if(X_lag_line==NULL || Y_lag_line==NULL || crossaccum==NULL || localaccum==NULL)
 {
 fprintf(stderr,"***Error: internal malloc() error!\n");
 exit(-1);
 }

 Corr Chip TVP: A25082N0001 Rev: DRAFT 32

 B. Carlson, August 26, 2004

 itemp = sscanf(argv[2],"%d",&testnumX);
 if(itemp != 1)
 {
 fprintf(stderr,"***Error: could not determine X-input#: '%s'\n",
 argv[2]);
 exit(-1);
 }
 itemp = sscanf(argv[3],"%d",&testnumY);
 if(itemp != 1)
 {
 fprintf(stderr,"***Error: could not determine Y-input#: '%s'\n",
 argv[3]);
 exit(-1);
 }
 itemp = sscanf(argv[4],"%d",&corrsamples);
 if(itemp != 1)
 {
 fprintf(stderr,"***Error: could not determine #samples: '%s'\n",
 argv[4]);
 exit(-1);
 }
 itemp = sscanf(argv[5],"%d",&testnum);
 if(itemp != 1)
 {
 fprintf(stderr,"***Error: could not determine test#: '%s'\n",
 argv[5]);
 exit(-1);
 }
 itemp = sscanf(argv[6],"%d",&numdumps);
 if(itemp != 1)
 {
 fprintf(stderr,"***Error: could not determine #dumps: '%s'\n",
 argv[6]);
 exit(-1);
 }
 if(argc==8)
 {
 /* look for the -7 switch */
 if(!(strcmp(argv[7],"-7")))
 {
 sample7bit=1;
 fprintf(stderr,"\nNote: 7-bit correlation\n");
 }
 else
 {
 fprintf(stderr,"***Error: unknown switch: '%s'\n",argv[7]);
 exit(-1);
 }
 }

 /* open our input test files */
 if(sample7bit)
 {
 sprintf(fnameX,"X_CCinput%d_7.vhex",testnumX);
 sprintf(fnameY,"Y_CCinput%d_7.vhex",testnumY);
 }
 else
 {
 sprintf(fnameX,"X_CCinput%d.vhex",testnumX);
 sprintf(fnameY,"Y_CCinput%d.vhex",testnumY);
 }
 fpX = fopen(fnameX,"r");
 fpY = fopen(fnameY,"r");
 if(fpX==NULL || fpY==NULL)
 {
 fprintf(stderr,
 "***Error: can't open '%s' or '%s' for reading\n",
 fnameX,fnameY);
 exit(-1);
 }

 samplenum = 0;
 dumpnum = 0;

 /* ********************* Main sample loop **************************** */
 while(fscanf(fpX,"%1x%1x%1x\n",&xdata,&xphase,&xdvalid) != EOF &&
 fscanf(fpY,"%1x%1x%1x\n",&ydata,&yphase,&ydvalid) != EOF)
 {
 /* printf("samplenum: %d xdata: %d ydata: %d\n",samplenum,xdata,ydata); */
 if(sample7bit)

 Corr Chip TVP: A25082N0001 Rev: DRAFT 33

 B. Carlson, August 26, 2004

 {
 if(fscanf(fpX,"%1x%1x%1x\n",&xdata_m,&xphase,&xdvalid) != EOF &&
 fscanf(fpY,"%1x%1x%1x\n",&ydata_m,&yphase,&ydvalid) != EOF)
 {
 /* xdata contains the LSN, xdata_m contains the MSN...merge the two */
 xdata = (xdata&0x0f) | ((xdata_m&0x07)<<4);
 /* correct for sign extension loss */
 if(xdata > 63)
 xdata = xdata-128;

 /* same for ydata */
 ydata = (ydata&0x0f) | ((ydata_m&0x07)<<4);
 /* correct for sign extension loss */
 if(ydata > 63)
 ydata = ydata-128;

 /* don't worry about encoding data valid here for the actual test
 * with ModelSim...it will be done in the test bench */
 }
 else
 {
 break; /* all done */
 }
 }
 else
 {
 /* correct for sign-extension loss */
 if(xdata > 7)
 xdata = xdata-16;
 if(ydata > 7)
 ydata = ydata-16;
 }

 crosscorrelate(xdata,xphase,xdvalid,ydata,yphase,ydvalid);

 if(corrsamples > 0)
 {
 /* performing multiple dumps... */
 if(!(samplenum % corrsamples) && samplenum > 10)
 {
 /* gotta dump the data */
 output_crosscorr_data(testnumX,testnumY,dumpnum);
 crosssample_count=0;
 dumpnum++;
 if((numdumps > 0) && (dumpnum >= numdumps))
 exit(-1);
 }
 }
 samplenum++;
 } /* end while loop */
 output_crosscorr_data(testnumX,testnumY,dumpnum);
}

/* function to do a simple 'bi-directional' cross-correlation. Note that the
 * center lag is at num_lags/2 */

static
void
crosscorrelate
(int xdata,
 int xphase,
 int xdvalid,
 int ydata,
 int yphase,
 int ydvalid)
{
 int lag;
 int i;
 int indexX;
 int indexY;
 double sin_part,cos_part;
 int phase;

 if(crossinsert_count == 0)
 {
 for(i=0; i<crosscorr_dellen; i++)
 {
 X_lag_line[i].data = 0;
 Y_lag_line[i].data = 0;
 X_lag_line[i].phase = 0;

 Corr Chip TVP: A25082N0001 Rev: DRAFT 34

 B. Carlson, August 26, 2004

 Y_lag_line[i].phase = 0;
 X_lag_line[i].dvalid = 0;
 Y_lag_line[i].dvalid = 0;
 }
 for(i=0; i<num_lags; i++)
 {
 crossaccum[i].in_phase = crossaccum[i].quad = 0.0;
 }
 }

 /* insert data, phase, data valids into the delay line */
 X_lag_line[crosslag_insert_index].data = xdata;
 X_lag_line[crosslag_insert_index].phase = xphase;
 X_lag_line[crosslag_insert_index].dvalid = xdvalid;

 Y_lag_line[crosslag_insert_index].data = ydata;
 Y_lag_line[crosslag_insert_index].phase = yphase;
 Y_lag_line[crosslag_insert_index].dvalid = ydvalid;

 /* do not increment the insertion index yet! so that it points at the newest
 * sample. */

 crossinsert_count++;

 for(lag=0; lag<num_lags; lag++)
 {

 if(!(lag % 2))
 {
 /* even lags */
 indexX = (crosslag_insert_index + 1 + lag/2) % crosscorr_dellen;
 indexY = (crosslag_insert_index - lag/2);
 if(indexY < 0)
 indexY += crosscorr_dellen;
 }
 else
 {
 /* odd lags */
 indexX = (crosslag_insert_index + 1 + (lag+1)/2) % crosscorr_dellen;
 indexY = (crosslag_insert_index - (lag-1)/2);
 if(indexY < 0)
 indexY += crosscorr_dellen;
 }

 phase = (X_lag_line[indexX].phase-Y_lag_line[indexY].phase);
 if(phase < 0)
 phase += 16;
 else
 phase = phase % 16;

#if LEVEL5_FRINGE_STOPPING
 sin_part = (double)sin16_5[phase];
 cos_part = (double)cos16_5[phase];
#else
 sin_part = (double)sin16[phase];
 cos_part = (double)cos16[phase];
#endif

 crossaccum[lag].in_phase +=
 (double)(X_lag_line[indexX].data * X_lag_line[indexX].dvalid *
 Y_lag_line[indexY].data * Y_lag_line[indexY].dvalid) * cos_part;

 crossaccum[lag].quad +=
 (double)(X_lag_line[indexX].data * X_lag_line[indexX].dvalid *
 Y_lag_line[indexY].data * Y_lag_line[indexY].dvalid) * sin_part;

 /* maintain a data valid count at the center lag */
 if(lag == num_lags/2)
 {
 if(X_lag_line[indexX].dvalid & Y_lag_line[indexY].dvalid)
 crosssample_count++;
 }
 }

 /* finally, increment the insertion index */
 crosslag_insert_index = (crosslag_insert_index+1) % crosscorr_dellen;
}

 Corr Chip TVP: A25082N0001 Rev: DRAFT 35

 B. Carlson, August 26, 2004

/* this function spits out cross-correlated data to a file */
static
void
output_crosscorr_data
(int testnumX,
 int testnumY,
 int dumpnum)
{
 FILE* fp;
 int lag;
 double max;
 char buf[256];
 char buf1[256];
 int i;

 if(crosssample_count <= 0)
 return; /* nothing to do */

 /* normalize and copy data locally */
 for(lag=0; lag<num_lags; lag++)
 {
 localaccum[lag].in_phase = crossaccum[lag].in_phase /
 (double)crosssample_count;
 localaccum[lag].quad = crossaccum[lag].quad /
 (double)crosssample_count;

 /* clear the active accumulators as well...since we could be doing
 * multiple dumps */
 crossaccum[lag].in_phase = 0.0;
 crossaccum[lag].quad = 0.0;
 }

 printf("Data valid count=%d\n",crosssample_count);

 /* The only normalization that is done is to divide by the data valid
 * count. The Van Vleck normalization is not done, and is pointless
 * anyway for this test.
 */
 sprintf(buf,"CC%dx%d_test%02d_%dlagsD%d.dat",
 testnumX,testnumY,testnum,num_lags,dumpnum);

 fp = fopen(buf,"w");
 if(fp == NULL)
 {
 fprintf(stderr,"***Error: can't open file '%s'\n",
 buf);
 exit(-1);
 }

 for(lag=0; lag<num_lags; lag++)
 {
 fprintf(fp,"%.15e %.15e\n",
 localaccum[lag].in_phase,
 localaccum[lag].quad);
 }
 fclose(fp);
}

