base/math/s_log1p.c

Go to the documentation of this file.
00001 /* @(#)s_log1p.c 5.1 93/09/24 */
00002 /*
00003  * ====================================================
00004  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00005  *
00006  * Developed at SunPro, a Sun Microsystems, Inc. business.
00007  * Permission to use, copy, modify, and distribute this
00008  * software is freely granted, provided that this notice 
00009  * is preserved.
00010  * ====================================================
00011  */
00012 
00013 #if defined(LIBM_SCCS) && !defined(lint)
00014 static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $";
00015 #endif
00016 
00017 /* double log1p(double x)
00018  *
00019  * Method :                  
00020  *   1. Argument Reduction: find k and f such that 
00021  *          1+x = 2^k * (1+f), 
00022  *     where  sqrt(2)/2 < 1+f < sqrt(2) .
00023  *
00024  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
00025  *  may not be representable exactly. In that case, a correction
00026  *  term is need. Let u=1+x rounded. Let c = (1+x)-u, then
00027  *  log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
00028  *  and add back the correction term c/u.
00029  *  (Note: when x > 2**53, one can simply return log(x))
00030  *
00031  *   2. Approximation of log1p(f).
00032  *  Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
00033  *       = 2s + 2/3 s**3 + 2/5 s**5 + .....,
00034  *           = 2s + s*R
00035  *      We use a special Reme algorithm on [0,0.1716] to generate 
00036  *  a polynomial of degree 14 to approximate R The maximum error 
00037  *  of this polynomial approximation is bounded by 2**-58.45. In
00038  *  other words,
00039  *              2      4      6      8      10      12      14
00040  *      R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
00041  *      (the values of Lp1 to Lp7 are listed in the program)
00042  *  and
00043  *      |      2          14          |     -58.45
00044  *      | Lp1*s +...+Lp7*s    -  R(z) | <= 2 
00045  *      |                             |
00046  *  Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
00047  *  In order to guarantee error in log below 1ulp, we compute log
00048  *  by
00049  *      log1p(f) = f - (hfsq - s*(hfsq+R)).
00050  *  
00051  *  3. Finally, log1p(x) = k*ln2 + log1p(f).  
00052  *               = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
00053  *     Here ln2 is split into two floating point number: 
00054  *          ln2_hi + ln2_lo,
00055  *     where n*ln2_hi is always exact for |n| < 2000.
00056  *
00057  * Special cases:
00058  *  log1p(x) is NaN with signal if x < -1 (including -INF) ; 
00059  *  log1p(+INF) is +INF; log1p(-1) is -INF with signal;
00060  *  log1p(NaN) is that NaN with no signal.
00061  *
00062  * Accuracy:
00063  *  according to an error analysis, the error is always less than
00064  *  1 ulp (unit in the last place).
00065  *
00066  * Constants:
00067  * The hexadecimal values are the intended ones for the following 
00068  * constants. The decimal values may be used, provided that the 
00069  * compiler will convert from decimal to binary accurately enough 
00070  * to produce the hexadecimal values shown.
00071  *
00072  * Note: Assuming log() return accurate answer, the following
00073  *   algorithm can be used to compute log1p(x) to within a few ULP:
00074  *  
00075  *      u = 1+x;
00076  *      if(u==1.0) return x ; else
00077  *             return log(u)*(x/(u-1.0));
00078  *
00079  *   See HP-15C Advanced Functions Handbook, p.193.
00080  */
00081 
00082 #include "math.h"
00083 #include "mathP.h"
00084 
00085 #ifdef __STDC__
00086 static const double
00087 #else
00088 static double
00089 #endif
00090 ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
00091 ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
00092 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
00093 Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
00094 Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
00095 Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
00096 Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
00097 Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
00098 Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
00099 Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
00100 
00101 #ifdef __STDC__
00102 static const double zero = 0.0;
00103 #else
00104 static double zero = 0.0;
00105 #endif
00106 
00107 #ifdef __STDC__
00108     double log1p(double x)
00109 #else
00110     double log1p(x)
00111     double x;
00112 #endif
00113 {
00114     double hfsq,f=0.0,c=0.0,s,z,R,u;
00115     int32_t k,hx,hu=0,ax;
00116 
00117     GET_HIGH_WORD(hx,x);
00118     ax = hx&0x7fffffff;
00119 
00120     k = 1;
00121     if (hx < 0x3FDA827A) {          /* x < 0.41422  */
00122         if(ax>=0x3ff00000) {        /* x <= -1.0 */
00123         if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
00124         else return (x-x)/(x-x);    /* log1p(x<-1)=NaN */
00125         }
00126         if(ax<0x3e200000) {         /* |x| < 2**-29 */
00127         if(two54+x>zero         /* raise inexact */
00128                 &&ax<0x3c900000)        /* |x| < 2**-54 */
00129             return x;
00130         else
00131             return x - x*x*0.5;
00132         }
00133         if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
00134         k=0;f=x;hu=1;}  /* -0.2929<x<0.41422 */
00135     } 
00136     if (hx >= 0x7ff00000) return x+x;
00137     if(k!=0) {
00138         if(hx<0x43400000) {
00139         u  = 1.0+x; 
00140         GET_HIGH_WORD(hu,u);
00141             k  = (hu>>20)-1023;
00142             c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
00143         c /= u;
00144         } else {
00145         u  = x;
00146         GET_HIGH_WORD(hu,u);
00147             k  = (hu>>20)-1023;
00148         c  = 0;
00149         }
00150         hu &= 0x000fffff;
00151         if(hu<0x6a09e) {
00152             SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
00153         } else {
00154             k += 1; 
00155         SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
00156             hu = (0x00100000-hu)>>2;
00157         }
00158         f = u-1.0;
00159     }
00160     hfsq=0.5*f*f;
00161     if(hu==0) { /* |f| < 2**-20 */
00162         if(f==zero) {if(k==0) return zero;  
00163             else {c += k*ln2_lo; return k*ln2_hi+c;}
00164         }
00165         R = hfsq*(1.0-0.66666666666666666*f);
00166         if(k==0) return f-R; else
00167                  return k*ln2_hi-((R-(k*ln2_lo+c))-f);
00168     }
00169     s = f/(2.0+f); 
00170     z = s*s;
00171     R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
00172     if(k==0) return f-(hfsq-s*(hfsq+R)); else
00173          return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
00174 }

Generated on Tue Feb 2 17:46:05 2010 for RTAI API by  doxygen 1.4.7