base/math/s_expm1.c

Go to the documentation of this file.
00001 /* @(#)s_expm1.c 5.1 93/09/24 */
00002 /*
00003  * ====================================================
00004  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00005  *
00006  * Developed at SunPro, a Sun Microsystems, Inc. business.
00007  * Permission to use, copy, modify, and distribute this
00008  * software is freely granted, provided that this notice 
00009  * is preserved.
00010  * ====================================================
00011  */
00012 
00013 #if defined(LIBM_SCCS) && !defined(lint)
00014 static char rcsid[] = "$NetBSD: s_expm1.c,v 1.8 1995/05/10 20:47:09 jtc Exp $";
00015 #endif
00016 
00017 /* expm1(x)
00018  * Returns exp(x)-1, the exponential of x minus 1.
00019  *
00020  * Method
00021  *   1. Argument reduction:
00022  *  Given x, find r and integer k such that
00023  *
00024  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658  
00025  *
00026  *      Here a correction term c will be computed to compensate 
00027  *  the error in r when rounded to a floating-point number.
00028  *
00029  *   2. Approximating expm1(r) by a special rational function on
00030  *  the interval [0,0.34658]:
00031  *  Since
00032  *      r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
00033  *  we define R1(r*r) by
00034  *      r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
00035  *  That is,
00036  *      R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
00037  *           = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
00038  *           = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
00039  *      We use a special Reme algorithm on [0,0.347] to generate 
00040  *  a polynomial of degree 5 in r*r to approximate R1. The 
00041  *  maximum error of this polynomial approximation is bounded 
00042  *  by 2**-61. In other words,
00043  *      R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
00044  *  where   Q1  =  -1.6666666666666567384E-2,
00045  *      Q2  =   3.9682539681370365873E-4,
00046  *      Q3  =  -9.9206344733435987357E-6,
00047  *      Q4  =   2.5051361420808517002E-7,
00048  *      Q5  =  -6.2843505682382617102E-9;
00049  *      (where z=r*r, and the values of Q1 to Q5 are listed below)
00050  *  with error bounded by
00051  *      |                  5           |     -61
00052  *      | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2 
00053  *      |                              |
00054  *  
00055  *  expm1(r) = exp(r)-1 is then computed by the following 
00056  *  specific way which minimize the accumulation rounding error: 
00057  *                 2     3
00058  *                r     r    [ 3 - (R1 + R1*r/2)  ]
00059  *        expm1(r) = r + --- + --- * [--------------------]
00060  *                    2     2    [ 6 - r*(3 - R1*r/2) ]
00061  *  
00062  *  To compensate the error in the argument reduction, we use
00063  *      expm1(r+c) = expm1(r) + c + expm1(r)*c 
00064  *             ~ expm1(r) + c + r*c 
00065  *  Thus c+r*c will be added in as the correction terms for
00066  *  expm1(r+c). Now rearrange the term to avoid optimization 
00067  *  screw up:
00068  *              (      2                                    2 )
00069  *              ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
00070  *   expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
00071  *                  ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
00072  *                      (                                             )
00073  *      
00074  *         = r - E
00075  *   3. Scale back to obtain expm1(x):
00076  *  From step 1, we have
00077  *     expm1(x) = either 2^k*[expm1(r)+1] - 1
00078  *          = or     2^k*[expm1(r) + (1-2^-k)]
00079  *   4. Implementation notes:
00080  *  (A). To save one multiplication, we scale the coefficient Qi
00081  *       to Qi*2^i, and replace z by (x^2)/2.
00082  *  (B). To achieve maximum accuracy, we compute expm1(x) by
00083  *    (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
00084  *    (ii)  if k=0, return r-E
00085  *    (iii) if k=-1, return 0.5*(r-E)-0.5
00086  *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
00087  *                 else      return  1.0+2.0*(r-E);
00088  *    (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
00089  *    (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
00090  *    (vii) return 2^k(1-((E+2^-k)-r)) 
00091  *
00092  * Special cases:
00093  *  expm1(INF) is INF, expm1(NaN) is NaN;
00094  *  expm1(-INF) is -1, and
00095  *  for finite argument, only expm1(0)=0 is exact.
00096  *
00097  * Accuracy:
00098  *  according to an error analysis, the error is always less than
00099  *  1 ulp (unit in the last place).
00100  *
00101  * Misc. info.
00102  *  For IEEE double 
00103  *      if x >  7.09782712893383973096e+02 then expm1(x) overflow
00104  *
00105  * Constants:
00106  * The hexadecimal values are the intended ones for the following 
00107  * constants. The decimal values may be used, provided that the 
00108  * compiler will convert from decimal to binary accurately enough
00109  * to produce the hexadecimal values shown.
00110  */
00111 
00112 #include "math.h"
00113 #include "mathP.h"
00114 
00115 #ifdef __STDC__
00116 static const double
00117 #else
00118 static double
00119 #endif
00120 one     = 1.0,
00121 huge        = 1.0e+300,
00122 tiny        = 1.0e-300,
00123 o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
00124 ln2_hi      = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
00125 ln2_lo      = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
00126 invln2      = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
00127     /* scaled coefficients related to expm1 */
00128 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
00129 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
00130 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
00131 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
00132 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
00133 
00134 #ifdef __STDC__
00135     double expm1(double x)
00136 #else
00137     double expm1(x)
00138     double x;
00139 #endif
00140 {
00141     double y,hi,lo,c,t,e,hxs,hfx,r1;
00142     int32_t k,xsb;
00143     u_int32_t hx;
00144 
00145     /* XXX Without this, gcc complains about c being used before
00146      * initialization.  It is not clear to me what c's purpose
00147      * in the function is.  --ds */
00148     c=0;
00149 
00150     GET_HIGH_WORD(hx,x);
00151     xsb = hx&0x80000000;        /* sign bit of x */
00152     if(xsb==0) y=x; else y= -x; /* y = |x| */
00153     hx &= 0x7fffffff;       /* high word of |x| */
00154 
00155     /* filter out huge and non-finite argument */
00156     if(hx >= 0x4043687A) {          /* if |x|>=56*ln2 */
00157         if(hx >= 0x40862E42) {      /* if |x|>=709.78... */
00158                 if(hx>=0x7ff00000) {
00159             u_int32_t low;
00160             GET_LOW_WORD(low,x);
00161             if(((hx&0xfffff)|low)!=0) 
00162                  return x+x;     /* NaN */
00163             else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
00164             }
00165             if(x > o_threshold) return huge*huge; /* overflow */
00166         }
00167         if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
00168         if(x+tiny<0.0)      /* raise inexact */
00169         return tiny-one;    /* return -1 */
00170         }
00171     }
00172 
00173     /* argument reduction */
00174     if(hx > 0x3fd62e42) {       /* if  |x| > 0.5 ln2 */ 
00175         if(hx < 0x3FF0A2B2) {   /* and |x| < 1.5 ln2 */
00176         if(xsb==0)
00177             {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
00178         else
00179             {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
00180         } else {
00181         k  = invln2*x+((xsb==0)?0.5:-0.5);
00182         t  = k;
00183         hi = x - t*ln2_hi;  /* t*ln2_hi is exact here */
00184         lo = t*ln2_lo;
00185         }
00186         x  = hi - lo;
00187         c  = (hi-x)-lo;
00188     } 
00189     else if(hx < 0x3c900000) {      /* when |x|<2**-54, return x */
00190         t = huge+x; /* return x with inexact flags when x!=0 */
00191         return x - (t-(huge+x));    
00192     }
00193     else k = 0;
00194 
00195     /* x is now in primary range */
00196     hfx = 0.5*x;
00197     hxs = x*hfx;
00198     r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
00199     t  = 3.0-r1*hfx;
00200     e  = hxs*((r1-t)/(6.0 - x*t));
00201     if(k==0) return x - (x*e-hxs);      /* c is 0 */
00202     else {
00203         e  = (x*(e-c)-c);
00204         e -= hxs;
00205         if(k== -1) return 0.5*(x-e)-0.5;
00206         if(k==1) { 
00207             if(x < -0.25) return -2.0*(e-(x+0.5));
00208             else          return  one+2.0*(x-e);
00209         }
00210         if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
00211             u_int32_t high;
00212             y = one-(e-x);
00213         GET_HIGH_WORD(high,y);
00214         SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
00215             return y-one;
00216         }
00217         t = one;
00218         if(k<20) {
00219             u_int32_t high;
00220             SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
00221             y = t-(e-x);
00222         GET_HIGH_WORD(high,y);
00223         SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
00224        } else {
00225             u_int32_t high;
00226         SET_HIGH_WORD(t,((0x3ff-k)<<20));   /* 2^-k */
00227             y = x-(e+t);
00228             y += one;
00229         GET_HIGH_WORD(high,y);
00230         SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
00231         }
00232     }
00233     return y;
00234 }

Generated on Tue Feb 2 17:46:05 2010 for RTAI API by  doxygen 1.4.7